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ABSTRACT
Reinforcement learning (RL) is a promising technique for opti-
mizing traffic signal controllers that dynamically respond to real-
time traffic conditions. Recent efforts that applied Multi-Agent RL
(MARL) to this problem have shown remarkable improvement over
centralized RL, with the scalability to solve large problems by dis-
tributing the global control to local RL agents. Unfortunately, it is
also easy to get stuck in local optima because each agent only has
partial observability of the environment with limited communica-
tion. To tackle this, we borrow ideas from feudal RL and propose a
novel MARL approach combining with the feudal hierarchy. Specif-
ically, we split the traffic network into several regions, where each
region is controlled by a manager agent and the agents who control
the traffic signals are its workers. In our method, managers coordi-
nate their high-level behaviors and set goals for their workers in
the region, while each lower-level worker controls traffic signals
to fulfill the managerial goals. By doing so, we are able to coor-
dinate globally while retain scalability. We empirically evaluate
our method both in a synthetic traffic grid and real-world traffic
network using the SUMO simulator. Our experimental results show
that our approach outperforms the state-of-the-art in almost all
evaluation metrics commonly used for traffic signal control.
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1 INTRODUCTION
Traffic congestion in metropolitan areas has been becoming a world-
wide problem as a consequence of population growth and urbaniza-
tion. Reinforcement Learning (RL) and its deep learning counterpart
have shown promising results [3–5, 8, 12, 15, 16, 18, 23, 25] on reduc-
ing potential congestions in traffic networks, by learning policies for
traffic light controllers that dynamically respond to real-time traf-
fic conditions. Unlike traditional model-driven approaches [9, 19],
RL does not rely on heuristic assumptions or expert knowledge.
Instead, it formulates the traffic signal control problem as a Markov
Decision Process (MDP) and learns the optimal policy based on the
experience interacting with complex traffic systems.

However, a centralized RL approach is usually infeasible for
large traffic signal control problems because: 1) Collecting all traffic
measurements in the network to form a global state will cause high
latency in practice; 2) The joint action space of the agents grows
exponentially in the number of signalized intersections. Therefore,
it is more efficient and natural to formulate traffic signal control as
a cooperative Multi-Agent RL (MARL), where each intersection is
controlled by a single agent with local observations.

To date, existing work on the multi-agent perspective for traffic
signal control either falls back to independent learning [3, 5, 14, 26]
or depends on centralized optimization of coordinated agents [6, 11,
30]. Centralized optimization has the scalability issue as it requires
maximization over a huge joint action space. Independent RL such
as Independent Q-Learning (IQL) [26] is scalable, in which each agent
only learns its own policy independently by modeling other agents
as parts of the environment dynamics. However, the environment
becomes non-stationary when other agents update their policies.
Furthermore, it is difficult to achieve the global optima when agent
only optimizes its own reward based on local observations.

To alleviate this, Multi-agent Advantage Actor-Critic (MA2C) [8]
was proposed to solve traffic signal control problems. Similar to
IQL, MA2C is scalable as each agent only learns its own policy
independently. Most importantly, it is more stable and robust than
IQL as: 1) It includes the observations and fingerprints of neigh-
boring agents in the state so that each agent has more information
about cooperative strategy; 2) It introduces a spatial discount factor
to scale down the observation and reward signals of neighboring
agents so that each agent focuses more on improving nearby traffic.
Although the proposed methods stabilize training and guarantee
convergence, it is easy to get stuck in local optima due to lack of
global coordination. This becomes severe especially when traffic
requires to flow across a large area. In such cases, neighborhood
adjustment may not be efficient to minimize traffic congestion.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

816



Against this background, we borrow ideas from feudal RL [2, 10,
24] to improve global coordination among agents in the domain of
traffic signal control. With feudal hierarchy, amanager agent makes
decisions in the high level and communicates its goals to multiple
lower-level worker agents, who are rewarded for achieving the man-
agerial goals. This hierarchical structure is useful especially when
local agents only have limited view of the world as in the scenario
of traffic signal control. Notice that this is widely used in our society
for improving team performance. For instance, in soccer games,
coach who has better view of the game frequently communicates
her decisions to the team playing in the field. This coach-player
structure is effective and even critical to succeed in a competition.
We will demonstrate the benefit of such feudal hierarchy for traffic
signal control later in the experiments.

