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ABSTRACT
We show by counterexample that policy-gradient algorithms have

no guarantees of even local convergence to Nash equilibria in con-

tinuous action and state space multi-agent settings. To do so, we

analyze gradient-play in N–player general-sum linear quadratic

games, a classic game setting which is recently emerging as a bench-

mark in the field of multi-agent learning. In such games the state

and action spaces are continuous and global Nash equilibria can

be found be solving coupled Ricatti equations. Further, gradient-

play in LQ games is equivalent to multi-agent policy-gradient. We

first show that these games are surprisingly not convex games.

Despite this, we are still able to show that the only critical points

of the gradient dynamics are global Nash equilibria. We then give

sufficient conditions under which policy-gradient will avoid the

Nash equilibria, and generate a large number of general-sum linear

quadratic games that satisfy these conditions. The existence of such

games indicates that one of the most popular approaches to solving

reinforcement learning problems in the classic reinforcement learn-

ing setting has no local guarantee of convergence in multi-agent

settings. Further, the ease with which we can generate these coun-

terexamples suggests that such situations are not mere edge cases

and are in fact quite common.
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1 INTRODUCTION
Interest in multi-agent reinforcement learning has seen a recent

surge of late, and policy-gradient algorithms are championed due

to their potential scalability. Indeed, recent impressive successes
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of multi-agent reinforcement learning have made use of policy

optimization algorithms such as multi-agent actor-critic [13, 17, 30],

multi-agent proximal policy optimization [2], and even simplemulti-

agent policy-gradients [15] in problems where the various agents

have high-dimensional continuous state and action spaces like

StarCraft II [32].

Despite these successes, a theoretical understanding of these

algorithms in multi-agent settings is still lacking. Missing perhaps,

is a tractable yet sufficiently complex setting in which to study these

algorithms. Recently, there has been much interest in analyzing the

convergence and sample complexity of policy-gradient algorithms

in the classic linear quadratic regulator (LQR) problem from optimal

control [14]. The LQR problem is a particularly apt setting to study

the properties of reinforcement learning algorithms due to the

existence of an optimal policy which is a linear function of the state

and which can be found by solving a Ricatti equation. Indeed, the

relative simplicity of the problem has allowed for new insights into

the behavior of reinforcement learning algorithms in continuous

action and state spaces [9, 11, 19].

An extension of the LQR problem to the setting with multiple

agents, known as a linear quadratic (LQ) game, has also been well

studied in the literature on dynamic games and optimal control [4].

As the name suggests, an LQ game is a setting in which multiple

agents attempt to optimally control a shared linear dynamical sys-

tem subject to quadratic costs. Since the players have their own

costs, the notion of ‘optimality’ in such games is a Nash equilib-

rium properties of which have been well analyzed in the literature

[3, 10, 18, 26].

Like LQR for the classical single-agent setting, LQ games are

an appealing setting in which to analyze the behavior of multi-

agent reinforcement learning algorithms in continuous action and

state spaces since they admit global Nash equilibria in the space of

linear feedback policies. Moreover, these equilibria can be found

by solving a coupled set of Ricatti equations. As such, LQ games

are a natural benchmark problem on which to test policy-gradient

algorithms in multi-agent settings. Furthermore, policy gradient

methods open up the possibility to new scalable approaches to

finding solutions to control problems even with constraints. In the

single-agent setting, it was recently shown that policy-gradient has

global convergence guarantees for the LQR problem [11]. These

results have recently been extended to projected policy-gradient

algorithms in zero-sum LQ games [33].
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Contributions. We present a negative result, showing that policy-
gradient in general-sum LQ games does not enjoy even local con-
vergence guarantees, unlike in LQR and zero-sum LQ games. In

particular, we show that, if each player randomly initializes their

policy and then uses a policy-gradient algorithm, there exists an

LQ game in which the players would almost surely avoid a Nash

equilibrium. Further, our numerical experiments indicate that LQ

games in which this occurs may be quite common. We also observe

empirically that when players fail to converge to the Nash equi-

librium they do converge to stable limit cycles. These cycles do

not seem to have any readily apparent relationship to the Nash

equilibria of the game.

We note that non-convergence to Nash equilibria is not in itself

a new phenomenon (see e.g. [6–8, 20]) and that the existence of

cycles in the dynamics of learning dynamics in games has also

been repeatedly observed in various contexts [21–24]. However,

we believe that such phenomena have not yet been shown to occur

in the dynamics of multi-agent reinforcement learning algorithms

in continuous action and state spaces. Since such algorithms have

had such striking successes in recent years, we believe a theoretical

understanding of their behaviors can lay the groundwork for the

development of more efficient and theoretically sound multi-agent

learning algorithms.

