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ABSTRACT
We tackle the problem of learning equilibria in simulation-based
games. In such games, the players’ utility functions cannot be de-

scribed analytically, as they are given through a black-box simulator

that can be queried to obtain noisy estimates of the utilities. This is

the case in many real-world games in which a complete description

of the elements involved is not available upfront, such as complex

military settings and online auctions. In these situations, one usu-

ally needs to run costly simulation processes to get an accurate

estimate of the game outcome. As a result, solving these games

begets the challenge of designing learning algorithms that can find

(approximate) equilibria with high confidence, using as few sim-

ulator queries as possible. Moreover, since running the simulator

during the game is unfeasible, the algorithms must first perform a

pure exploration learning phase and, then, use the (approximate)

equilibrium learned this way to play the game. In this work, we

focus on two-player zero-sum games with infinite strategy spaces.
Drawing from the best arm identification literature, we design two

algorithms with theoretical guarantees to learn maximin strategies

in these games. The first one works in the fixed-confidence setting,
guaranteeing the desired confidence level while minimizing the

number of queries. Instead, the second algorithm fits the fixed-
budget setting, maximizing the confidence without exceeding the

given maximum number of queries. First, we formally prove 𝛿-PAC

theoretical guarantees for our algorithms under some regularity

assumptions, which are encoded by letting the utility functions be

drawn from a Gaussian process. Then, we experimentally evaluate

our techniques on a testbed made of randomly generated games

and instances representing simple real-world security settings.
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1 INTRODUCTION
Over the last two decades, game-theoretic models have received a

growing interest from the AI community, as they allow to design
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(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.),
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artificial agents endowed with the ability of reasoning strategically

in complex multi-agent settings. This surge of interest was driven

by many successful applications of game theory to challenging real-

world problems, such as building robust protection strategies in

security domains [25], designing truthful auctions for web advertis-

ing [10], and solving (i.e., finding the equilibria of) large zero-sum
recreational games, e.g., Go [21], different variants of Poker [5, 6],

and Bridge [19].

Most of the game-theoretic studies in AI focus on models where

a complete description of the game is available, i.e., the players’ util-
ities can be expressed analytically. This is the case of recreational

games, which are commonly used as benchmarks for evaluating

algorithms to compute equilibria in games [4]. However, in many

real-world problems, the players’ utilities may not be readily avail-

able, as they are the outcome of a complex process governed by

unknown parameters. This is the case, e.g., in complex military set-

tings where a comprehensive description of the environment and

the units involved is not available, and online auctions in which the

platform owner does not have complete knowledge of the parties

involved. These scenarios can be addressed with simulation-based
games (SBGs) [30], where the players’ utilities are expressed by

means of a black-box simulator that, given some players’ strategies,

can be queried to obtain a noisy estimate of the utilities obtained

when playing such strategies. These models beget new challenges

in the design of algorithms to solve games: (i) they have to learn

(approximate) equilibria by using only noisy observations of the

utilities, and (ii) they should use as few queries as possible, since

running the simulator is usually a costly operation. Additionally,

using the simulator while playing the game is unfeasible, since the

simulation process might be prohibitively time consuming, as it

is the case, e.g., in military settings where the units have to take

prompt decisions when on the battlefield. Thus, the algorithms

must first perform a pure exploration learning phase and, then, use

the (approximate) equilibrium learned this way to play the game.

Despite the modeling power of SBGs, recent works studying such

games are only sporadic, addressing specific settings such as, e.g.,
symmetric games with a large number of players [23, 32], empirical

mechanism design [27], and two-player zero-sum finite games [9]

(see Section 2 for more details and additional related works). To the

best of our knowledge, the majority of these works focus on the

case in which each player has a finite number of strategies available.

However, in most of the game settings in which simulations are

involved, the players have an infinite number of choices available,

e.g., physical quantities, such as angle of movement and velocity

of units on a military field, bids in auctions, and trajectories in

robot planning. Dealing with infinite strategies leads to further
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challenges in the design of learning algorithms, since, being a com-

plete exploration of the strategy space unfeasible, providing strong

theoretical guarantees is, in general, a non-trivial task.

1.1 Original Contributions
We study the problem of learning equilibria in two-player zero-sum
SBGs with infinite strategy spaces, providing theoretical guarantees.
Specifically, we focus on maximin strategies for the first player, i.e.,
those maximizing her utility under the assumption that the second

player acts so as to minimize it, after observing the first player’s

course of play. For instance, this is the case in security games where

a terrestrial counter-air defensive unit has to shoot an heat-seeking

missile to a moving target that represents an approaching enemy

airplane, which, after the attack has started, can respond to it by

deploying an obfuscating flare with the intent of deflecting the

missile trajectory. When dealing with infinite strategy spaces, some

regularity assumptions on the players’ utilities are in order, since,

otherwise, one cannot design learning algorithms with provable

theoretical guarantees. In this work, we encode our regularity as-

sumptions on the utility function by modeling it as a sample from a

Gaussian process (GP) [34]. We design two algorithms able to learn

(approximate) maximin strategies in two-player zero-sum SBGs

with infinite strategy spaces, drawing from techniques used in the

best arm identification literature. The first algorithm we propose,

called M-GP-LUCB, is for the fixed-confidence setting, where the
objective is to find an (approximate) maximin strategy with a given

(high) confidence, using as few simulator queries as possible. In-

stead, the second algorithm, called SE-GP, is for the fixed-budget
setting, in which a maximum number of queries is given in advance,

and the task is to return an (approximate) maximin strategy with

confidence as high as possible. First, we prove 𝛿-PAC (i.e., probably
approximately correct) theoretical guarantees for our algorithms in

the easiest setting in which the strategy spaces are finite. Then, we

show how these results can be generalized to SBGs with infinite

strategy spaces by leveraging the GP assumption. Finally, we exper-

imentally eventuate our algorithms on a testbed made of randomly

generated games and instances based on the missile-airplane se-

curity game described above. For SBGs with finite strategy spaces,

we also compare our algorithms with the M-LUCB algorithm in-

troduced by [9] (the current state-of-the-art method for learning

maximin strategies in two-player zero-sum finite games), showing

that our methods dramatically outperform it.
1

2 RELATEDWORKS
Over the last years, the problem of learning approximate equilibria

in SBGs received considerable attention from the AI community.

In this section, we survey the main state-of-the-art works on the

problem of learning equilibria in SBGs, highlighting which are the

crucial differences with our work. Let us remark that the majority of

these works focus on SBGs with finite strategy spaces, while, to the

best of our knowledge, ours provides the first learning algorithms

with theoretical guarantees for SBGs with infinite strategy spaces.

