
Massive Cross-Platform Simulations of Online Social Networks
Goran Murić, Alexey Tregubov, Jim Blythe, Andrés Abeliuk, Divya Choudhary, Kristina Lerman,

Emilio Ferrara

{gmuric,tregubov,blythe,aabeliuk,dchoudha,lerman,ferrarae}@isi.edu

USC Information Sciences Institute

Marina del Rey, CA, USA

ABSTRACT
As part of the DARPA SocialSim challenge, we address the prob-

lem of predicting behavioral phenomena including information

spread involving hundreds of thousands of users across three major

linked social networks: Twitter, Reddit and GitHub. Our approach

develops a framework for data-driven agent simulation that begins

with a discrete-event simulation of the environment populated with

generic, flexible agents, then optimizes the decision model of the

agents by combining a number of machine learning classification

problems. The ML problems predict when an agent will take a cer-

tain action in its world and are designed to combine aspects of

the agents, gathered from historical data, with dynamic aspects

of the environment including the resources, such as tweets, that

agents interact with at a given point in time. In this way, each of the

agents makes individualized decisions based on their environment,

neighbors and history during the simulation, although global simu-

lation data is used to learn accurate generalizations. This approach

showed the best performance of all participants in the DARPA chal-

lenge across a broad range of metrics. We describe the performance

of models both with and without machine learning on measures of

cross-platform information spread defined both at the level of the

whole population and at the community level. The best-performing

model overall combines learned agent behaviors with explicit mod-

eling of bursts in global activity. Because of the general nature of

our approach, it is applicable to a range of prediction problems that

require modeling individualized, situational agent behavior from

trace data that combines many agents.

KEYWORDS
massive scale simulations; collaborative platforms; agent based

simulation; AI agents; online social networks

ACM Reference Format:
Goran Murić, Alexey Tregubov, Jim Blythe, Andrés Abeliuk, Divya Choud-

hary, Kristina Lerman, Emilio Ferrara. 2020. Massive Cross-Platform Simula-

tions of Online Social Networks. In Proc. of the 19th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2020), Auckland,
New Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION
Agent-based simulations derived from observational data can be

used as a powerful tool to model and predict how users react to

different information to which they are exposed on social media

platforms. However, a number of challenges present themselves in

effectively using available data to build agent models that can be

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

used in high-fidelity simulations to make such predictions. First,

the phenomena of interest may be the product of many agents fol-

lowing decision workflows that are not easily recoverable from the

available data. Second, machine learning approaches have typically

been used in this area to learn particular focused aspects of user

behavior via classification methods (e.g. link-prediction, content

suggestions), and have not been applied to larger questions of in-

formation flow and evolution. Third, ML models that do address

global information flow tend to create a single global model, that

is limited in its predictive power because it does not capture the

differing reactions and activities of individual agents that might

behave differently in the future because of variations to their indi-

vidual environment and goals. Fourth, the data usually embodies

observations of events that took place within a given set of social

media platforms, meaning that positive examples of user activity

abound while it is harder to find negative examples, for example of

when and why a specific action was not taken. Finally, any learned

or rule-based behavior must be designed to run very efficiently in

order to scale simulations to hundreds of thousands or millions of

users while modeling individual decisions taken in their dynamic

contexts.

In this paper we present a framework for agent modeling of user

behavior from observational data that addresses these challenges,

and show its use in building an effective model of cross-platform

behavior across GitHub, Twitter and Reddit. Some key contributions

of this paper include:

• We develop a set of ML models that learn aspects of user

behavior in Twitter and Reddit as classification problems,

combining features of users and resources.

• We use a set of simple agent behavior models implemented in

DASH framework [6, 9]. DASH allows developing cognitive

agents and integrating our ML models along with simpler

statistical and rule-based models of behavior.

• We develop features for ML learning that can be interpreted

differently for different agents, such as ’the volume of the

Reddit channel I have most frequently contributed to’, to

combine generalization from the data with individualized

agent behavior.