Organization. Section 2 introduces N -player general-sum LQ

games and presents previous results on the existence of the Nash

equilibrium in such games. In Section 3, we show that these games

are not convex games and that all the stationary points of the joint

policy-gradient dynamics are Nash equilibria. Following this, we

give sufficient conditions underwhich policy-gradient almost surely

avoids a Nash equilibrium in Section 4. Given these theoretical

results, in Section 5 we present empirical results demonstrating

that a large number of 2-player LQ games satisfy these sufficient

conditions. Numerical experiments showing the existence of limit

cycles in the gradient dynamics of general-sum LQ games are also

presented. The paper is concluded with a discussion in Section 6.

2 PRELIMINARIES
We consider N -player LQ games subject to a discrete-time dynami-

cal system defined by

z(t + 1) = Az(t) +
∑N
i=1

Biui (t) z(0) = z0 ∼ Do, (1)

where z(t) ∈ Rm is the state at time t , Do is the initial state distri-

bution, and ui (t) ∈ R
di

is the control input of player i ∈ 1, . . . ,N .

For LQ games, it is known that under reasonable assumptions,

linear feedback policies for each player that constitute a Nash equi-

librium exist and are unique if a set of coupled Ricatti equations

admit a unique solution [4]. Thus, we consider that each player i
searches for a linear feedback policy of the form ui (t) = −Kiz(t)

that minimizes their loss, where Ki ∈ R
di×m

. We use the notation

d =
∑N
i=1

di for the combined dimension of the players’ parameter-

ized policies.

As the name of the game implies, the players’ loss functions are

quadratic functions given by

fi (u1, . . . ,uN ) = Ez0∼Do

[∑∞
t=0

z(t)TQiz(t) + ui (t)
T Riui (t)

]
,

where Qi and Ri are the cost matrices for the state and input, re-

spectively.

Assumption 1. For each player i ∈ {1, . . . ,N }, the state and
control cost matrices satisfy Qi ≻ 0 and Ri ≻ 0.

We note that the players are coupled through the dynamics

since z(t) is constrained to obey the update equation given in (1).

We focus on a setting in which all players randomly initialize their

strategy and then perform gradient descent simultaneously on their

own cost functions with respect to their individual control inputs.

That is, the players use policy-gradient algorithms of the following

form:

Ki ,n+1 = Ki ,n − γiDi fi (K1,n, . . . ,KN ,n ) (2)

where Di fi (·, ·) denotes the derivatives of fi with respect to the

i–th argument, and {γi }
N
i=1

are the step-sizes of the players. We

note that there is a slight abuse of notation here in the expression

of Di fi as functions of the parameters Ki as opposed to the control
inputs ui . To ensure there is no confusion between t and n, we also
point out that n indexes the policy-gradient algorithm iterations

while t indexes the time of the dynamical system.

To simplify notation, define

ΣK = Ez0∼Do

[∑∞
t=0

z(t)z(t)T
]
,

where we use the subscript notation to denote the dependence

on the collection of controllers K = (K1, . . . ,KN ). Define also the

initial state covariance matrix

Σ0 = Ez0∼D0
[z0z

T
0
].

Direct computation verifies that for player i , Di fi is given by:

Di fi (K1, . . . ,KN ) = 2(RiKi − BTi Pi Ā)ΣK , (3)

where Ā = A −
∑N
i=1

BiKi , is the closed–loop dynamics given all

players’ control inputs and, for given (K1, . . . ,KN ), the matrix Pi
is the unique positive definite solution to the Bellman equation:

Pi = ĀT Pi Ā + K
T
i RiKi +Qi , i ∈ {1, . . . ,N }. (4)

Given that the players may have different control objectives and

do not engage in coordination or cooperation, the best they can

hope to achieve is a Nash equilibrium.

Definition 2.1. A feedback Nash equilibrium is a collection of

policies (K∗
1
, . . . ,K∗

N ) such that:

fi (K
∗
1
, . . . ,K∗

i , . . . ,K
∗
N ) ≤ fi (K

∗
1
, . . . ,Ki , . . . ,K

∗
N ), ∀Ki ∈ R

di×m .

for each i ∈ {1, . . . ,N }.

Under suitable assumptions on the cost matrices, the Nash equi-

librium of an LQ game is known to exist in the space of linear

policies [4, 16]. However, this Nash equilibrium may not be unique.

To the best of our knowledge, there are no general set of condi-

tions under which the Nash equilibrium is unique in general-sum

LQ games outside of the scalar dynamics setting [10]. There are,

however, algebraic geometry methods to compute all Nash equilib-

ria in LQ games [26]. We make use of a simpler algorithm to find

Nash equilibria which solves coupled Ricatti equations using the

method of Lyapunov iterations. The method is outlined in [16] for

continuous time LQ games, and an analogous procedure can be
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followed for discrete time. Convergence of this method requires

the following assumption.

Assumption 2. For at least one player i ∈ {1, . . . ,N }, the system
(A,Bi ) is stabilizable.