The first computational studies on SBGs date back to the work

of Vorobeychik et al. [31], who focus on 𝑛-player general-sum

1
The complete proofs of our theoretical results are available in Appendices A, B, and C

in the full version of the paper [16].

games, experimentally evaluating standard regression techniques

to learn Nash equilibria (NEs) in such games. Their approach is to

first learn the players’ payoff functions and then compute an NE in

the game learned this way. Gatti and Restelli [11] extend this work

to sequential games. Given the nature of regression techniques,

this approach also works for SBGs with infinite strategy spaces.

However, the proposed methodology does not allow us to derive

theoretical guarantees on the approximation quality of the obtained

solutions, and it does not adopt any principled rule for choosing

the next query to be performed. In contrast, our algorithms are 𝛿-

PAC, and, by exploiting techniques from the best arm identification

literature, they also perform queries intelligently, allowing for a

great reduction in the used number of queries.

A similar approach, which is still based on learning payoff func-

tions using regression, is adopted by some recent works studying

finite SBGs with many symmetric players [23, 32]. Their goal is to

exploit the symmetries so as to learn symmetric NEs in large games

efficiently. Wiedenbeck et al. [32] focus on GP regression, since,

as they show experimentally, it leads to better performances com-

pared to other techniques. Subsequently, Sokota et al. [23] provide

an advancement over the previous work, using neural networks

to approximate the utility function (instead of GPs) and providing

a way to guide sampling so as to focus it on the neighborhood

of candidate equilibrium points. These works significantly depart

from ours, since (i) they aim at finding symmetric NEs in large SBGs

with many symmetric players, (ii) they are restricted to games with

finite strategy spaces, and (iii) they do not provide any theoretical

guarantees on the quality of the obtained solutions.

Recently, some works proposed learning algorithms for finite

SBGs, relying on the PAC framework to prove theoretical guaran-

tees [27, 28, 28, 35]. Specifically, Viqueira et al. [28] and Wright

and Wellman [35] focus on learning NEs in 𝑛-player general-sum

games. However, their results are limited to the case of finite strat-

egy spaces and cannot be easily generalized to settings involving

infinite strategy spaces, as they do not introduce any regularity

assumption on the players’ utility functions. Moreover, the query-

ing algorithms they propose are based on a global exploration of

the strategy profiles of the game, without relying on specific selec-

tion rules, except for the elimination of sub-optimal strategies. In

contrast, our algorithms exploit best arm identification techniques,

and, thus, they employ principled selection rules that allow to focus

queries on the most promising strategy profiles.

It is also worth pointing out some works that, while being not

directly concerned with SBGs, address related problems. Recently,

a growing attention has been devoted to no-regret learning al-

gorithms in games with bandit feedback [3, 8, 13]. The methods

developed in this framework are significantly different from ours,

as they fit the classical multi-armed bandit scenario where the ob-

jective is to minimize the cumulative regret. Instead, we adopt the

best arm identification perspective, where the goal is to identify an

optimal arm with high confidence. Thus, our querying algorithms

might achieve large regret during the learning process, since they

are focused on a pure exploration task in which exploitation is not

a concern. Moreover, no-regret learning algorithms require strong

assumptions to converge to equilibria in games with bandit feed-

back (such as, e.g., concavity of the players’ utility functions [3]). In
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contrast, our theoretical guarantees do not need any explicit require-

ment on the utilities (except for a reasonable degree of smoothness,

encoded by the GP assumption), and, thus, they also hold when

the players’ utility functions exhibit a complex (e.g., non-concave)
dependence on the players’ strategies.

There are also other related problems not directly connected with

SBGs that are worth citing, such as, e.g., meta-game analysis [26],

learning unknown game parameters or players’ rationality models

by observing played actions [14, 15], combining supervised learn-

ing techniques with decision-making in uncertain optimization

models [33], and online learning in games [2].

3 PRELIMINARIES
A two-player zero-sum game with infinite strategy spaces is a tuple
Γ = (X,Y, 𝑢), where X ⊂ R𝑑 and Y ⊂ R𝑑 are compact and

convex sets of strategies available to the first and the second player,

respectively, while 𝑢 : X × Y ↦→ R is a function defining the

utility for the first player.
2
Since the game is zero-sum, the second

player’s utility is given by −𝑢. A two-player zero-sum game with
finite strategy spaces is defined analogously, with X and Y being

finite sets, i.e.,X B {𝑥1, . . . , 𝑥𝑛} andY B {𝑦1, . . . , 𝑦𝑚}, with 𝑛 > 1

and𝑚 > 1 denoting the finite numbers of strategies available to the

first and the second player, respectively. For the ease of notation,

letting Π B X × Y, we denote with 𝝅 B (𝑥,𝑦) ∈ Π a strategy
profile, i.e., a tuple specifying a strategy 𝑥 ∈ X for the first player

and a strategy 𝑦 ∈ Y for the second player.

In this work, we are concerned with the computation ofmaximin
strategies, adopting the perspective of the first player. In words,

we seek for a first player’s strategy that maximizes her utility,

assuming a worst-case opponent that acts so as to minimize it.

Since the game is zero sum, we can assume that the second player

decides how to play after observing the first player’s move, and,

thus, playing a maximin strategy is the best choice for the first

player.
3
Formally, given a first player’s strategy 𝑥 ∈ X, we denote

with 𝑦∗ (𝑥) ∈ arg min𝑦∈Y 𝑢 (𝑥,𝑦) a second player’s best response

to 𝑥 . Then, 𝑥∗ ∈ X is a maximin strategy for the first player if

𝑥∗ ∈ arg max𝑥 ∈X 𝑢 (𝑥,𝑦∗ (𝑥)), with 𝝅∗ B (𝑥∗, 𝑦∗ (𝑥∗)) denoting its

corresponding maximin strategy profile.
4

3.1 Simulation-Based Games
In SBGs, the utility function𝑢 is not readily available, but it is rather

specified by an exogenous simulator that provides noisy point es-

timates of it. As a result, in SBGs, one cannot explicitly compute

a maximin strategy, and, thus, the problem is to learn one by se-

quentially querying the simulator. At each round 𝑡 , the simulator

is given a strategy profile 𝝅𝑡 ∈ Π and returns an estimated utility

𝑢̃𝑡 B 𝑢 (𝝅𝑡 ) + 𝑒𝑡 , where 𝑒𝑡 ∼ N(0, 𝜆) is i.i.d. Gaussian noise. The

goal is to find a good approximation (see Equation (1)) of a maximin

strategy 𝑥∗ ∈ X as rapidly as possible, i.e., limiting the number of

2
For the ease of presentation, in the followingwe focus on the case in which X ⊂ [0, 1]
and Y ⊂ [0, 1] are closed intervals. The generalization of our results to the case in

which the strategy spaces are compact and convex subsets of R𝑑 is straightforward.

3
This assumption is in line with the classical Stackelberg model in which the second

player (follower) gets to play after observing the strategy of the first one (leader) [29].