Here, we propose Feudal Multi-agent Advantage Actor-Critic
(FMA2C), which is an extension of MA2C with feudal hierarchy
for traffic signal control. To solve the problem, we split the traffic
network into several regions, where each region is controlled by a
manager agent and the local agents who controls the traffic lights
in the region are its workers. Each manager coordinates with other
managers and takes an action that corresponds to a goal for its
workers. By receiving the goal from its manager, each worker try to
achieve the managerial goal while maximizing its own local reward.
In our algorithm, managers learn to coordinate in the high level and
set goals for their workers, while workers learn to choose actions
that fulfill both the managerial goals and its local objectives. To
the best of our knowledge, this is the first approach to combine
MA2C with feudal hierarchy for traffic signal control. In the ex-
periments, we tested our algorithm both in a synthetic traffic grid
and real-world traffic network of Monaco city. Our experimental
results show that FMA2C outperformed MA2C and other baselines
(e.g., IQL, Greedy) in almost all criteria, including queue length,
intersection delay, vehicle speed, trip completion flow, and trip
delay, commonly used to evaluate the overall traffic conditions.

2 BACKGROUND
This section briefly describes some building blocks of our approach.
We build our method based on multi-agent A2C and combine the
idea of feudal RL to solve the traffic signal control problems.

2.1 Multi-Agent A2C
Policy gradient is a RL method that directly optimizes the param-
eterized policy πθ with experience trajectories. Early work (e.g.,
REINFORCE) uses the estimated return R̂t =

∑T−1
τ=t γ

τ−t rτ to mini-
mize the policy loss function:

L(θ ) = −
1
|B |

∑
t ∈B

logπθ (at |st )R̂t (1)

where B = {(st ,at , rt )} is the experience replay buffer. However, it
suffers from high variance as R̂t is very noisy.

Advantage Actor-Critic (A2C) improves the policy gradient by
introducing the advantage value At = R̃t − Vω− (st ) where R̃t =
R̂t + γ

T−tVω− (sT ). It reduces the bias of sampled return by adding
the value of the last state. Given this, the actor minimizes the policy
loss function to update the policy parameter θ as below:

L(θ ) = −
1
|B |

∑
t ∈B

logπθ (at |st )At (2)

In turn, the critic minimizes the value loss function to update
the value parameter ω as follow:

L(ω) =
1

2|B |

∑
t ∈B
(R̃t −Vω (st ))

2 (3)

To extend single-agent A2C to multi-agent settings, a straight-
forward idea is for each agent to independently learn its own policy
πθi and the corresponding value function Vωi . If the global reward
and state are shared among agents, the local return of agent i can
be estimated with the other agents’ policies πθ−i fixed as:

R̃t,i = R̂t + γ
T−tVω−i (sT |πθ−−i ) (4)

When global information sharing is infeasible due to commu-
nication latency, one idea is to consider the communication only
between neighboring agents in order to coordinate the agents’ be-
havior. Specifically, the local state of each agent i is augmented
with the local states of its neighbors: st,Ui = {st, j }j ∈Ui . Then,
each agent i minimizes the value loss with its parameter ωi as:

L(ωi ) =
1

2|B |

∑
t ∈B
(R̃t,i −Vωi (st,Ui ))

2 (5)

Given the advantage value At,i = R̃t,i −Vω−i (st,Ui ), each agent
i now minimizes the policy loss to update its parameter θi as:

L(θi ) = −
1
|B |

∑
t ∈B

logπθi (at,i |st,Ui )At,i (6)

However, when the other agents’ policies π−i is actively updated,
the policy gradient may be inconsistent across mini-batches since
the advantage is conditioned on changing policy parameters θ−i .

To stabilize the training, Multi-agent A2C (MA2C) [8] proposes
two techniques: 1) it includes information of neighborhood policies
to improve the observability of each local agent; 2) it uses a spatial
discount factor to weaken the state and reward signals from other
agents. However, it is easy to get stuck in local optima because
each agent still has very limited range of sight. To address this, we
borrow ideas from feudal RL and make an improvement.

2.2 Feudal RL
Feudal RL [10] speeds up RL by enabling simultaneous learning
at multiple resolutions in space and time. It creates a control hier-
archy where high-level managers learn how to set goals for their
workers who, in turn, learn how to satisfy them. Here, a goal is
simply an action of the managers to communicate with workers and
define their reward functions. With this settings, the manager must
learn to communicate its goals judiciously in order to solve global
problem. In turn, the workers must learn how to act in the light of
the resulting managerial reward, in addition to immediate rewards
they might also experience from the environment. This framework
has been extended to use neural networks [24] and multi-agent
settings [2]. In this paper, we use a feudal hierarchy similar to feu-
dal multi-agent hierarchy proposed by [2]. However, we develop a
different mechanism for managers to communicate their goals to
their workers, which is suitable for traffic signal control.
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3 RELATEDWORK
RL has been extensively studied in traffic signal control. Early work
mostly apply RL to single traffic light control [1, 7, 20, 22, 27].
The key challenge focused by them is how to represent the high-
dimensional continuous states in the Q-function under complex
traffic dynamics. Recently, deep RL approaches were implemented
to incorporate high dimensional state information into a more
realistic settings in traffic signal control [4, 5, 12, 15, 16, 18, 25].