Assumption 2 is a necessary condition for the players to be able

to stabilize the system. Indeed, the player’s costs are finite only

if the closed loop system Ā is asymptotically stable, meaning that

|Re(λ)| < 1 for all λ ∈ spec(Ā), where Re(λ) denotes the real part
of λ and spec(M) is the spectrum of a matrixM .

3 ANALYZING THE OPTIMIZATION
LANDSCAPE OF LQ GAMES

Having introduced the class of games we consider we now analyze

the optimization landscape in general-sum LQ games. Letting x =

(K1, . . . ,KN ), the object of interest is the map ω : Rmd → Rmd

defined as follows:

ω(x) =


D1 f1(K1, . . . ,KN )

...

DN fN (K1, . . . ,KN )

 .
Note that Di fi = ∂ fi/∂Ki has been converted to an mdi dimen-

sional vector and each Ki has also been vectorized. This is a slight

abuse of notation and throughout we treat the Ki ’s as both vectors

and matrices; in general, the shape should be clear from context,

and otherwise we make comments where necessary to clarify.

Before analyzing the stationary points of policy-gradient in LQ

games, we show that the class of LQ games we consider are not
convex games. This holds despite the linearity of the dynamics

and the positive definiteness of the cost matrices. This fact makes

the analysis of such games non-trivial since the lack of strong

structural guarantees on the players’ costs allows for non-trivial

limiting behaviors like cycles, non-Nash equilibria, and chaos in

the joint gradient dynamics. [22].

Proposition 3.1. There exists a N -player LQ game satisfying
assumptions 1 and 2 that is not a convex game.

Proof. The proof of Proposition 3.1 follows directly from the

non-convexity of the set of stabilizing policies for the single-agent

LQR problemwhichwas shown in [11]. Holding every other players’

actions fixed, a player i is faced with a simple LQR problem. Since

this problem is non-convex, LQ games are not convex games. □

In the absence of strong structural guarantees on the players’

costs, simultaneous gradient-play in general-sum games can con-

verge to strategies that are not Nash equilibria [22]. The following

theorem shows that, despite the fact that LQ games are not convex

for each player, such non-Nash equilibria cannot exist in the gra-

dient dynamics of general-sum LQ games. Indeed, we show that

a point x is a critical point of the policy gradient dynamics in a

N -player LQ game if and only if it is a Nash equilibrium. We note

that critical points of gradient-play are strategies x = (K1, . . . ,KN )

such that ω(x) = 0. Such points are of particular importance since

a necessary condition for a point x to be a Nash equilibrium is that

it is a critical point.

Theorem 3.2. Consider the set x∗ = (K∗
1
, . . . ,K∗

N ) of stabilizing
policies such that ΣK ∗ > 0. Di fi (K

∗
1
, . . . ,K∗

N ) = 0 for each i ∈

{1, . . . ,N }, if and only if x∗ is a Nash equilibrium.

Proof. We first prove the forward direction and show that if

Di fi (x
∗) = 0 for each i ∈ {1, . . . ,N }, then x∗ is a Nash equilibrium.

We show this by contradiction. Suppose the claim does not hold

so that ΣK ∗ > 0 and Di fi (K
∗
1
, . . . ,K∗

N ) = 0 for each i ∈ {1, . . . ,N },

yet (K∗
1
, . . . ,K∗

N ) is not a Nash equilibrium. That is, without loss of

generality, there exists a K̄1 such that

f1(K̄1,K
∗
2
, . . . ,K∗

N ) < f1(K
∗
1
, . . . ,K∗

N ).

Now, fixing (K∗
2
, . . . ,K∗

N ), player 1 can be seen as facing an LQR

problem. Indeed, letting (K∗
2
, . . . ,K∗

N ) be fixed, player 1 aims to find

a ‘best response’ in the space of linear feedback policies of the form

u1(t) = Kz(t) with K ∈ Rdi×m that minimizes f1(·,K
∗
2
, . . . ,K∗

N )

subject to the dynamics defined by

z(t + 1) =
(
A −

∑N
i=2

BiKi
)
z(t) + B1u1(t).

Note that this system is necessarily stabilizable since Ā is stable.

Hence, the discrete algebraic Riccati equation for player 1’s LQR

problem has a positive definite solution P such that R1+B
T
1
PB1 > 0

since R1 > 0 by assumption. Since ΣK ∗ > 0 and D1 f1(x
∗) = 0,

applying Corollary 4 of [11], we have that K∗
1
must be optimal for

player 1’s LQR problem so that

f1(K
∗
1
, . . . ,K∗

N ) ≤ f1(K,K
∗
2
, . . . ,K∗

N ), ∀ K ∈ Rd1×m .

In particular, the above inequality holds for K̄1, which leads to a

contradiction.

To prove the reverse direction, we note that a necessary condi-

tion for a point x to be a Nash equilibrium for each player, is that

Di fi (x
∗) = 0 for each i ∈ {1, . . . ,N } [27]. □

Theorem 3.2 shows that, just as in the single-player LQR setting

and zero-sum LQ games, the critical points of gradient-play in N–

player general-sum LQ games are all Nash equilibria. We note that

the condition ΣK > 0 can be satisfied by choosing an initial state

distribution Do with a full-rank covariance matrix.