• We present performance results of four model configurations

that were rigorously evaluated during the DARPA Social-

Sim Challenge event along with two baseline comparisons.

Our models performed the best of all participants across a

broad range of metrics defined for the event, indicating the

promise of the approach we describe here. The best perform-

ing model overall combines learned agent behavior with

statistical modeling of bursty behavior, indicating a benefi-

cial interaction between this agent-centered learning and

the architecture of the simulation.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

895

The next section introduces the domain in which we modeled

cross-platform information spread and the available data. We then

introduce our agent model and the machine learning approaches

used to define agent behavior. Next we present our experimental

results and related work.

2 CHALLENGE PROBLEM DESCRIPTION
The DARPA SocialSim Challenge aims at simulating specific types

of dynamics between users and content on three major online social

platforms: GitHub, Twitter and Reddit. The goal of a challenge is to

predict how a given unit of information will spread across a multi–

platform online environment. In particular, it is designed to focus on

the simulation of social structure and temporal dynamics with the

focus on: 1) cross-platform information spread, 2) spread of specific

units of information: Common vulnerabilities and exposures (CVE)

IDs, URLs and malwares and 3) quantifying how the newly created

information spreads. A unit of information is any trackable string

that can be identified across platforms, including specific URLs,

CVE IDs and malware-related keywords. For example, suppose that

an important malware has been discussed in Twitter with hashtag

#malware_name, and consequently the associated anti-malware

software starts appearing in GitHub and is discussed in Reddit. The

simulation should capture as precisely as possible the behaviors of

all actors involved in the information spread.

All the teams participating in the challenge were provided with

the training data: a set of relevant actions extracted from GitHub,

Reddit and Twitter over the course of 32, 32 and 19 months respec-

tively. The data covers the period before the end of August 2017,

which corresponds to the end of the training data period in Figure 1.

Some additional data has been provided such as additional informa-

tion on users, the list of potential bot accounts or information on

GitHub repositories. The teams had the freedom to use the provided

data as needed to make the appropriate models. At the beginning of

the challenge, the teams receive some additional data covering an

unidentified period before the simulated time, which can be used to

setup the initial conditions of the system (Figure 1). Initial conditions
data cover period of 2 weeks right before test period (simulation

time). A time gap between the training data and the initial condi-

tions data could be introduced. The teams are requested to simulate

a specific time interval after the initial conditions. Lenght of the Test
period or simulation time is 6 weeks. The “accuracy” of a simulation

has been assessed by comparing the simulation output to the ground
truth using the set of measures as explained in Section 4.2.

At the beginning of the simulation, the initial condition data con-

tains a set of actions and content which could contain the relevant

keywords or no keywords at all. The users can interact with one or

many pieces of content in any time during the simulation.

The simulation output is the list of all the actions performed by

the relevant actors in all three platforms. For GitHub, we simulate

ten actions that users can make: create or delete either a repos-

itory, a tag, or a branch (respectively Create and Delete), create
or comment a pull request (respectively PullRequest and PullRe-
questReviewComment), create an issue (Issues, IssueComment), and
push (Push, CommitComment). Moreover, a user can watch and fork
existing repositories. ForRedditwe simulate two user actions: post
– creating the original content; and comment – commenting on a

Training data Gap
Initial

conditions

Ground truth
test data

Simulation
output

Time

Figure 1: Simulation timeline. Training data has been used
to train the models. Initial conditions data has been pro-
vided at the day of the challenge. It is used to set the initial
state of the system before the simulation. After the simu-
lation, the simulation output is then compared to ground
truth to assess the accuracy of the simulation.

post or on another comment. For Twitter we focus on two user ac-

tions: tweet – creating an original tweet; and retweet – broadcasting

the other user’s tweet.