Existing work on multi-agent traffic signal control mostly relied
on Independent Q-Learning (IQL). Wiering [26] applied model-based
IQL to each intersection. Chu et al. [5] dynamically cluster regions
and use IQL to solve the traffic signal control for each region. Aziz
et al. [3] improved the observability of IQL by neighborhood in-
formation sharing. Van der Pol and Oliehoek [23] applying a Q
function learned on a sub-problem to the full problem with transfer
planning and max-plus action-selection. Liu et al. [17] proposed
distributed multi-agent Q-learning by sharing information about
neighboring agents. Alternatively, coordinated Q-Learning was also
implemented with various message-passing methods [6, 11, 30].

Most recently, Chu et al. [8] proposed MA2C that shows to
outperform other methods and is currently the leading approach
for traffic signal control. We build our algorithm based on MA2C
and make further improvements as describe next.

4 FEUDAL MULTI-AGENT ADVANTAGE
ACTOR-CRITIC ALGORITHM

This section introduces our algorithm that extends MA2C to com-
bine with feudal hierarchy. We start with a formal definition of the
traffic network with hierarchical structure. Then, we introduce the
Markov games that we use to model the control problems of man-
agers and workers. Finally, we propose FMA2C to simultaneously
learn policies for both managers and workers.

4.1 Traffic Network with Hierarchical Structure
We consider a traffic network G = ⟨V, E⟩, where each vertex vi ∈
V corresponds to an intersection and each edge e = (vi ,vj ) ∈ E
represents the road between two intersections vi ,vj ∈ V . We
assume that the traffic signals in each intersection vi are controlled
by agent i that takes road conditions as input and output operational
rules for the traffic lights. The neighborhood of agent i is denoted
as Ni and Ui = Ni ∪ {i}. The distance between any two agents
d(i, j) is measured as the minimum number of edges connecting
them. For example, d(i, j) = 0 and d(i, j) = 1 for any j ∈ Ni . We
spatially partition the network G into m disjoint sub-networks
{V1, · · · ,Vm }, where ∀Vi ,Vj ,Vi ∩Vj = ∅, ∪mk=1Vk = G, and for
∀i, j ∈ Vk there exists a path insideVk connecting i and j . We call
such sub-networkVk ⊆ G a region in the traffic network.

We assume that each region Vk is controlled by a manager k
and each agent i ∈ Vk who controls the traffic signals in the region
is called its worker. Similarly, the neighborhood of manager k is
denoted as Nk andUk = Nk ∪ {k}. In total, there arem managers
and n workers in the traffic network. Here, we consider a tree
hierarchy where each worker only reports to a single manager. For
simplicity, we just consider two-level manager-worker hierarchies
as commonly used in the literature [2, 10, 24], though our work

can apply to hierarchies with multiple levels by considering super
regions of the traffic network.

4.2 Markov Game for Managers and Workers
Wemodel the control problems for managers and workers as partial
observable Markov games. For the n workers, the Markov game
is defined by a tupleMW = ⟨SW , {OW

i }, {A
W
i }, P

W ,RW ⟩, where:
SW is the state space, OW

i is the observation space for worker i ,
AWi is the action space for worker i , PW : SW ×AW × SW → [0, 1]
is the transition function, and RW : SW ×AW →ℜ is the reward
function. In partial observable settings, the state is hidden and each
agent only receives a local observation corresponding to the state.
Therefore, the policy for each worker i is a mapping from its local
observations to its actions πWi : OW

i → AWi . The objective is
to learn a set of policies, one for each worker, that maximize the
accumulated rewards

∑T
t=1 γ

t rWt where γ is a discount factor and
T is the horizon. Similarly, we define the Markov game for them
managers by a tupleMM = ⟨SM , {OM

k }, {A
M
k }, P

M ,RM ⟩ and the
policy πMk for each manager k as described above.

Note thatMW is a model for the underlying traffic signal control
problem, where SW are the states for the global traffic conditions,
OW
i are the observations of local road conditions received by agent

i , and AWi are a set of control commands for the traffic lights. The
dynamics of the traffic network is modeled by the transition func-
tion PW and the objective of traffic optimization is specified by the
reward function RW . In our experiments, we use the SUMO traffic
simulator as our training environment. We will give more details
about the model specification in Section 5.