A simple consequence of Theorem 3.2 is that when the coupled

Ricatti equations characterizing the Nash equilibria of the game

have a unique positive definite solution and Assumptions 1 and 2

hold, the gradient dynamics admit a unique critical point.

Corollary 3.3. Under Assumption 1 and 2, if the coupled Ricatti
equations admit a unique solution and Σ0 ≻ 0, then the map ω has a
unique critical point.

Given that the critical points of the gradient dynamics in LQ

games are Nash equilibria, the aim is to show, via constructing

counter-examples, that games in which the gradient dynamics avoid

the Nash equilibria do in fact exist. A sufficient condition for this

would be to find a game in which gradient-play diverges from

neighborhoods of Nash equilibria.

It is demonstrated in [22] that there may be Nash equilibria

that are not even locally attracting under the gradient dynamics

in N–player general-sum games in which the players’ costs are

sufficiently smooth (i.e., at least twice continuously differentiable).

In games that admit such Nash equilibria, the agents could initialize

arbitrarily close to the Nash equilibrium, simultaneously perform
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individual gradient descent with arbitrarily small step sizes, and

still diverge.

The class of N–player LQ games we consider does not, however,

satisfy the smoothness assumptions necessary to simply invoke the

results in [22]. Indeed, the cost functions are non-smooth and, in

fact, are infinite whenever the players have strategies that do not

stabilize the dynamics. Further, the set of stabilizing policies for a

dynamical system is not even convex [11]. Despite these challenges,

in the sequel we show that the negative convergence results in

[22] extend to the general-sum LQ setting. In particular, we show

that even with arbitrarily small step sizes, players using policy-

gradient in LQ games may still diverge from neighborhoods of a

Nash equilibrium.

4 SUFFICIENT CONDITIONS FOR
POLICY-GRADIENT TO AVOIDS NASH

We now give sufficient conditions under which gradient-play has no

guarantees of even local, much less global, convergence to a Nash

equilibrium. Towards this end, we first show that ω is sufficiently

smooth on the set of stabilizing policies.

Let Smd ⊂ Rmd
be the subset of stabilizingmd–dimensional

matrices.

Proposition 4.1. Consider an N–player LQ game. The vector-
valued map ω associated with the game is twice continuously differ-
entiable on Smd—i.e., ω ∈ C2(Smd ,Smd ).

Using our notation, Lemma 6.5 in [33] shows for two-player zero-

sum LQ games that (P1, P2), and ΣK are continuously differentiable

with respect to K1 and K2 when A − B1K1 − B2K2 is stable. This,

in turn, implies that ω(K1,K2) is continuously differentiable with

respect to K1 and K2 when the closed loop systemA−B1K1 −B2K2

is stable. The result follows by a straightforward application of the

implicit function theorem [1]. We utilize the same proof technique

here in extending the result to N–player general-sum LQ games

and, in fact, the proof implies that ω has even stronger regularity

properties. Since the proof follows the same techniques as in [33],

we defer it to Appendix A.

Given thatω is continuously differentiable over the set of stabiliz-

ing joint policies (K1, . . . ,KN ), the following result gives sufficient

conditions such that the set of initial conditions in a neighborhood

of the Nash equilibrium from which gradient-play converges to the

Nash equilibrium is of measure zero. This implies that the players

will almost surely avoid the Nash equilibrium even if they randomly

initialize in a uniformly small ball around it.

Let the Jacobian of the vector field ω be denoted by Dω. Given
a critical point x∗, let λj be the eigenvalues of Dω(x∗), for j ∈

{1, . . . ,md}, where d =
∑n
i=1

di . Recall that the state z(t) is dimen-

sionm.

Theorem 4.2. Suppose that Σ0 > 0. Consider any N–player LQ
game satisfying Assumptions 1 and 2 that admits a Nash equilib-
rium that is a saddle point of the policy-gradient dynamics—i.e., LQ
games for which the Jacobian of ω evaluated at the Nash equilib-
rium x∗ = (K∗

1
, . . . ,K∗

N ) has eigenvalues λj such that Re(λj ) < 0

for j ∈ {1, . . . , ℓ} and Re(λj ) > 0 for j ∈ {ℓ + 1, . . . ,md} for some ℓ
such that 0 < ℓ < md . Then there exists a neighborhoodU of x∗ such
that policy-gradient converges on a set of measure zero.

Proof. At a high level, we characterize the set of initializations

from which the players converge to Nash equilibria. The proof

makes use of classic results in dynamical systems theory and topol-

ogy to iteratively construct this set of initial conditions and char-

acterize its “size”. When the Nash equilibrium satisfies the strict

saddle condition we show that the set is vanishingly small such that

even if the players randomly initialize uniformly in an arbitrarily

small ball around such solutions, the players will (almost surely)

end up diverging from the equilibrium.