4
Even though playing a maximin strategy may not be the optimal choice for the first

player if the players are assumed to play simultaneously, this is the case if we require

additional (mild) technical assumptions guaranteeing that 𝝅∗ is an equilibrium point

of the game; see [22] for additional details.

Algorithm 1 Dynamic Querying Algorithm

1: 𝑡 ← 1

2: do
3: Select a strategy profile 𝝅𝑡 ∈ Π according

to the querying rule

4: Get estimated utility 𝑢̃𝑡 ← Sim(𝝅𝑡 )
5: Update the algorithm parameters using 𝑢̃𝑡
6: 𝑡 ← 𝑡 + 1

7: while stopping condition is not met

8: return final guess 𝝅 = (𝑥,𝑦) for the maximin profile

queries to the simulator. To achieve this, we follow the approach

of Garivier et al. [9] and propose some dynamic querying algorithms
(see Algorithm 1, where Sim(𝝅) represents a simulator query for

𝝅 ∈ Π), which are generally characterized by:

• a querying rule that indicates which strategy profile 𝝅𝑡 ∈ Π
is sent as input to the simulator at each round 𝑡 ;

• a stopping rule that determines the round 𝑇 after which the

algorithm terminates its execution;

• a final guess 𝝅 B (𝑥,𝑦) ∈ Π for the (true) maximin strategy

profile 𝝅∗ of the game.

Given a desired approximation 𝜖 ≥ 0, the objective of the algo-

rithm is to find an 𝜖-maximin strategy with high accuracy, using as

few queries as possible to the simulator. Formally, given 𝛿 ∈ (0, 1),
our goal is to design algorithms that are 𝛿-PAC, i.e., they satisfy:

∀𝑢 P
( ��𝑢 (𝝅∗) − 𝑢 (𝑥,𝑦∗ (𝑥))�� ≤ 𝜖) ≥ 1 − 𝛿, (1)

while keeping the number of rounds 𝑇 as small as possible. This is

known as the fixed-confidence setting (see Section 4). An alternative

is to consider the fixed-budget case, where the maximum number

of rounds 𝑇 is given in advance, and the goal is to minimize the

probability 𝛿 that 𝑥 is not an 𝜖-maximin strategy (see Section 5).

Notice that, for SBGswith finite strategy spaces, the 𝛿-PAC property

in Equation (1) can only require 𝑢 (𝝅∗) − 𝑢 (𝑥,𝑦∗ (𝑥)) ≤ 𝜖 , since it
is always the case that 𝑢 (𝝅∗) > 𝑢 (𝑥,𝑦∗ (𝑥)). 5

3.2 Gaussian Processes
To design 𝛿-PAC algorithms working with SBGs having infinite

strategy spaces, we first need to introduce some regularity assump-

tions on the utility functions 𝑢. In this work, we model the utility as

a sample from a GP, which is a collection of dependent random vari-

ables, one for each action profile 𝝅 ∈ Π, every finite subset of which
is multivariate Gaussian distributed [34]. A GP(𝜇 (𝝅), 𝑘 (𝝅 , 𝝅 ′)) is
fully specified by its mean function 𝜇 : Π ↦→ R, with 𝜇 (𝝅) B
E[𝑢 (𝝅)], and its covariance (or kernel) function 𝑘 : Π×Π ↦→ R, with
𝑘 (𝝅 , 𝝅 ′) B E[(𝑢 (𝝅) − 𝜇 (𝝅)) (𝑢 (𝝅 ′) − 𝜇 (𝝅 ′))]. W.l.o.g., we assume

that 𝜇 ≡ 0 and the variance is bounded, i.e., 𝑘 (𝝅 , 𝝅) B 𝜎2 ≤ 1

for every 𝝅 ∈ Π. Note that the GP assumption guarantees that

the utility function 𝑢 has a certain degree of smoothness, without

relying on rigid parametric assumptions, such as linearity. Intu-

itively, the kernel function 𝑘 determines the correlation of the

utility values across the space of strategy profiles Π, thus encoding
the smoothness properties of the utility functions 𝑢 sampled from

5
This is in line with the definition provided by Garivier et al. [9].
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GP(𝜇 (𝝅), 𝑘 (𝝅 , 𝝅 ′)) (for some examples of commonly used kernels,

see Section 7).

We also need GPs in our algorithms, as they use GP(0, 𝑘 (𝝅 , 𝝅 ′))
as prior distribution over 𝑢. The major advantage of working with

GPs is that they admit simple analytical formulas for the mean

and covariance of the posterior distribution. These relations can

be easily expressed using matrix notation, as follows. Let ũ𝑡 B
[𝑢̃1, . . . , 𝑢̃𝑡 ]⊤ be the vector of utility values observed up to round

𝑡 , obtained by querying the simulator on the strategy profiles

𝝅1, . . . , 𝝅𝑡 . Then, the posterior distribution over 𝑢 is still a GP,

with mean 𝜇𝑡 (𝝅), covariance 𝑘𝑡 (𝝅 , 𝝅 ′), and variance 𝜎2

𝑡 (𝝅), which
are defined as follows:

𝜇𝑡 (𝝅) B k𝑡 (𝝅)⊤ (𝐾𝑡 + 𝜆𝐼 )−1 ũ𝑡 , (2)

𝑘𝑡 (𝝅 , 𝝅 ′) B 𝑘 (𝝅 , 𝝅 ′) − k𝑡 (𝝅)⊤(𝐾𝑡 + 𝜆𝐼 )−1 k𝑡 (𝝅 ′), (3)

𝜎2

𝑡 (𝝅) B 𝑘𝑡 (𝝅 , 𝝅), (4)

where k𝑡 (𝝅) B [𝑘 (𝝅 , 𝝅1), . . . , 𝑘 (𝝅 , 𝝅𝑡 )]⊤ and 𝐾𝑡 is the positive

definite 𝑡 × 𝑡 kernel matrix, whose (𝑖, 𝑗)-th entry is 𝑘 (𝝅𝑖 , 𝝅 𝑗 ). The
posterior parameters update formulas can also be expressed re-

cursively, thus avoiding costly matrix inversions, as shown in [7].