Similar to conventional feudal RL [10], themanagers andworkers
interact in our work with each other through their observations
and reward functions. Specifically, each observation of a manager
is an abstraction of its workers’ observations in the region and
each action of a manager corresponds to a goal that needs to be
achieved by its workers. The reward of each worker at time step t
is augmented by considering the action taken by its manager k as:

r̂Wt,i = r
W
t,i + σ (o

W
t,i ,a

M
t,k ) (7)

where rWt,i is the intrinsic reward of worker i and σ : OW
i ×A

M
k →

ℜ is a function mapping from the worker’s observation and the
manager’s action to a real number. In practice, there are several
ways to define σ . In our experiments, We use the value of the angle
between the motion vector of the state and the goal direction vector
to measure the degree of following with the goal [24]. Specifically,
we use:C ·dcos(oWt+1,i−o

W
t,i ,a

M
t,k ), wheredcos(X ,Y ) = XTY/(|X | |Y |)

is the cosine similarity between two vectors and C is a constant.
Figure 1 illustrates the framework of manager-worker hierarchy

for partially observable Markov games.

4.3 Learning Policies of Managers and Workers
We train managers and workers with FMA2C. The main proce-
dures of our approach are shown in Algorithm 1. At time step
t , each manager k samples an action aMt,k from its current policy
πMt,k to produce a goal for the workers in its region Vk . Then,
each worker i in Vk selects an action aWt,i to execute. After that,
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Figure 1: Framework of manager-worker hierarchy.

Algorithm 1: Feudal Multi-Agent Advantage Actor-Critic

1 Initialize πM ,πW ,BM ← ∅,BW ← ∅, t ← 0, l ← 0
2 repeat
3 # Explore experience

4 foreach region k ∈ 1..m do
5 Sample aMt,k from πMt,k ◃ Eq. (8)
6 foreach agent i ∈ Nk do
7 Sample aWt,i from πWt,i ◃ Eq. (9)
8 Receive rWt,i and o

W
t+1,i

9 Receive rMt,k and oMt+1,k

10 BM ← BM ∪ {(t ,aMt,k , r
M
t,k ,o

M
t+1,k )}k ∈1..m

11 BW ← BW ∪ {(t ,aWt,i , r
W
t,i ,o

W
t+1,i )}i ∈V

12 t ← t + 1, l ← l + 1
13 # Update A2C

14 if l ≥ |B | then
15 foreach region k ∈ 1..m do
16 Estimate R̃Mt,k ,∀t ∈ BM ◃ Eq. (15)
17 Update ωM

k with ηMω ∇L(ωM
k ) ◃ Eq. (17)

18 Update θMk with ηMθ ∇L(θ
M
k ) ◃ Eq. (19)

19 foreach agent i ∈ V do
20 Estimate R̃Wt,i ,∀t ∈ BW ◃ Eq. (16)
21 Update ωWi with ηWω ∇L(ωWi ) ◃ Eq. (18)
22 Update θWi with ηWθ ∇L(θ

W
i ) ◃ Eq. (20)

23 BW ← ∅,BM ← ∅, l ← 0

24 until stop condition reached.
25 return all managers’ and workers’ policies {θMk } and {θ

W
i }

the environment gives corresponding feedback rWt,i ,o
W
t+1,i to each

worker i . Accordingly, manager k also computes its reward and
observation rMt,k ,o

M
t+1,k . The transitions (t ,aMt,k , r

M
t,k ,o

M
t+1,k ) and

(t ,aWt,i , r
W
t,i ,o

W
t+1,k ) are stored in replay buffer BM and BW respec-

tively. Once the buffer size reaches some predefined size |B |, we
then use mini-batch gradient descent to update each manager and

worker’s actor-critic networks. Finally, the training process is ter-
minated when reaching the stop condition.

Inspired by MA2C [8], under limited communication, we aug-
ment eachmanager’s observation with the observations of its neigh-
bors oMt,Uk

= {oMt, j }j ∈Uk . Besides, we include a fingerprint
1 of its

neighbors’ latest policies πMt−1,Nk
= [πMt−1, j ]j ∈Nk . The local policy

of manager k with the latest policy parameters θ−k is calculated as:

πMt,k = πθ−k
(·|oMt,Uk

,πMt−1,Nk ) (8)
For each worker i , we only consider its neighbors inside the

region k , i.e., N−i = Ni ∩ Vk and U−i = N
−
i ∪ {i}. Similarly,

we augment the worker’s observation by its regional neighbors’
observations oWt,U−i

= {oWt, j }j ∈U−i and latest policy fingerprints

πWt−1,N−i
= [πWt−1, j ]j ∈N−i . Now, the local policy of each worker i

with the latest policy parameters θ−i is calculated as:

πWt,i = πθ−i (·|o
W
t,U−i
,πWt−1,N−i

) (9)

Here, we can include the actions taken by its manager and neigh-
boring managers aMt,Uk

= {aMt, j }j ∈Uk . Note that an action taken
by managers correspond to a goal that needs to be fulfilled by their
workers. Now, the local policy of each worker i is calculated as:

µWt,i = µθ−i (·|o
W
t,U−i
, µWt−1,N−i

,aMt,Uk
) (10)