3 AGENT FRAMEWORK AND MODELS
To simulate multiple social platforms with millions of users inter-

acting with hundreds of thousands of pieces of content, we use

the DASH agent framework implemented in the FARM simulation

platform [9], implemented in Python. At the core of the simulation

framework is discrete event simulation where the event queue con-

tains two different kinds of events. First, individual agents appear

on the queue with specific time-points. When these reach the front

of the queue they begin a decision process to determine what action

will be taken, e.g. a comment on a Reddit post. On completing an

action the agent is placed back on the queue at a time point that

implements a basic rate of activity for the agent. The second kind of

object on the event queue is a trigger, which on reaching the front

of the queue may conditionally initiate new events based on the

state of the simulation. As we describe below, in this case we use

triggers to model bursty behavior, or rapid increases in the rate of

activity perhaps triggered by some event that is external to the so-

cial media environment. We call this technique a dual event queue

approach. While it is simple, it combines flexibility in modeling

global behavior with the efficiency of the discrete event model.

3.1 ML ready agents and simulation
components

We describe our general approach to agent modeling of multi-

ple social media platforms. Some researchers have modeled cross-

platform information spread at the global level or with very simple

agents [13, 18]. In contrast, we use a high-fidelity multi-agent model

that allows agents to make independent choices using potentially

complex decision algorithms. In reality, users of a social network

have their personal preferences and habits. For example, one Twit-

ter user may be interested in UK politics, while the other follows

sports, and both of them are also interested in crypto coins. The

first one might be very active and often engage in discussions, while

the other one rarely replies. Users can vary widely across a number

of different dimensions. In order to create such a model, however,

we must specify this variety of behaviors for possibly millions of

agents in a way that matches our observable data, and for this we

turn to machine learning approaches as described below.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

896

Figure 2: Agents’ workflow

Agents in our simulation interact with each other by interacting

with the social media resources they produce or are associated

with. The nature of interactions can be various and multiple. For

example, in Twitter we define agents as users and resources as

tweets. Users can interact with tweets by retweeting them, liking

them or replying to them.

The environment 𝜖 , then, consists of the agents {𝛼1, 𝛼2, . . . , 𝛼𝑛} ∈
𝐴 and resources {𝑟1, 𝑟2, . . . , 𝑟𝑚} ∈ 𝑅. Agents and resources are de-

fined by their state. States include two sets of features 𝑋𝛼𝑖 and 𝑋𝑟 𝑗
for agents and resources respectively.

All models used agents’ decision process shown in Figure 2. This

process is implemented as a DASH agent and consists of modular

components that can have multiple implementations (marked 1-5).

Experiments can also be configured to have heterogeneous agents

using different modules implementations (algorithms).

The major components of the agents’ decision process are the

following:

(1) Activation. Agents become active and ready to take an action

in one of two ways: internal self-activation by coming to the

front of the event queue as an agent or external activation via

a trigger that comes to the front of the queue. These methods

can be used simultaneously or separately. This dual queue

approach for incorporating external signal into simulations

described in Section 3.4

(2) Identification of the visible horizon. It is both computationally

and cognitively infeasible for the active agent to consider all

possible resources in making an action decision. The agent’s

visible horizon ℎ is defined by a set of rules that limit the

resources the agent can possibly interact in a given time

step. The users of a social network are presented with a very

small subset of the resources they could in theory interact

with, as illustrated in Figure 3a. For example, a Twitter user

can interact only with tweets that are displayed on their

device. Our attempt is to emulate this limited visibility of

the available resources by allowing agents to interact only

with a specific fraction of resources. The models for calcu-

lating the visibility horizon ℎ are described more in details

in Section 3.5

(3) Invoking the process of selecting a resource and action type.
If an agent makes a decision to take an action on an al-

ready existing resource (e.g. edit or delete its tweet) then it

needs to select resources to interact with. This decision can

be translated into the following set of problems: given the

agent-resource pair with the corresponding sets of features,

whether the action will be selected. These are classification

problems, where a combined set of features 𝑥 = 𝑥𝛼𝑖 ∥ 𝑥𝑟 𝑗
needs to be classified into positive or negative class. Models

developed for this problem are described in Section 3.2

(4) Starting a new information cascade. Starting a information

cascade means creating an original resource rather than act-

ing on an already existing resource. Our simulation models

use training data to sample the roots of information cas-

cades. Information units (keywords, hashtags, URLs) are also

sampled from the training data.