The proof is made up of three parts: (i) we show the existence

of an open-convex neighborhood U of x∗ on which ω is locally

Lipschitz with constant L; (ii) we show that themapд(x) = x−Γω(x)
is a diffeomorphism on U ; and, (iii) we invoke the stable manifold

theorem to show that the set of initializations inU on which policy-

gradient converges is measure zero. The proof of

(i) ω is locally Lipschitz. Proposition 4.1 shows that ω is contin-

uously differentiable on the set of stabilizing policies Smd
. Given

Assumptions 1 and 2, the Nash equilibrium exists and x∗ ∈ Smd
.

Thus, there must exist an open convex neighborhood U of x∗ such
that | |Dω | |2 < L for some L > 0.

(ii) д is a diffeomorphism. By the preceding argument, ω is lo-

cally Lipschitz onU with Lipschitz constant L. Consider the policy-
gradient algorithm with γi < 1/L for each i ∈ {1, . . . ,N }. Let

Γ = diag(Γ1, . . . , ΓN ) where Γi = diag((γi )
mdi
j=1

)—that is, Γi is an

mdi ×mdi diagonal matrix with γi repeated on the diagonalmdi
times. Now,we claim themappingд : Rmd → Rmd

: x 7→ x−Γω(x)
is a diffeomorphism on U . If we can show that д is invertible on

U and a local diffeomorphism, then the claim follows. Let us first

prove that д is invertible.

Consider x , y and suppose д(y) = д(x) so that y − x = γ ·

(ω(y) −ω(x)). Since ∥ω(y) −ω(x)∥2 ≤ L∥y − x ∥2 onU , ∥x −y∥2 ≤

L∥Γ∥2∥y − x ∥2 < ∥y − x ∥2 since ∥Γ∥2 = maxi |γi | < 1/L.
Now, observe that Dд = I − ΓDω(x). If Dд is invertible, then the

implicit function theorem [1] implies that д is a local diffeomor-

phism. Hence, it suffices to show that ΓDω(x) does not have an
eigenvalue equal to one. Indeed, letting ρ(A) be the spectral radius
of a matrix A, we know in general that ρ(A) ≤ ∥A∥ for any square

matrix A and induced operator norm ∥ · ∥ so that ρ(ΓDω(x)) ≤

∥ΓDω(x)∥2 ≤ ∥Γ∥2 supx ∈U ∥Dω(x)∥2 < maxi |γi |L < 1. Of course,

the spectral radius is the maximum absolute value of the eigenval-

ues, so that the above implies that all eigenvalues of ΓDω(x)) have
absolute value less than one.

Since д is injective by the preceding argument, its inverse is

well-defined and since д is a local diffeomorphism on U , it follows

that д−1
is smooth on U . Thus, д is a diffeomorphism.

(iii) Local convergence occurs on a set of measure zero. Let B be

the open ball derived from Theorem B.4 in Appendix B.

Starting from x0 ∈ U , if gradient-based learning converges to

a strict saddle point, then there exists an n0 such that дn (x0) ∈ B
for all n ≥ n0. Applying Theorem B.4 (Appendix B), we get that

дn (x0) ∈ W cs
loc

∩ B. Now, using the fact that д is invertible, we

can iteratively construct the sequence of sets defined byW1(x
∗) =

д−1(W cs
loc

∩ B) ∩U andWk+1
(x∗) = д−1(Wk (x

∗) ∩ B) ∩U . Then we

have that x0 ∈ Wn (x
∗) for all n ≥ n0. The set U0 = ∪∞

k=1
Wk (x

∗)
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Figure 1: Frequency (out of 1000) of randomly sampled LQ games with global Nash equilibria that are avoided by policy-
gradient. Each point represents, for the given parameter value, the frequency of such games out of 1000 randomly sampled
A matrices. The solid line shows the average frequency of these games. (i) r is varied in (0, 1), b = 0, q = 0.01. (ii) q is varied in
(0, 1), b = 0, r = 0.1. (iii) b is varied in (−0.5, 0.5), q = 0.01, r = 0.1.

contains all the initial points inU such that gradient-based learning

converges to a strict saddle.

Since x∗ is a strict saddle, I − ΓDω(x∗) has an eigenvalue greater

than one. This implies that the co-dimension of the unstable mani-

fold is strictly less thanmd so that dim(W cs
loc

) < md . Hence,W cs
loc

∩B

has Lebesgue measure zero in Rmd
. Using again that д is a dif-

feomorphism, д−1 ∈ C1
so that it is locally Lipschitz and locally

Lipschitz maps are null-set preserving. Hence,Wk (x
∗) has measure

zero for all k by induction so that U0 is a measure-zero set since it

is a countable union of measure-zero sets. □

Theorem 4.2 gives sufficient conditions under which, with ran-

dom initializations of Ki , policy-gradient methods would almost

surely avoid the critical point. Let each players’ initial strategy Ki ,0
be sampled from a distribution pi ,0 for i ∈ {1, ...,N } , and let p0 be

the resulting the joint distribution of (K1,0, . . . ,KN ,0).