Letting 𝝅𝑡 and 𝑢̃𝑡 be, respectively, the queried strategy profile and

the observed utility at round 𝑡 , we can write:

𝜇𝑡 (𝝅) ← 𝜇𝑡−1 (𝝅) +
𝑘𝑡−1 (𝝅 , 𝝅𝑡 )
𝜆 + 𝜎2

𝑡−1
(𝝅𝑡 )

(𝑢̃𝑡 − 𝜇𝑡−1 (𝝅𝑡 )), (5)

𝑘𝑡 (𝝅 , 𝝅 ′) ← 𝑘𝑡 (𝝅 , 𝝅 ′) −
𝑘𝑡−1 (𝝅 , 𝝅𝑡 )𝑘𝑡−1 (𝝅𝑡 , 𝝅 ′)

𝜆 + 𝜎2

𝑡−1
(𝝅𝑡 )

, (6)

𝜎2

𝑡 (𝝅) ← 𝜎2

𝑡−1
(𝝅) −

𝑘2

𝑡−1
(𝝅 , 𝝅𝑡 )

𝜆 + 𝜎2

𝑡−1
(𝝅𝑡 )

. (7)

Clearly, at the beginning of the algorithms, the estimates are given

by the GP prior GP(𝜇 (𝝅), 𝑘 (𝝅 , 𝝅 ′)), i.e., formally, 𝜇0 (𝝅) B 𝜇 (𝝅),
𝑘0 (𝝅 , 𝝅 ′) B 𝑘 (𝝅 , 𝝅 ′), and 𝜎2

0
(𝝅) B 𝑘 (𝝅 , 𝝅) = 𝜎2

.

4 FIXED-CONFIDENCE SETTING
In this section and the following one (Section 5), we present our

learning algorithms for the easiest setting of SBGs with finite strat-

egy spaces. Then, in Section 6, we show how they can be extended

to SBGs with infinite strategy spaces.

For the fixed-confidence setting, we propose a 𝛿-PAC dynamic

querying algorithm (called M-GP-LUCB, see Algorithm 2) based on

the M-LUCB approach introduced by Garivier et al. [9] and provide

a bound on the number of rounds𝑇𝛿 it requires, as a function of the

confidence level 𝛿 . While our algorithm shares the same structure as

M-LUCB, it uses confidence bounds relying on the GP assumption,

and, thus, different proofs are needed to show its 𝛿-PAC properties.

As shown in Section 6, our algorithm and its theoretical guarantees

have the crucial advantage of being easily generalizable to SBGs

with infinite strategy spaces.

For every strategy profile 𝝅 ∈ Π, the algorithm keeps track of

a confidence interval [𝐿𝑡 (𝝅),𝑈𝑡 (𝝅)] on 𝑢 (𝝅) built using the util-
ity values 𝑢̃𝑡 observed from the simulator up to round 𝑡 . Using

GP(0, 𝑘 (𝝅 , 𝝅 ′)) as prior distribution over the utility function 𝑢, the

lower bounds of the intervals are defined as 𝐿𝑡 (𝝅) B 𝜇𝑡 (𝝅) −√
𝑏𝑡𝜎𝑡 (𝝅) and the upper bounds as 𝑈𝑡 (𝝅) B 𝜇𝑡 (𝝅) +

√
𝑏𝑡𝜎𝑡 (𝝅),

where 𝜇𝑡 and 𝜎
2

𝑡 are the mean and the variance of the posterior

Algorithm 2 M-GP-LUCB(𝜖 , 𝛿)

1: Initialize 𝑡 ← 0, 𝜇0 (𝝅) ← 0, 𝑘0 (𝝅 , 𝝅 ′) ← 𝑘 (𝝅 , 𝝅 ′)
2: do
3: Select 𝝅𝑡+1 and 𝝅𝑡+2 using Eqs. (8)–(9)

4: 𝑢̃𝑡+1 ← Sim(𝝅𝑡+1), 𝑢̃𝑡+2 ← Sim(𝝅𝑡+2)
5: Compute 𝜇𝑡+2 (𝝅) and 𝑘𝑡+2 (𝝅 , 𝝅 ′) using

observations 𝑢̃𝑡+1, 𝑢̃𝑡+2 and Eqs. (5)–(7)

6: 𝑡 ← 𝑡 + 2

7: while 𝐿𝑡 (𝝅𝑡+1) ≤ 𝑈𝑡 (𝝅𝑡+2) − 𝜖
8: return 𝝅 = (𝑥𝑡 , 𝛾𝑡 (𝑥𝑡 ))

distribution computed with observations up to round 𝑡 (see Equa-

tions (2)–(4)), while 𝑏𝑡 is an exploration term that depends from

the context (see Theorem 4.1).

At the end of every even round 𝑡 , the algorithm selects the

strategy profiles to give as inputs to the simulator during the next

two rounds 𝑡 + 1 and 𝑡 + 2. For every 𝑥 ∈ X, let
𝛾𝑡 (𝑥) B argmin

𝑦∈Y
𝐿𝑡 (𝑥,𝑦)

be the second player’s best response to 𝑥 computed using the lower

bounds 𝐿𝑡 . Moreover, let

𝑥𝑡 B argmax

𝑥 ∈X
min

𝑦∈Y
𝜇𝑡 (𝑥,𝑦)

be the maximin strategy computed using the posterior mean 𝜇𝑡 .

Then, in the following two rounds, the algorithm selects the strategy

profiles 𝝅𝑡+1 and 𝝅𝑡+2, defined as follows:

𝝅𝑡+1 B (𝑥𝑡 , 𝛾𝑡 (𝑥𝑡 )) (8)

𝝅𝑡+2 B argmax

𝝅 ∈{(𝑥,𝛾𝑡 (𝑥)) }𝑥≠𝑥𝑡
𝑈𝑡 (𝝅) . (9)

This choice is made so as to advance the algorithm towards its

termination. In particular, the M-GP-LUCB algorithm stops when,

according to the confidence intervals, the strategy 𝑥𝑡 is proba-

bly approximately better than all the others, i.e., when it holds

𝐿𝑡 (𝝅𝑡+1) > 𝑈𝑡 (𝝅𝑡+2) − 𝜖 . Intuitively, 𝝅𝑡+1 represents the best

candidate for being a maximin strategy profile, while 𝝅𝑡+2 is the

second-best candidate. Thus, the algorithm stops if 𝝅𝑡+1 is bet-

ter than 𝝅𝑡+2 with sufficiently high confidence, i.e., whenever the
lower bound for the former is larger than the upper bound for

the latter (up to an approximation of 𝜖). The final strategy profile

recommended by the algorithm is 𝝅 B (𝑥𝑡 , 𝛾𝑡 (𝑥𝑡 )).
The following theorem shows that M-GP-LUCB is 𝛿-PAC and

provides an upper bound on the number of rounds 𝑇𝛿 it requires.