(5) Reacting to an existing information cascade. This process is
similar to (3). This decision can be translated into the follow-

ing question: given the agent-resource pair with the corre-

sponding sets of features, whether the action will be selected.

Twitter and Reddit models developed for this problem are

described in Section 3.2

(6) Adding/Updating information units. Agents can add and up-

date meta information of the resource (e.g. keywords, hash-

tags, URLs). Information spread is measured per each infor-

mation unit and discussed in section 4.

Each of the agents in this framework are cross-platform agents

in the sense that they can take actions on different platforms. The

social platform, where the action happens, is specified when the

agents’ activation is scheduled on the queue. Parameterization and

training required for each component (1-5) in Figure 2 is done for

each social platform.

During the simulation, this process is repeated for each agent

whenever it is activated as illustrated in Figure 3b. To optimize

the use of the resources, we sometimes pre-compute, parallelize or

bundle some of the steps when possible.

3.2 Twitter and Reddit ML models
ML models predict the probability of interaction between an agent

and a resource. In the “real world” the users are presented with a

set of objects they can interact with. For instance, a user on Twitter

can see a few dozen tweets in a given moment. For each of the

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

897

(a) (b)

Figure 3: Agents, visibility horizon and simulation in time: a)
An agent can interact with any resource which falls within
their visibility horizon ℎ. The decision if a particular agent
will interact with a particular resource is left to other deci-
sion models; b) Multiple agents are active within the simu-
lated environment, and they repeat their decision process
over time

tweets, a user makes a decision either to like a tweet, retweet, reply

or ignore it. In our simulation, for each of the actions the decision

process is translated into a binary classification problem for a given

feature vector 𝑋𝑘 = 𝑋𝛼
𝑖
∥ 𝑋𝑟

𝑗
∥ 𝑋𝑐

𝑘
. The feature vector is made up of

feature vector 𝑋𝛼
𝑖
for an agent 𝑖 , a feature vector 𝑋𝑟

𝑗
for a resource

𝑗 and a combined feature vector 𝑋𝑐
𝑘
which are concatenated into a

single vector 𝑋𝑘 . This way, for each combination of agent–resource

pairs we can construct the unique feature vector that will be used to

make a decision on an action. During the simulation, as each agent

reaches the front of the event queue, it solves a binary classification

problem on the set of resources that are within agent’s horizon ℎ.

For a given agent 𝛼𝑖 , a vector 𝑋𝑘 is constructed for all resources

that are within the horizon ℎ.

Reddit training. In the case of Reddit, we solve two classifica-

tion problems: (1) post→comment: whether the user will make a

comment on a given post and (2) comment→comment: whether the
user will make a sub–comment on a given comment. For each of

the two problems we build separate training datasets.

For the post→comment problem, we first match all the users with

posts they commented on. Then, for each user–post pair we create a

unified feature vector by concatenating user features, post features

and combined features in a single vector as illustrated in Table 1.

All the vectors created this way are assigned a positive label as

they represent the instances of users commenting on the posts. The

initial dataset consists only of positive examples. This problem is

different from the standard supervised classification problem by the

lack of negative examples in the training set. Usually, to properly

train a binary classifier, one needs the negative examples. The data

on “real” negatives could be harvested by carefully observing user’s

behavior within the Reddit interface and select the posts user saw

but decided to ignore. Such information is not available to us and

we approach this task as the one-class classification problem.

Often referred to as PU learning, this problem is solved by build-

ing a binary classifier from a training set consisted of positive 𝑃

and unlabeled𝑈 data. To create the𝑈 part of the dataset, we match

users with posts they did not comment to and create the feature

vector from such user–post pairs. A fairly naive interpretation of

the PU learning process is that unlabeled vectors that are similar

to true positives will be labeled as positive and unlabeled vectors

which are different from true positive will be labeled as negative. It

is out of the scope of this paper to discuss the multiple nuances of

PU learning. To build our training sets, we use an approach similar

to one proposed in [20].