Corollary 4.3. Suppose Do is chosen such that Σ0 ≻ 0, and
consider an N–player LQ game satisfying Assumptions 1 and 2 in
which there is a Nash equilibrium which is a saddle point of the policy-
gradient dynamics. If each player i ∈ {1, . . . ,N } performs policy-
gradient with a random initial strategy Ki ,0 ∼ pi ,0 such that the
support of p0 isU , they will almost surely avoid the Nash equilibrium.

Corollary 4.3 shows that even if the players randomly initialize

in a neighborhood of a Nash equilibrium that is a saddle point of

the joint gradient dynamics they will almost surely avoid it. The

proof follows trivially from the fact that the set of initializations

that converge to the Nash equilibrium is of measure zero in U .

In the next section, we generate a large number of LQ games that

satisfy the conditions of Corollary 4.3. Taken together, these theo-

retical and numerical results imply that policy-gradient algorithms

have no guarantees of local, and consequently global, convergence

in general-sum LQ games.

Remark 1. Theorem 4.2 gives us sufficient conditions under which
policy-gradient in general-sum LQ games does not even have local
convergence guarantees, much less global convergence guarantees.
We remark that this is very different from the single-player LQR
setting, where policy-gradient will converge from any initialization in
a neighborhood of the optimal solution [11]. In zero-sum LQ games,
the structure of the game also precludes any Nash equilibrium from
satisfying the conditions of Theorem 4.2 [22], meaning that local
convergence is always guaranteed. In [33], the guarantee of local
convergence is strengthened to that of global convergence for a class
of projected policy-gradient algorithms in zero-sum LQ games.

We conclude by noting that the non-convergence results we

present extend to a stochastic setting in which the players have

access to unbiased estimates of their gradients and the step-sizes

are monotonically decreasing as time progresses. Indeed, classical

results from the stochastic approximations literature (see e.g. [5, 25])

guarantee under mild assumptions on the estimators that such

stochastic dynamics will have the same asymptotic behavior vis-a-

vis saddle points as the deterministic dynamics they seek to follow.

5 GENERATING COUNTEREXAMPLES
Since it is difficult to find a simple closed form for the Jacobian of

ω due to the fact that the matrices Pi implicitly depend on all the

Ki , we perform random search to find instances of LQ games in

which the Nash equilibrium is a strict saddle point of the gradient

dynamics. For each LQ game we generate, we use the method of

Lyapunov iterations to find a global Nash equilibrium of the LQ

game and numerically approximate the Jacobian to machine preci-

sion. We then check whether the Nash equilibrium is a strict saddle.

Surprisingly, such a simple search procedure finds a large number

of LQ games in which policy-gradient avoids Nash equilibria.

For simplicity, we focus on two-player LQ games where z ∈ R2

and d1 = d2 = 1. Thus, each player i = 1, 2 has two parameters to

learn, which we denote Ki , j , j = 1, 2.
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In the remainder of this section, we detail our experimental setup

and then present our findings.

5.1 Experimental setup
To search for examples of LQ games in which policy-gradient avoids

Nash equilibria, we fix B1, Q1, and R1 and parametrize B2, Q2, and

R2 by b, q, and r , respectively. For various values of the parameters

b, q, and r , we uniformly sample 1000 different dynamics matrices

A ∈ R2×2
such that A,B1,Q1 satisfies Assumption 2. Then, for

each of the 1000 different LQ games we find the optimal feedback

matrices (K∗
1
,K∗

2
) using the method of Lyapunov iterations (i.e., a

discrete time variant of the algorithm outlined in [16]), and then

numerically approximate Dω(K∗
1
,K∗

2
) using auto-differentiation

1

tools and check its eigenvalues.

The exact values of the matrices are defined as follows:

A ∈ R2×2
: ai , j ∼ Uniform(0, 1) i, j = 1, 2,

B1 =

[
1

1

]
, B2 =

[
b
1

]
, Q1 =

[
0.01 0

0 1

]
, Q2 =

[
1 0

0 q

]
,

R1 = 0.01, R2 = r .

5.2 Numerical results
Using the setup outlined in the previous section we randomly gen-

erated LQ games to search for counterexamples. We first present

results that show that these counterexamples may be quite com-

mon. We then use policy-gradient in two of the LQ games we

generated and highlight the existence of limit cycles and the fact

that the players’ time-averaged strategies do not converge to the

Nash equilibrium.

Avoidance of Nash in a nontrivial class of LQ games. As can be

seen in Figure 1, across the different parameter values we consid-

ered, we found that anywhere from 0% to 25% of randomly sampled

LQ games, had Nash equilibria that are strict saddle points of the

gradient dynamics. Therefore, in up to 25% of the LQ games we gen-

erated policy-gradient would almost surely avoid a Nash solution.