We extend each manager k’s reward to consider the discounted
rewards of its neighbors Nk , where α ∈ [0, 1] is a discount factor:

r̃Mt,k = r
M
t,k +

∑
j ∈Nk

α · rMt, j (11)

For each worker i , we adjust its reward by including the rewards
of its regional members inVk and the reward of its manager r̂Wt, j .
We spatially scale down the reginal members’ rewards by a discount
factor α ∈ [0, 1]. Here, d(i, j) represents the distance between two
agents i, j , e.g., d(i, i) = 0 and d(i, j) = 1 if agent i and j are adjacent.
Now, the reward of worker i is calculated as:

r̃Wt,i =

Di∑
d=0

©­«
∑

j ∈Vk |d (i, j)=d

αd · r̂Wt, j
ª®¬ + r̃Mt,k (12)

whereDi is the maximum distance from agent i . In the experiments,
we setDi = 1 so agent only needs to collect rewards of its neighbors.

In order to maintain consistency, we also discount the neighbor-
hood observations to produce the information states for managers
and workers respectively as follow:

s̃Mt,Uk
= [oMt,k ] ∪ α[o

M
t, j ]j ∈Nk (13)

s̃Wt,Ui
= [oWt,i ] ∪ α[o

W
t, j ]j ∈N−i (14)

With managers’ and workers’ immediate rewards defined above,
the accumulated rewards for them are R̂Mt,k =

∑T−1
τ=t γ

τ−t r̃Mτ ,k and
R̂Wt,i =

∑T−1
τ=t γ

τ−t r̃Wτ ,i respectively. Given the approximate state
values under the previous parameters, the estimating local returns
of managers and workers are as follow:
1Similar to MA2C, we use the probability simplex of a policy as its fingerprint.
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R̃Mt,k = R̂Mt,k + γ
T−tVM

ω−k
(s̃MT ,Uk

,πMT−1,Nk |π
M
θ−
−k
) (15)

R̃Wt,i = R̂Wt,i + γ
T−tVW

ω−i
(s̃WT ,Ui

,πWT−1,Ni |π
W
θ−
−i
) (16)

Now, we can minimize the value loss function for manager k
with parameter ωM

k , with each mini-batch BM that contains the
experience trajectory, as below:

L(ωM
k ) =

1
2|B |

∑
t ∈BM

(
R̃Mt,k −V

M
ωk (s̃

M
t,Uk
,πMt−1,Nk )

)2
(17)

Similarly, we can minimize the value loss function for worker i
with parameter ωWi with each mini-batch BW as follow:

L(ωWi ) =
1

2|B |

∑
t ∈BW

(
R̃Wt,i −V

W
ωi (s̃

W
t,Ui
,πWt−1,Ni )

)2
(18)

As aforementioned, we use advantage actor-critic to update the
agents’ policy parameters. For manager k , the policy loss function
with parameter θMk that we try to minimize is as below:

L(θMk ) = −
1
|B |

∑
t ∈BM

(
logπMθk (a

M
t,k |s̃

M
t,Uk
,πMt−1,Nk )Ã

M
t,k

−β
∑

ak ∈AM
k

πMθk
logπMθk (ak |s̃

M
t,Uk
,πMt−1,Nk )

) (19)

where ÃMt,k = R̃Mt,k − V
M
ω−k
(s̃Mt,Uk

,πMt−1,Nk
) is the advantage value

and the additional regularization term is the entropy loss of policy
πMθk

for encouraging the early-stage exploration.
Similarly, we minimize the policy loss function for worker i with

respect to parameter θWi as follow:

L(θWi ) = −
1
|B |

∑
t ∈BW

(
logπWθi (a

W
t,i |s̃

W
t,Ui
,πWt−1,Ni )Ã

W
t,i

−β
∑

ai ∈AWi

πWθi
logπWθi (ai |s̃

W
t,Ui
,πWt−1,Ni )

) (20)

where the advantage value is ÃWt,i = R̃Wt,i −V
W
ω−i
(s̃Wt,Ui

,πWt−1,Ni
).

4.4 Discussion
Note that the communication among managers or workers is the
same as MA2C. In the learning phase, they share their observa-
tions, rewards, current policy’s fingerprints with their neighbors
to coordinate their policy updating. During execution, they need
to share their observations with the neighbors for selecting an ac-
tion because the policies are fixed so as the fingerprints. The extra
communication introduced by our algorithm is the communication
between managers and their workers. In the learning phase, each
worker must share their observations with their manager so it can
do the abstract and make its own observation. Each manager sends
its action (goal) and reward to its workers for them to update their
policies. During execution, each worker can select its action with
or without message from the manager.

states

neighbor states

local states

neighbor policies

FC

FC

LSTM

softmax (actor)

linear (critic)

wave states

neighbor states

local states

wait states

FC

FC LSTM

softmax (actor)

linear (critic)neighbor policies FC

goals

Manager network

Worker network

Figure 2: Neural networks for managers and workers.