Finally, with the training set ready, we build a classifier able to

predict if a given user–post pair will result in a user commenting

on a post. After comparing multiple classification algorithms and

parameter optimization, we decided to use Multi-layer Perceptron

classifier with 15 hidden layers, which yielded the highest AUC

score.

Table 1: To build the agent-based ML models, the training
set has been build by assembling user features, post features
and combined features.

User features Post features Combined features

𝑈0 . . . 𝑈𝑛 𝑃0 . . . 𝑃𝑚 𝐶0 . . . 𝐶𝑧 𝑦

𝑋0 𝑥𝛼
0,0

. . . 𝑥𝛼
0,𝑛

𝑥𝑟
0,0

. . . 𝑥𝑟
0,𝑚

𝑥𝑐
0,0

. . . 𝑥𝑐
0,𝑚

1

𝑋1 𝑥𝛼
1,0

. . . 𝑥𝛼
1,𝑛

𝑥𝑟
1,0

. . . 𝑥𝑟
1,𝑚

𝑥𝑐
1,0

. . . 𝑥𝑐
1,𝑚

1

.

.

.

𝑋𝑖 𝑥𝛼
𝑖,0

. . . 𝑥𝛼
𝑖,𝑛

𝑥𝑟
𝑖,0

. . . 𝑥𝑟
𝑖,𝑚

𝑥𝑐
𝑗,0

. . . 𝑥𝑐
𝑗,𝑚

0

𝑋𝑘 𝑥𝛼−,0 . . . 𝑥𝛼−,𝑛 𝑥𝑟−,0 . . . 𝑥𝑟−,𝑚 𝑥𝑐
𝑘,0

. . . 𝑥𝑐
𝑘,𝑚

0

We approach the comment→comment problem in a similar way.

The main difference is in the set of features used to predict the child

comment. For the post→comment problem we match user features

with the post features, while for the comment→comment problem
we match user features with the comment features. This way, we
allow the agents to apply the different models when deciding to

comment, depending on the resource they are commenting on.

Reddit features. For the post→comment problem the final fea-

ture vector 𝑋𝑘 consists of ≈ 200 features made from user features

𝑋𝛼
𝑖
, post features 𝑋𝑟

𝑗
and combined features 𝑋𝑐

𝑘
.

• User features 𝑋𝛼
𝑖

consist of preference features, sentiment
features and frequency features.
Preference features are multidimensional vectors which rep-

resent the user’s preference towards keywords, subreddits
and domains. The main idea behind building the preference

vectors is to quantify the user’s interests and leaning to-

wards certain topics. The preference vectors are built using

FastText word embedding technique [10]. First we train a

set of FastText models using the corpus from the relevant

content on Reddit. Then, we assign the embedded vectors

to each keyword, subreddit name and domain which appear

in the training data. During the simulation, there is a pos-

sibility of encountering the keywords or subreddit names

which do not exist in the training data. FastText can embed

words which were never seen before but appear in a similar

context or have a similar lexical features as the words from

the training corpus. For each user, the preference vector is

computed as the separate weighted averaged vector of all the

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

898

keywords, subreddits and domains they used. For example,

the keyword preference vector for the user 𝑖 is calculated

as 𝑃𝑘𝑖 =
∑𝑛

𝑗=1 𝑓𝑗𝐾𝑗 , where 𝐾𝑗 is an embedded vector of a

keyword 𝑗 used by the user, and 𝑓𝑗 is the number of instances

the keyword has been used. This way, we are able to identify

the direction of the user interests. The preference vectors

for the subreddits and domains are calculated in a similar

fashion.

Sentiment features quantify the two dimensions of user’s

writing on Reddit, namely polarity and subjectivity. We cal-

culate the means and the standard deviations of polarity and

subjectivity of all user’s posts and comments separately.

Frequency features quantify the user’s activity by measuring

the number of their posts, comments and subreddits together

with the additional temporal measures of user’s activity.