Of particular interest, for all values of q and r that we tested, when
b = 0 at least 5% of the LQ games had a global Nash equilibrium

with the strict saddle property.

These empirical observations imply that policy-gradient in com-

petitive settings, even in the relatively straightforward setting of

linear dynamics, linear policies, and quadratic costs, could fail to

converge to a Nash equilibrium in up to one out of four such prob-

lems. This suggests that for more complicated cost functions, policy

classes, and dynamics, Nash equilibria may often be avoided by

policy-gradient.

We remark that each point in Figure 1 represents the number

of counterexamples found (out of 1000) for each parameter value,

meaning that for r ≈ 0.35,b = 0, and q = 0.01 we were able

to consistently generate around 250 different examples of games

where policy-gradient almost surely avoids the only stationary

point of the dynamics.

Note also that we were unable to find any counterexamples when

b was varied in (−0.5, 0.5) and q = 0.01, r = 0.1. This suggests that

1
We use auto-differentiation due to the fact that finding an analytical expression for

Dω is unduly arduous even in low dimensions due to the dependence of Pi and

ΣK
1
,K

2
on (K1, K2), both of which are implicitly defined.

Figure 2: Payoffs of the two players in two general-sum LQ
game where there is a Nash equilibrium that is avoided by
the gradient dynamics. We observe empirically that in both
games the two players diverge from the local Nash equilib-
rium and converge to a limit cycle around the Nash equilib-
rium.

depending on the structure of the dynamical system it may be

possible to give stronger convergence guarantees.

Convergence to Cycles. Figures 2–3 show the payoffs and param-

eter values of the two players when they use policy-gradient in two

general-sum LQ games we identified as being counterexamples for

convergence to the Nash equilibrium.

In the two games, we initialize both players in a ball of radius

0.25 around their Nash equilibrium strategies and let them perform

policy-gradient with step size 0.05. We observe that in both games

the players diverge from the Nash equilibrium and converge to

limit cycles.

For the two games in Figures 2–4, the game parameters are such

that b = 0, r = 0.01, and q = 0.147. The two A matrices are defined

as follows:

(i): A =

[
0.588 0.028

0.570 0.056

]
, (ii): A =

[
0.511 0.064

0.533 0.993

]
. (5)

We also chose the initial state distribution to be [1, 1]T or [1, 1.1]T

with probability 0.5 each.
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Figure 3: Parameter values of the two players in two general-sum LQ game where the Nash equilibrium is avoided by the gra-
dient dynamics. We empirically observe in both games described in (5) that players converge to the same cycle from different
initializations. Time is shown by the progressive darkening of the players’ strategies.

The eigenvalues of the corresponding game Jacobian Dω evalu-

ated at the Nash equilibrium are as follows:

(i): spec(Dω(K∗
1
,K∗

2
)) = {10.88, 2.02,−0.21,−0.06}

(ii): spec(Dω(K∗
1
,K∗

2
)) = {9.76, 0.54,−0.01 ± 0.08j}.

Thus, these games do satisfy the conditions of Corollary 4.3 for the

avoidance of Nash equilibria. We conclude this section by noting

that, as shown in Figure 4, the players’ average payoffs do not

necessarily converge to the Nash equilibrium payoffs.

Cycles in 3-player games. We conclude our numerical results by

noting that these observations extend to N > 2 numbers of players.

In particular, we use policy gradients in a 3-player LQ game and (as

shown in Figure 5) we again observe convergence to limit cycles.

For this gameA is the same as in example (ii) above and the first two
players i = 1, 2 have the same cost matrices Qi ,Ri as in example

(ii), and the third player has B3 = [0, 1]T , R3 = 0.01, andQ3 =
1

2
Q2.

6 DISCUSSION
We have shown that in the relatively straightforward setting of

N–player LQ games, agents performing policy-gradient have no

guarantees of local, and therefore global, convergence to the Nash

equilibria of the game even if they randomly initialize their first

policies in a small neighborhood of the Nash equilibrium. Since we

also showed that the Nash equilibria are the only critical points

of the gradient dynamics, this means that, for this class of games,

policy-gradient algorithms may have no guarantees of convergence

to any set of stationary policies.

Since linear dynamics, quadratic costs, and linear policies are

a relatively simple setup compared to many recent deep multi-

agent reinforcement learning problems [2, 13], we believe that the

issues of non-convergence are likely to be present in more complex

scenarios involving more complex dynamics and parametrizations

of the policies. This can be viewed as a cautionary note, but it also

suggests that the algorithms that have yielded impressive results

in multi-agent settings can be further improved by leveraging the

underlying game-theoretic structure.

We remark that we only analyzed the deterministic policy–

gradient setting, though the findings extend to settings in which

players construct unbiased estimates of their gradients [31] and

even actor-critic methods [30]. Indeed all of these algorithms will

suffer the same problems since they all seek to track the same

limiting continuous–time dynamical system [22].