It is worth pointing out that our algorithm is a decentralized
algorithm (similar to MA2C) where each worker computes its policy
locally with the information of its neighbors in the region and each
manager computes a policy with respect to its workers in the region.
Generally, it can scale up to large problems with many levels of
hierarchy if necessary. Note that each worker agent takes actions
with the local observation on the number of approaching vehicles
for all incoming lanes. If unexpected incidents such as accidents
and lane closure happen, the agent will act accordingly when the
number of approaching vehicles for the corresponding lanes drops.

5 EXPERIMENTS
We implemented our FMA2C algorithm using the SUMO simula-
tor [13] — a commonly used microscopic traffic simulator in the
literature. We tested FMA2C in several synthetic traffic grids and
a real-world traffic network from Monaco city. We compare our
results with MA2C [8], which is currently the leading multi-agent
RL approach for traffic signal control and has shown better per-
formance than other baselines. For fair comparison, we ran MA2C
with the source code2 released by the authors and adopt identical
parameters. For completeness, we also show results for IQL-LR (IQL
with linear regression), IQL-DNN (IQL with deep neural network),
and Greedy (agents choose greedy actions) as in the MA2C paper.

5.1 Model Setting
As aforementioned, we model the control problems of managers
and workers as partially observable Markov games. There are many
possible ways to specify the observation, action and reward function
in the literature. We follow the ones used in the MA2C paper [8]
for the workers and accordingly create the model for the managers.
Next, we describe our model definitions.

5.1.1 Observation Definition. For each worker i , we define the
local observation as: oWt,i = {wavet [l], waitt [l]}l ∈Li , where l is
each incoming lane of intersection i , waitmeasures the cumulative
delay of the first vehicle, and wave measures the total number of
approaching vehicles along each incoming lane, within 50m to the
intersection. For each manager k , we define the local observation:
2See: https://github.com/cts198859/deeprl_signal_control
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oMt,k = {Nwavet [l], Ewavet [l], Swavet [l], Wwavet [l]}l ∈Lk , where l is
each lane connect region k to other regions and Nwave, Ewave,
Swave, Wwave are the wave for the north, east, south, and west
directions respectively.

5.1.2 Action Definition. For each worker, we define the local
action as a possible phase (i.e., red-green combinations of traffic
lights). Here, we consider five red-green combinations of traffic
lights: east-west straight and right-turn phase, east-west left-turn
and right-turn phase, and three straight, right-turn and left-turn
phases for east, west, and north-south. For each manager, we de-
fine the local action as a possible traffic flow. We consider four
combinations of north-south and east-west traffic flows.

5.1.3 Reward Definition. For each worker i , we consider both
traffic congestion and trip delay and define the local reward as:
rWt,i = −

∑
l ∈Li (wavet+∆t [l]+a · waitt+∆t [l]), where a is a tradeoff

coefficient. For each manager k , we define the local reward: rMt,k =∑
l ∈Lk arrivalt+∆t [l]+

∑
i ∈Vk liquidt+∆t [i], where arrivalt+∆t [l]

is the number of vehicles arriving at the destination within a certain
period of time ∆t and liquidt+∆t [i] is the liquidity of traffic flow
within a certain period of time ∆t at intersection i .

5.2 Training Setting
Figure 2 illustrates the neural network structures for managers and
workers. As shown in the figure, we use similar structure for both
managers and workers, where each input is processed by a fully
connected (FC) layer. The outputs of the FC layers are integrated
and input into a long-short termmemory (LSTM). The LSTM layer is
useful to extract representations from different state types because
the traffic flows are complex spatial-temporal data [8]. The output
of the LSTM layer is used as the input for the actor and critic layers.
We train all algorithms over 1 million steps, which includes 1400
episodes and each episode’s step is 720 (3600 sec in simulation).
After training, 10 episodes are simulated to evaluate the policies.
For managers, we set γ = 0.96 and α = 0.75, ηMθ ,η

M
w = 2.5e − 4,

|BM | = 120, and β = 0.01. For workers, we set γ = 0.96 ,α = 0.75,
ηMθ ,η

M
w = 2.5e − 4, |BM | = 120, and β = 0.01. We set decay = 0.99

and ϵ = 1e−5 in RMSprop optimizer in both managers and workers.