The analysis is performed for 𝜖 = 0, i.e., when 𝝅 is evaluated with

respect to an exact maximin profile.
6
Note that the upper bound

for𝑇𝛿 depends on the utility-dependent term𝐻∗ (𝑢) B ∑
𝝅 ∈Π 𝑐 (𝝅),

where, for 𝝅 = (𝑥,𝑦) ∈ Π, 𝑐 (𝝅) is defined as follows:

𝑐 (𝝅) B 1

max

{
(Δ∗)2,

(
𝑢 (𝑥∗,𝑦∗ (𝑥∗))+𝑢 (𝑥∗∗,𝑦∗ (𝑥∗∗))

2
− 𝑢 (𝑥,𝑦∗ (𝑥))

)
2

} ,
where, for the ease of writing, we let Δ∗ B 𝑢 (𝝅) − 𝑢 (𝑥,𝑦∗ (𝑥))
and 𝑥∗∗ ∈ argmax𝑥 ∈X\{𝑥∗ } 𝑢 (𝑥,𝑦∗ (𝑥)), i.e., 𝑥∗∗ is a first player’s
6
Assuming 𝜖 = 0 also requires the additional w.l.o.g. assumption that the utility value

of an exact maximin strategy and that one of a second-best maximin strategy are

different.
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Algorithm 3 GP-SE(𝑇 )

1: Initialize Π1 ← Π, 𝜇0 (𝝅) ← 0
2: for 𝑝 = 1, 2, . . . , 𝑃 − 1 do
3: For each 𝝅 ∈ Π𝑝 , query Sim(𝝅) for

𝑇𝑝 −𝑇𝑝−1 rounds

4: Compute 𝜇𝑝 (𝝅) using observations

5: Select 𝝅𝑝 according to Eqs. (12)–(13)

6: Π𝑝+1 ← Π𝑝 \ {𝝅𝑝 }
7: return the unique element 𝝅 of Π𝑃

maximin strategy when 𝑥∗ is removed from the available ones. This

term has the same role as 𝐻1 B
∑
𝑖∈{1,...,𝑃 }

1

Δ2

(𝑖 )
used by Audibert

et al. [1] in the best arm identification setting, where, denoting as 𝝅𝑖

the 𝑖-th strategy profile in Π, we let Δ(𝑖) B |𝑢 (𝝅∗) − 𝑢 (𝝅𝑖 ) |, with
Δ(1) ≤ Δ(2) ≤ . . . ≤ Δ(𝑃 ) . Intuitively, 𝐻

∗ (𝑢) and 𝐻1 characterize

the hardness of the problem instances by determining the amount

of rounds required to identify the maximin profile and the best arm,

respectively.

Theorem 4.1. Using a generic nondecreasing exploration term
𝑏𝑡 > 0, the M-GP-LUCB algorithm stops its execution after at most
𝑇𝛿 rounds, where:

𝑇𝛿 ≤ inf

{
𝑡 ∈ N : 8𝐻∗ (𝑢) 𝑏𝑡 𝜆 −

𝜆 𝑛𝑚

𝜎2
< 𝑡

}
. (10)

Specifically, letting 𝑏𝑡 := 2 log

(
𝑛𝑚 𝜋2 𝑡2

6𝛿

)
, the algorithm returns a

maximin profile with confidence at least 1 − 𝛿 , and:

𝑇𝛿 ≤ 64𝐻∗ (𝑢) 𝜆
(
log

(
64𝐻∗ (𝑢) 𝜆 𝜋

√
𝑛𝑚

6𝛿

)
+

+2 log

(
log

(
64𝐻∗ (𝑢)𝜆𝜋

√
𝑛𝑚

6𝛿

)))
, (11)

where we require that 64 𝜆 𝜋
√

𝑛𝑚
6𝛿

> 4.85.

Intuitively, from the result in Theorem 4.1, we can infer that

the most influential terms on the number of rounds required to

get a specific confidence level 𝛿 are 𝐻∗ (𝑢) and the noise variance

𝜆, which impact as multiplicative constants on 𝑇𝛿 . On the other

hand, 𝑇𝛿 scales only logarithmically with the number of strategy

profiles |Π | = 𝑛𝑚, thus allowing the execution of the M-GP-LUCB

algorithm also in settings where the players have a large number

of strategies available.

5 FIXED-BUDGET SETTING
In the fixed-budget setting, the goal is to design 𝛿-PAC algorithms

that, given the maximum number of available rounds 𝑇 (i.e., the
budget), find an 𝜖-maximin strategy with confidence 1 − 𝛿𝑇 as

large as possible. We propose a successive elimination algorithm

(called GP-SE, see Algorithm 3), which is based on an analogous

method proposed by Audibert et al. [1] for the best arm identifica-

tion problem. The fundamental idea behind our GP-SE algorithm is

a novel elimination rule, which is suitably defined for the problem

of identifying maximin strategies.

The algorithm works by splitting the number of available rounds

𝑇 into 𝑃−1 phases, where, for the ease of notation, we let 𝑃 B |Π | =

𝑛𝑚 be the number of players’ strategy profiles. At the end of each

phase, the algorithm excludes from the set of candidate solutions

the strategy profile that has the lowest chance of being maximin.

Specifically, letting Π𝑝 be the set of the remaining strategy profiles

during phase 𝑝 , at the end of 𝑝 , the algorithm dismisses the strategy

profile 𝝅𝑝 B (𝑥𝑝 , 𝑦𝑝 ) ∈ Π𝑝 , defined as follows:

(𝑥𝑝 , ·) B argmin

𝝅 ∈Π𝑝
𝜇𝑝 (𝝅), (12)

𝑦𝑝 B argmax

𝑦∈Y:(𝑥𝑝 ,𝑦) ∈Π𝑝
𝜇𝑝 (𝑥𝑝 , 𝑦), (13)

where 𝜇𝑝 represents the mean of the posterior distribution com-

puted at the end of phase 𝑝 (see Equations (2)-(4)). Intuitively, the

algorithm selects the first player’s strategy 𝑥𝑝 that is less likely to

be a maximin one, together with the second player’s strategy 𝑦𝑝
that is the worst for her given 𝑥𝑝 . At the end of the last phase, the

(unique) remaining strategy profile 𝝅 = (𝑥,𝑦) is recommended by

the algorithm.

Following [1], the length of the phases have been carefully cho-

sen so as to obtain an optimal (up to a logarithmic factor) conver-

gence rate. Specifically, letting log(𝑃) B 1

2
+∑𝑃

𝑖=2

1

𝑖 , let us define

𝑇0 B 0 and, for every phase 𝑝 ∈ {1, . . . , 𝑃 − 1}, let:

𝑇𝑝 B

⌈
𝑇 − 𝑃

log(𝑃) (𝑃 + 1 − 𝑝)

⌉
. (14)

Then, during each phase 𝑝 , the algorithm selects every remaining

strategy profile in Π𝑝 for exactly 𝑇𝑝 −𝑇𝑝−1 rounds. Let us remark

that the algorithm is guaranteed to do not exceed the number of

available rounds𝑇 . Indeed, each 𝝅𝑝 is selected for𝑇𝑝 rounds, while

𝝅 is chosen𝑇𝑃−1 times, and

∑𝑃−1

𝑝=1
𝑇𝑝 +𝑇𝑃−1 ≤ 𝑇 holds by definition.

The following theorem provides an upper bound on the prob-

ability 𝛿𝑇 that the strategy profile 𝝅 recommended by the GP-SE

algorithm is not 𝜖-maximin, as a function of the number of rounds

𝑇 . As for the fixed-confidence setting, our result holds for 𝜖 = 0.