Our numerical experiments also highlight the existence of limit

cycles in the policy-gradient dynamics. Unlike in classical optimiza-

tion settings in which oscillations are normally caused by the choice

of step sizes, the cycles we highlight are behaviors that can occur

even with arbitrarily small step sizes. They are a fundamental fea-

ture of learning in multi-agent settings and have been observed in

the dynamics of many learning algorithms [12, 22–24]. We remark,

however, that there is no obvious link between the limit cycles that

arise in the gradient dynamics of the LQ games and the Nash equi-

librium of the game. Indeed, unlike with other game dynamics in

more simple games, such as the well-studied replicator dynamics in

bilinear games [23] or multiplicative weights in rock-paper-scissors

[12], the time average of the players’ strategies does not coincide

with the Nash equilibrium. This may be due to the fact that the

Nash equilibrium is a saddle point of the gradient dynamics and

not simply marginally stable, though the issue warrants further

investigation.

This paper highlights how algorithms developed for classical

optimization or single-agent optimal control settings may not be-

have as expected in multi-agent and competitive environments.

Algorithms and approaches that have provable convergence guar-

antees and performance in competitive settings, while retaining the

scalability and ease of implementation of simple policy-gradient

methods, are therefore a crucial and promising open area of re-

search.
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Figure 4: Time average parameter values of the two players in the general-sum LQ game with dynamics given in (5). We
empirically observe that in both games the players’ time average strategy does not converge to the Nash equilibrium strategy.
Time is shown by progressive darkening of the players’ strategies.

Figure 5: Payoffs of the three players in a LQ game. We ob-
serve empirically that the three players converge to a limit
cycle instead of to a Nash equilibrium.

A PROOFS OF AUXILIARY RESULTS
Proposition A.1. Consider an N–player LQ game. The vector-

valued map ω twice continuously differentiable on Smd ; i.e., ω ∈

C2(Smd ,Smd ).

Proof. Following the proof technique of [33], we show the regu-

larity of ω using the implicit function theorem [1]. In particular, we

show that ΣK = Ez0∼Do

[∑∞
t=0

z(t)z(t)T
]
and Pi for i ∈ {1, . . . ,N }

are C1
with respect to each Ki on the space of stabilizing matrices.

For any stabilizing (K1, . . . ,KN ), ΣK is the unique solution to

the following discrete-time Lyapunov equation:

ĀΣK Ā
T + Σ0 = ΣK , (6)

where Σ0 = Ez0∼Do [z(0)z(0)
T ] > 0 and Ā = A −

∑N
i=1

BiKi . Both
sides of this expression can be vectorized. Indeed, using the same

notation as in [33], let vect(·) be the map that vectorizes its argu-

ment and let Ψ : Rm
2

× Rd1×m × · · · × RdN ×m → Rm
2

be defined

by

Ψ(vect(ΣK ),K1, . . . ,KN ) =
[
Ā ⊗ Ā

]
· vect(ΣK ) + vect(Σ0).

Then, (6) can be written as

F (vect(ΣK ),K1, . . . ,KN ) = Ψ(vect(ΣK ),K1, . . . ,KN ) − vect(ΣK )

= 0.

The map F implicitly defines ΣK . Moreover, letting I denote the
appropriately sized identity matrix, we have that

∂F (vect(ΣK ),K1, . . . ,KN )

∂vect
T (ΣK )

=
[
Ā ⊗ Ā

]
− I .

For stabilizing (K1, . . . ,KN ), this matrix is an isomorphism since

spec(Ā) is inside the unit circle. Thus, using the implicit function

theorem, we conclude that vect(ΣK ) ∈ C1
. As noted in [33], the

proof for each Pi , i ∈ {1, . . . ,N } is completely analogous. Since

ΣK and Pi are C
1
and ω is linear in these terms, the result of the

proposition follows. □

B ADDITIONAL MATHEMATICAL
PRELIMINARIES AND RESULTS

The following theorem is the celebrated center manifold theorem

from geometry (see e.g [1] for a more thorough background).

Theorem B.4 (Stable Manifold Theorem [29], [28, Thm. III.7]).

Let x0 be a fixed point for the Cr local diffeomorphism ϕ : U → Rn

where U ⊂ Rn is an open neighborhood of x0 in Rn and r ≥ 1.
Let Es ⊕ Ec ⊕ Eu be the invariant splitting of Rn into generalized
eigenspaces of Dϕ(x0) corresponding to eigenvalues of absolute value
less than one, equal to one, and greater than one. To the Dϕ(x0)

invariant subspace Es ⊕ Ec there is an associated local ϕ–invariant
Cr embedded disc W cs

loc called the local stable center manifold of
dimension dim(Es ⊕Ec ) and ball B around x0 such thatϕ(W cs

loc )∩B ⊂

W cs
loc , and if ϕ

n (x) ∈ B for all n ≥ 0, then x ∈W sc
loc .
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