5.3 Synthetic Traffic Grid
As shown in Figure 3(a), we tested our algorithm in a 4×4 traffic
grid formed by two-lane arterial streets with speed limit 20m/s and
one-lane avenues with speed limit 11m/s. There are four groups
of time-variant flows (i.e., f1, F1, f2, F2) in the simulation and the
value of each flow with simulation time is summarized in Table 1.
In Figure 3(a), the red lines represent the flow F1 and F2, while the
blue lines represent the flow f1 and f2. Specifically, at beginning,
flow F1 is generated with origin-destination (O-D) pairs (x6−x7) →
(x9−x8), meanwhile flow f1 is generated with O-D pairs (x1−x2) →
(x4−x3). After 15minutes, the volumes of F1 and f1 start to decrease,
while their opposite flows (with swapped O-D pairs) F2 and f2 start
to be generated. We divided the 4×4 traffic grid into 4 regions where
each region is controlled by a manager and 4 workers.

Figure 3(d) shows the training curves of each tested algorithm.
In the figure, the solid line plots the average reward per training

episode: R̄ = 1
T

∑T−1
t=0

∑
i ∈V rWt,i and the shade shows its standard

deviation. As we can see from the figure, both FMA2C and MA2C
converge to reasonable policies but FMA2C converges faster and
more stable than MA2C and the other two baselines.

To test the robustness and generalization of the learned policies,
we evaluate them with different traffic flows from the ones that we
used to train the policies. Specifically, we made two modification to
the test flows: one is to increase the values of the flows (as shown
in Table 1) by 50%, the other is to change the (O-D) pairs of the
flow to different configuration (as shown in Figure 3(b)). Figures
3(e) and 3(f) show the average queue length and intersection delay
respectively for the test case when increasing the flow values. As
we can see, FMA2C has smaller queue length and intersection delay
than the compared baseline approaches. In Figures 3(g) and 3(h),
we observed the same trend with less queue length and intersection
delay for FMA2C when changing the flow directions. The overall
evaluation metrics for the 4×4 grid with increasing flow values and
changing flow directions are summarized in Tables 2(a) and 2(b). As
we can see, FMA2C outperforms all the other baselines in almost
all evaluation criteria except average trip delay.

Although IQL-LR and Greedy have shorter average trip delay
in some problem instances, we observed that IQL-LR and Greedy
tend to allow the traffic flow in a lane while keep many vehicles in
other lanes to wait for very long time. Specifically, the number of
vehicles with waiting time between 1500s and 2000s are 610 and
496 and the number of vehicles with waiting time more than 2000
seconds are 307 and 177 for IQL-LR and Greedy respectively (only
1 vehicle for FMA2C). This is usually undesirable for normal traffic
scenarios. As shown in Table 2, it coincidently has the minimum
trip delay for some traffic networks (i.e., Tables 2(a-b)) but is not
the case for other traffic networks (i.e., Tables 2(c-d)).

We also tested the algorithms in a irregular 4×4 grid by removing
some roads and changing traffic flows as shown in Figure 3(c).
This can also be viewed as the lanes in the center is closed due to
unexpected incidents such as accidents. Specifically, we modified
the (O-D) pairs of flows f1 and f2, where f1 and f2 represent (x1 −
x2) → (x3 − x4) and (x3 − x4) → (x1 − x2) respectively. Table 2(c)
summarizes the metrics for this scenario. As shown in the table,
FMA2C achieves the best performance in all evaluation criteria.

As expected, our algorithm takes additional time for training
the managers and computing the fingerprints. Specifically, FMA2C
takes 17h43m for training while the learning time for MA2C is
16h22m. The additional training cost (i.e., 1h21m) is relatively small
comparing to the total training time. In a traffic simulation with
720 decision cycles, FMA2C totally takes 10.91s for computing the
actions while the time for MA2C is 10.34s. The additional execution
cost per decision cycle (i.e., 0.57s/720) is neglectable comparing to
the time (i.e., 5s) of each decision cycle.

5.4 Monaco Traffic Network
As shown in Figure 3(i), Monaco traffic network, with signalized
intersections colored in blue, is a real-world traffic network with 30
intersections extracted from an area of Monaco city. This traffic net-
work has a variety of road and intersection types. The intersections
are categorized into 5 types by phase: 11 are two-phase, 4 are three-
phase, 10 are four-phase, 1 is five-phase, and 4 are six-phase. In our
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Table 1: Time-variant traffic flows within the 4 × 4 traffic grid.

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 (sec)

f1 264.0 462.0 594.0 660.0 495.0 330.0 165.0 0 0 0 0 0 0 (veh/h)
F1 440.0 770.0 990.0 1100.0 825.0 550.0 275.0 0 0 0 0 0 0 (veh/h)
f2 0 0 0 166.5 444.0 499.5 555.0 444.0 333.0 111.0 0 0 0 (veh/h)
F2 0 0 0 277.5 740.0 832.5 925.0 740.0 555.0 185.0 0 0 0 (veh/h)

Table 2: Performance for the 4 × 4 traffic grids and Monaco traffic network with different evaluation metrics.