Theorem 5.1. Letting𝑇 be the number of available rounds, the GP-
SE algorithm returns a maximin strategy profile 𝝅∗ with confidence
at least 1 − 𝛿𝑇 , where:

𝛿𝑇 B 2𝑃 (𝑛 +𝑚 − 2)𝑒
− 𝑇−𝑃

8𝜆log(𝑃 )𝐻
2 , (15)

and 𝐻2 B max𝑖∈{1,...,𝑃 } 𝑖 Δ
−2

(𝑖) .

As also argued by Audibert et al. [1], a successive elimination

method provides two main advantages over a simple round robin

querying strategy in which every strategy profile is queried for

the same number of rounds. First, it provides a similar bound on

𝛿𝑇 with a better dependency on the parameters, and, second, it

queries the maximin strategy profile a larger number of times, thus

returning a better estimate of its expected utility.

6 SIMULATION-BASED GAMES WITH
INFINITE STRATEGY SPACES

We are now ready to provide our main results on SBGs with infinite

strategy spaces. In the first part of the section, we show how the 𝛿-

PAC algorithms proposed in Sections 4 and 5 for finite SBGs can be

adapted to work with infinite strategy spaces while retaining some

theoretical guarantees on the returned 𝜖-maximin profiles. This
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requires to work with a (finite) discretized version of the original

(infinite) SBGs, where the players’ strategy spaces are approximated

with grids made of equally spaced points. Then, in the second part

of the section, we provide some results for the situations in which

one cannot work with this kind of discretization, and, instead, only

a limited number of points is sampled from the players’ strategy

spaces. This might be the case when, e.g., the dimensionality𝑑 of the

players’ strategy spaces is too high, or there are some constraints

on the strategy profiles that can be queried. Clearly, in this setting,

we cannot prove 𝛿-PAC results, as the quality of the 𝜖-maximin

strategy profiles inevitable depends on how the points are selected.

Let us remark that our main results rely on our assumption that

the utility function 𝑢 is drawn from a GP, provided some mild

technical requirements are satisfied (see Assumption 1).

6.1 𝛿-PAC Results for Evenly-Spaced Grids
The idea is to work with a discretization of the players’ strategy

spaces, each made of at least 𝐾𝜖 equally spaced points, where 𝜖 ≥ 0

is the desired approximation level. This induces a new (restricted)

SBGs with finite strategy spaces, where techniques presented in

the previous sections can be applied. In the following, for the ease

of presentation, given an SBG with infinite strategy spaces Γ, we
denote with Γ(𝐾) the finite SBG obtained when approximating the

players’ strategy spaces with 𝐾 equally spaced points, i.e., a game

in which the players have 𝑛 =𝑚 = 𝐾 strategies available and the

utility value of each of the 𝑛𝑚 strategy profiles is the same as that

one of the corresponding strategy profile in Γ. First, let us introduce
the main technical requirement that we need for our results to hold.

Assumption 1 (Kernel Smoothness). A kernel 𝑘 (𝝅 , 𝝅 ′) is said to
be smooth over Π if, for each 𝐿 > 0 and for some constants 𝑎, 𝑏 > 0,
the functions 𝑢 drawn from GP(0, 𝑘 (𝝅 , 𝝅 ′)) satisfy:

P

(
sup

𝝅 ∈Π

���� 𝜕𝑢𝜕𝑥 ���� > 𝐿) ≤ 𝑎𝑒− 𝐿2

𝑏2 , (16)

P

(
sup

𝝅 ∈Π

���� 𝜕𝑢𝜕𝑦 ���� > 𝐿) ≤ 𝑎𝑒− 𝐿2

𝑏2 . (17)

This assumption is standard when using GPs in online opti-

mization settings [24], and it is satisfied by many common kernel

functions for specific values of 𝑎 and 𝑏, such as the squared ex-

ponential kernel and the Matérn one with smoothness parameter

𝜈 > 2 (see Section 7 for details on the definition of these kernels).

We are now ready to state our main result:

Theorem 6.1. Assume that 𝑢 is drawn from a GP(0, 𝑘 (𝝅 , 𝝅 ′))
satisfying Assumption 1. Given 𝜖 > 0 and 𝛿 ∈ (0, 2), let 𝝅 B (𝑥,𝑦) ∈
Π be a maximin strategy profile for a finite game Γ(𝐾) where 𝐾 is at

least 𝐾𝜖 B
⌈
𝑏
2𝜖

√
log

(
4𝑎
𝛿

) ⌉
+ 1. Then, the following holds:

P
( ��𝑢 (𝝅∗) − 𝑢 (𝝅)�� ≤ 𝜖) ≥ 1 − 𝛿

2

. (18)

The following two results rely on Theorem 6.1 to show that the

M-GP-LUCB (Algorithm 2) and the GP-SE (Algorithm 3) algorithms

can be employed to find, with high confidence, 𝜖-maximin strategy

profiles in SBGs with infinite strategy spaces. Let us remark that,

while for SBGs with finite strategy spaces our theoretical analysis

is performed for 𝜖 = 0, in the case of infinite strategy spaces it is

necessary to assume a nonzero approximation level 𝜖 .

Corollary 6.2. Assume that 𝑢 is drawn from a GP(0, 𝑘 (𝝅 , 𝝅 ′))
satisfying Assumption 1. Given 𝜖 > 0 and 𝛿 ∈ (0, 1), letting 𝑏𝑡 :=

2 log

(
𝑛𝑚𝜋2𝑡2

3𝛿

)
, the M-GP-LUCB algorithm applied to Γ(𝐾) with 𝐾

at least 𝐾𝜖 B
⌈
𝑏
2𝜖

√
log

(
4𝑎
𝛿

) ⌉
+ 1 returns a strategy profile 𝝅 B

(𝑥,𝑦) such that P ( |𝑢 (𝝅∗) − 𝑢 (𝑥,𝑦∗ (𝑥)) | ≤ 𝜖) ≥ 1−𝛿 . Moreover, the
algorithm stops its execution after at most:

𝑇𝛿,𝜖 ≤ 64𝐻∗ (𝑢) 𝜆
[
log

(
64𝐻∗ (𝑢) 𝜆 𝜋 𝐾𝜖

√
1

3𝛿

)
+

+2 log

(
log

(
64𝐻∗ (𝑢)𝜆 𝜋 𝐾𝜖

√
1

3𝛿

))]
, (19)

where we require that 64 𝜆 𝜋 𝐾𝜖

√
1

3𝛿
> 4.85.