Metrics
(a) 4 × 4 traffic grid (increasing flow value) (b) 4 × 4 traffic grid (changing flow directions)

FMA2C MA2C IQL-DNN IQL-LR Greedy FMA2C MA2C IQL-DNN IQL-LR Greedy
reward -310.22 -467.65 -850.88 -1647.20 -1940.51 -302.78 -406.71 -2007.25 -2420.88 -1867.01
avg. queue length [veh] 1.72 2.35 3.31 5.02 5.09 1.69 2.23 5.51 6.87 4.78
avg. intersection delay [s/veh] 14.46 26.18 87.42 168.10 152.15 15.62 25.04 247.32 218.15 154.94
avg. vehicle speed [m/s] 3.80 3.27 2.77 2.56 2.80 3.63 3.09 1.49 1.18 3.43
trip completion flow [veh/s] 0.81 0.79 0.42 0.43 0.50 0.81 0.76 0.16 0.16 0.56
trip delay [s] 328 398 359 273 296 323 374 450 751 241

Metrics
(c) 4 × 4 traffic grid (irregular grid shape) (d) Monaco traffic network

FMA2C MA2C IQL-DNN IQL-LR Greedy FMA2C MA2C IQL-DNN IQL-LR Greedy
reward -105.58 -138.43 -1527.29 -465.61 -277.27 -22.77 -63.21 -100.29 -53.80 -100.29
avg. queue length [veh] 0.83 1.21 4.25 2.61 1.08 0.20 0.60 1.04 0.54 0.41
avg. intersection delay [s/veh] 3.86 4.45 179.90 47.31 19.86 4.58 38.07 116.61 97.09 29.90
avg. vehicle speed [m/s] 4.76 4.13 2.15 3.79 4.73 7.53 4.88 2.38 4.34 7.38
trip completion flow [veh/s] 0.69 0.67 0.24 0.57 0.66 0.68 0.64 0.54 0.46 0.63
trip delay [s] 216 296 268 371 225 89 201 267 153 95

experiments, we simulated the traffic flows the same as used in [8].
In Figure 3(i), four traffic flow groups are illustrated by arrows, with
origin and destination inside rectangular areas. Specifically, at the
first 40min, flows F1 and F2 are simulated following <1, 2, 4, 4, 4,
4, 2, 1> unit flows with 5min intervals, where each unit represents
325veh/h. From 15min to 55min, flows F3 and F4 are simulated.
We manually split the 30 intersections in the traffic network into 4
regions with 10, 8, 6, and 6 workers respectively. As an example, we
show that different managers can have varying sized assignments
of workers in a region.

Figure 3(j) shows the training curve of the tested algorithms. As
we can see, FMA2C shows a faster and more stable convergence to
reasonable policies. Figures 3(k) and 3(l) show the average queue
length and average intersection delay of the tested algorithms re-
spectively. As shown in the figure, FMA2C outperforms all the other
baselines with less queue length and intersection delay. Table 2(d)
summarizes the performance of all the algorithms under different
metrics. As we can see, FMA2C has better performance than all the
compared algorithms in all evaluation criteria.

6 CONCLUSIONS
This paper proposed FMA2C, which is an extension of MA2C with
feudal hierarchy, to address the global coordination problem in the
domain of traffic signal control. To this end, we split the traffic

network into regions, where each region is controlled by a manager
agent and the agents who control the traffic lights in the region are
its workers. Each manager makes decisions in the high level and
communicates its goals to the low-level workers, who are responsi-
ble to achieve the managerial goals. Our FMA2C algorithm learns
policies both for the managers and workers. Experimental results
in 4×4 traffic grid and Monaco traffic network using the SUMO sim-
ulator show that FMA2C outperforms MA2C and other baselines in
almost all evaluate metrics. It is worth noting that our algorithm is
a decentralized algorithm where each worker computes its policy
locally with the information of its neighbors in the region and each
manager computes a policy with respect to its workers in the region.
Generally, it can scale up to large problems with many levels of
hierarchy if necessary. In the future, we plan to develop algorithms
that can optimally split the traffic network into regions and test
our algorithm with data from real traffic flow in very large traffic
network (e.g., the whole city). Notice that the proposed FMA2C
technique is indeed a general decentralized multi-agent reinforce-
ment learning approach, where each agent independently learns
its own policy with the guidance of the coordinated regional man-
agers. Apart from the traffic signal control domain, the proposed
method has the potential to be applied to other cooperative multi-
agent applications, requiring scalable decentralized training, such
as multi-robot coordination [28] and disaster management [21, 29].
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Figure 3: Experimental results in the 4 × 4 synthetic traffic grid and Monaco traffic network. In (a-c), the red lines are the F1,
F2 flows and the blue lines are the f1, f2 flows. In (i), four traffic flow groups are shown by arrows, with origin and destination
inside rectangular areas. In all line charts, the solid line plots the average value and the shade shows its standard deviation.
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