Corollary 6.3. Assume that 𝑢 is drawn from a GP(0, 𝑘 (𝝅 , 𝝅 ′))
satisfying Assumption 1. Given 𝜖 > 0 and 𝛿 ∈ (0, 1), letting 𝑇 be the
number of available rounds, the GP-SE algorithm applied to Γ(𝐾)

with𝐾 at least𝐾𝜖 B
⌈
𝑏
2𝜖

√
log

(
4𝑎
𝛿

) ⌉
+1 returns a profile 𝝅 B (𝑥,𝑦)

such that P ( |𝑢 (𝝅∗) − 𝑢 (𝑥,𝑦∗ (𝑥)) | > 𝜖) < 𝛿𝑇,𝜖 , where:

𝛿𝑇,𝜖 B 4𝐾2

𝜖 (𝐾𝜖 − 1)𝑒
− 𝑇−𝐾2

𝜖

8𝜆log(𝐾2

𝜖 )𝐻2 + 2𝑎𝑒
− 𝑏2

4𝜖2 (𝐾𝜖−1)2 . (20)

In the result of Corollary 6.3, the discretization parameter 𝐾𝜖
depends on a confidence level 𝛿 that has to be chosen in advance.

Another possibility is to try to minimize the overall confidence

𝛿𝑇,𝜖 by appropriately tuning the parameter 𝛿 . Formally, a valid

confidence level can be defined as follows:

𝛿opt B inf

{
𝛿 ∈ (0, 1) : 𝛿𝑇,𝜖

}
, (21)

noticing that 𝛿𝑇,𝜖 depends on 𝛿 also through the term 𝐾𝜖 . Unfor-

tunately, this minimization problem does not admit a closed-form

optimal solution. Nevertheless, we can compute an (approximate)

optimal value for 𝛿 by employing numerical methods [17].

6.2 Arbitrary Discretization
Whenever using an equally-spaced grid as a discretization scheme is

unfeasible, the theoretical results based on Theorem 6.1 do not hold

anymore. Nevertheless, given any finite sets of players’ strategies,

we can bound with high probability the distance of a maximin

profile 𝝅∗ from the strategy profile learned in the resulting (finite)

discretized SBG. Formally, let X𝑛 ⊆ X be a finite set of 𝑛 first

player’s strategies and, similarly, let Y𝑚 ⊆ Y be a finite set of

𝑚 second player’s strategies. Thus, the resulting finite SBG Γ B
(X𝑛,Y𝑚, 𝑢) has 𝑛𝑚 strategy profiles. Let

𝑑max

𝑥 = max

𝑥 ∈X
min

𝑥𝑖 ∈X𝑛
|𝑥 − 𝑥𝑖 |,

𝑑max

𝑦 = max

𝑦∈Y
min

𝑦𝑖 ∈Y𝑚
|𝑦 − 𝑦𝑖 |,

then, we can show the following result.

Theorem 6.4. Assume that 𝑢 is drawn from a GP(0, 𝑘 (𝝅 , 𝝅 ′))
satisfying Assumption 1. Given 𝛿 ∈ (0, 2), let 𝝅 B (𝑥,𝑦) ∈ X𝑛 ×Y𝑚
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Table 1: Experimental results of algorithms M-LUCB, M-G-LUCB, and M-GP-LUCB on SBGs with finite strategy spaces.

M-LUCB M-G-LUCB M-GP-LUCB GP-SE

𝑇 𝑇𝛿 %𝑒𝑛𝑑 %𝑜𝑝𝑡 𝑇𝛿 %𝑒𝑛𝑑 %𝑜𝑝𝑡 𝑇𝛿 %𝑒𝑛𝑑 %𝑜𝑝𝑡 %𝑜𝑝𝑡

SQE

𝑙 = 0.1 30k 10673.86 53.33 87.13 227.23 96.70 86.73 229.19 93.33 86.66 100.00

𝑙 = 2.0
30k 23788.96 13.73 84.80 2460.19 89.23 77.73 2020.89 76.66 93.36 93.23

100k 42103.86 46.66 88.63 3535.00 91.86 78.56 5656.77 76.77 93.30 96.60

𝑀1.5

𝑙 = 0.1 30k 13869.59 56.06 66.66 222.06 100.00 66.83 224.87 100.00 66.66 100.00

𝑙 = 2.0
30k 18978.75 33.33 76.26 2532.98 91.30 76.90 3775.65 88.03 78.86 98.30

100k 28798.42 50.00 80.70 3662.00 95.36 77.00 4618.27 93.33 79.53 98.76

𝑀2.5

𝑙 = 0.1 30k 13335.26 79.80 86.66 168.61 97.90 86.06 171.62 96.66 86.66 99.83

𝑙 = 2.0
30k 20404.41 24.66 89.26 1984.55 92.10 86.63 2435.84 88.24 95.27 95.60

100k 49198.82 62.06 92.86 2617.31 93.70 87.13 2626.89 86.66 94.93 96.46

be a maximin strategy profile for a finite game Γ B (X𝑛,Y𝑚, 𝑢).
Then, the following holds:

P
©­«
��𝑢 (𝝅∗) − 𝑢 (𝝅)�� ≤ 𝑏√log

(
4𝑎

𝛿

)
max

{
𝑑max

𝑥 , 𝑑max

𝑦

}ª®¬ ≥ 1 − 𝛿
2

.

Let us remark that the result in Theorem 6.4 can be applied any

time using an equally-spaced grid as a discretization scheme is

unfeasible, as it is the case, e.g., when the dimensionality 𝑑 of the

players’ strategy spaces is too large.

7 EXPERIMENTAL RESULTS
We experimentally evaluate our algorithms on both finite and in-

finite SBGs. As for the finite case, we compare the performances

(with different metrics) of our M-GP-LUCB and GP-SE algorithms

against two baselines. The first one is the M-LUCB algorithm pro-

posed by Garivier et al. [9], which is the state of the art for learning

maximin strategies in finite SBGs and can be easily adapted to

our setting by using a different exploration term 𝑏𝑡 .
7
We intro-

duce a second baseline to empirically evaluate how our algorithms

speed up their convergence by leveraging correlation of the utilities.

Specifically, it is a variation of our M-GP-LUCB algorithm (called

M-G-LUCB) where utility values are assumed drawn from indepen-

dent Gaussian random variables, instead of a GP.
8
As for SBGs with

infinite strategy spaces, there are no state-of-the-art techniques that

we can use as a baseline for comparison. Thus, we show the quality

(in terms of 𝜖) of the strategy profiles returned by our algorithms

using different values of 𝐾𝜖 for the discretized games. The average

𝜖 values obtained empirically (called 𝜖 thereafter) are compared

against the theoretical values prescribed by Theorem 6.1 (for the

given 𝐾𝜖 ), so as to evaluate whether our bounds are strict or not.

7.1 Random Game Instances
As for finite SBGs, we test the algorithms on random instances

generated by sampling from GP(0, 𝑘 (𝝅 , 𝝅 ′)), using the following
two commonly used kernel functions (see [34] for more details):

• squared exponential: 𝑘 (𝝅 , 𝝅 ′) B 𝑒
− 1

2𝑙2
| |𝝅−𝝅 ′ | |2

, where 𝑙 is a

length-scale parameter;

7
Since our utilities are not in [0, 1] (as they are drawn from a Gaussian instead of a

Bernoulli), we multiply the 𝑏𝑡 provided in [9] by the utility range.

8
The formulas for updating the mean 𝜇𝑡 and the variance 𝜎2

𝑡 of the posterior distribu-

tion are changed accordingly.

• Matérn: 𝑘 (𝝅 , 𝝅 ′) B 2
1−𝜈

𝐺 (𝜈) 𝑟
𝜈𝐵𝜈 (𝑟 ), where 𝑟 B

√
2𝜈
𝑙
| |𝝅 −𝝅 ′ | |,

𝜈 controls the smoothness of the functions, 𝑙 is a length-scale

parameter, 𝐵𝜈 is the second-kind Bessel function, and 𝐺 is

the Gamma function.

We set the kernel parameters to 𝑙 ∈ {0.1, 2} and 𝜈 ∈ {1.5, 2.5},
generating 30 instances for each possible combination of kernel

function and parameter values. As for SBGs with infinite strategy

spaces, we test on instances generated from distributions with

𝑙 = 0.1 and, with the Matérn kernel, 𝜈 ∈ {1.5, 2.5}. The infinite

strategy spaces are approximated with a discretization scheme

based on a grid made of 100 equally-spaced points.

In the fixed-confidence setting, we let 𝛿 = 0.1 and stop the algo-

rithms after𝑇 ∈ {30k, 100k} rounds. Similarly, the GP-SE algorithm

is run with a budget𝑇 ∈ {30k, 100k}. For each possible combination

of algorithm, game instance, and round-limit 𝑇 , we average the

results over 100 runs.

Results on Finite SBGs. The results are reported in Table 1, where

𝑇𝛿 is the average number of queries used by the algorithm in the

runs not exceeding the round-limit 𝑇 , %𝑒𝑛𝑑 is the percentage of

runs the algorithm terminates before 𝑇 rounds, and %𝑜𝑝𝑡 is the

percentage of runs the algorithm is able to correctly identify the

maximin profile𝝅∗. Notice thatM-GP-LUCB andM-G-LUCB clearly

outperform M-LUCB, as the latter requires a number of rounds 𝑇𝛿
an order of magnitude larger. M-GP-LUCB and M-G-LUCB provide

similar performances in terms of 𝑇𝛿 , but the former identifies the

maximin profile more frequently than the latter. While always using

the maximum number of rounds 𝑇 , GP-SE is the best algorithm in

identifying the maximin profile.

Results on Infinite SBGs. Figure 1 provides the values of 𝜖 and
𝜖 for an instance generated from a Matérn kernel with 𝜈 = 2.5

(see Appendix E in the full version of the paper [16] for more

results). In all the instances, 𝜖 is lower than 𝜖 , empirically proving

the correctness of the theoretical guarantees provided in Section 6.

Moreover, as expected, 𝜖 decreases as the number of discretization

points 𝐾𝜖 increases.

7.2 Security Game Instances
We also test on a SBG instance with infinite strategy spaces inspired

by the real-world security game setting described in Section 1. This

game models a military scenario in which a terrestrial counter-air
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Figure 1: 𝜖 vs. 𝜖 for different values of𝐾𝜖 (Matérn kernelwith
smoothness parameter 𝜈 = 2.5).

defensive unit has to fire a heat-seeking missile to an approaching

enemy airplane, which, after the missile has been launched, can

deploy an obfuscating flare so as to try to deflect it. We call this

game Hit-the-Spitfire. The model underlying such game and the

parameters used in the experiment are depicted in Figure 3, where

ℎ⊥ is the distance between the airplane and the terrestrial unit, ℎ𝑓
is the distance of the flare from the plane, 𝑣𝑎 and 𝑣𝑑 are the speed of

the missile and the plane, respectively, while ℓ is the length of the

plane, with the flare covering half of this space (
ℓ
2
). The first player

(the counter-air defensive unit) can determine the angle 𝜃 ∈ [0, 1]
(radians) at which the missile is launched, while the second player

(the airplane) has to decide the position 𝑠 ∈ [0, 𝑠max] where to

release the flare. If the missile hits the plane, then it incurs damage

𝑑 ∈ R+ that depends on the hitting point (the nearer to the center of

the plane, the higher). If the missile hits the flare, then there is some

probability that it is deflected away from the airplane, otherwise,

the missile still hits the target. The probability of deflection is large

when the distance of the airplane from the deployed flare is larger.
9

We run the M-GP-LUCB with 𝛿 = 0.1.

Results. Figure 2 reports the results of running the M-GP-LUCB

algorithm with 𝛿 = 0.1 on the Hit-the-Spitfire game (performing 100

runs for each 𝐾𝜖 ). Notice that, in most of the cases, 𝜖 is lower than

the theoretical value 𝜖 . This is unexpected, since, in this setting,

the assumption that the utility function 𝑢 is drawn from a GP does

not hold. We remark that, in all the runs, M-GP-LUCB is able to

identify the maximin strategy profile over the given grid.

8 DISCUSSION AND FUTUREWORKS
We addressed the problem of learning maximin strategies in two-

player zero-sum SBGs with infinite strategy spaces, providing algo-

rithms with theoretical guarantees. To the best of our knowledge,

we provided the first learning algorithms for infinite SBGs enjoy-

ing 𝛿-PAC theoretical guarantees on the quality of the returned

solutions. This significantly advances the current state of the art

for SBGs, as dealing with infinite strategies paves the way to the

9
We provide the complete description of the setting in Appendix D available at [16].
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Figure 2: 𝜖 vs. 𝜖 for different values of 𝐾𝜖 (Hit-the-Spitfire
security game).
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Parameter Value

ℎ⊥ 100 m

ℎ𝑓 10 m

𝑣𝑎 500 m/s

𝑣𝑑 120 m/s

ℓ 15 m

Figure 3: Hit-the-Spitfire security game instance and values
for its parameters used in the experiments.

application of such models in complex real-world settings. The fun-

damental ingredient of our results is the assumption that the utility

functions are drawn from a GP, which allows us to encode function

regularities without relying on specific parametric assumptions,

such as, e.g., linearity.
In future, we will extend our work along different directions.

For instance, we may address the case of general (i.e., non-zero-
sum and with more than two players) SBGs with finite (or even

infinite) strategy spaces, where one seeks for an (approximate)

Nash equilibrium. Along this line, an interesting question is how

to generalize our learning algorithms based on best arm identifica-

tion techniques to deal with Nash-equilibrium conditions instead

of maximin ones. This would pave the way to the application of

our techniques to other interesting problems, such as multi-agent

evaluation by means of meta-games [20, 26]. Another interesting

direction for future works is to study how to apply our techniques

in empirical mechanism design problems [27].
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