• Post features 𝑋𝑟
𝑗
, similarly to user features, consist of embed-

ded vectors of keywords, subreddits and domains related to

the post. Additionally, we use a single measure of sentiment

polarity and subjectivity extracted from the post content.

Furthermore, we include the info about the author of the

post.

• Combined features 𝑋𝑐
𝑘
are the cosine and euclidean distances

of user preference vectors and post-related embedded vec-

tors. This way we quantify the similarity between the given

post and user’s interests in the past.

For the comment→comment problem we use a similar approach.

Instead of the post features we calculate the similar set of comment
features and concatenate it together with the user features and

combined features. We ad an additional feature which represents

the position of a comment in a discussion tree.

Twitter Model For Twitter, we focus on modeling the ‘retweet’

action of a user. At any instance, a user has access to multitude of

tweets on the platform. In our simulation, we develop a classifi-

cation model for ‘retweet’ action tweet, user→retweet: whether a
tweet will be retweeted for a given (tweet,user) combination. This

model is applied to all tweets that an agent has access to whenever

it reaches the front of the event queue. The simulation selects one

of the tweets with highest probability according to the model and

creates a retweet event for this agent and tweet. The final model

used for the task was a ‘Word2Vec’ model combined with a ‘random

forest’ model.

Twitter Feature Engineering In order to build a predictive

retweet model, we need true indicative features from textual data

to help themodel learn. There are twomain types of retweet activity

by users on the platform- ‘normal retweet’ and ‘quoted retweet’. A

normal retweet is when a user retweets the original tweet without

any additions, while the quoted retweet has additions to the original

tweet. So a quoted retweet can give increased information of overlap

of the tweet with the user profile as compared to the normal tweet.

This understanding is important to decipher the learning of the

model. The feature space used for the model consists of 3 types of

features: user features, tweet features and combined features.

• User features: We create user profile in terms of their histori-

cal tweet activity on the platform. The intent is to model the

user’s persona on the platform based on their past activities.

There are 84 features describing a user. One set of features is

focused on user’s profile including user description, number

of followers, number of friends etc. The other set is focused

on the tweet activity of a user such as their average num-

ber of tweets per week, maximum number of user mentions

per tweet, average retweet period etc. We also exploit hash-

tags used by users to model their interest in multiple topics

floating on the platform in the form of tweets at any given

time. The user description field has an interesting potential

to define users’ interests at a broader level.

A retweet score is separately assigned to each of the connec-

tions of a user. Every tweet has an author and the authors’

retweet score for the user will be added to the final set of

features. This is to capture the hypothesis that a user is more

likely to retweet a tweet from one of their connections with

the highest retweet score.

• Tweet features: Tweets are described with features includ-

ing time of the day, day of the week, hashtags used, user

mentions, number of characters and several others.

• Combined features: User historical features are adjoined with
features of the entire set of tweets the user can take an action

on at a given time. ’Word2Vec’ model (𝑊) is used to find out

the similarity of the user’s profile with the tweet features.

It is trained on all hashtags of the corpus along with user

descriptions. A representing feature vector𝑉𝑘 is obtained for

all the hashtags. We create an average hashtag feature vector

for a user 𝐻𝑢𝑖 based on the most frequently used hashtags of

the user. The user description vector 𝐷𝑢𝑖 is created for each

user. 𝐻𝑢𝑖 and 𝐷𝑢𝑖 are then used to find similarity of the user

features with tweets. For each hashtag (𝑉𝑘) of each tweet(𝑡),

cosine similarity is calculated with the 𝐻𝑢𝑖 and 𝐷𝑢𝑖 .

Feature engineering equipped the data with multiple defining fea-

tures as mentioned above. For the current model, we use hashtags

as major input for Word2Vec features for both normal retweet and

quoted retweet. The model is then trained with the given data of

feature set, retweet labels. A separate development set is used to

tune parameters to eventually obtain a model accuracy of 92% on

the test data.

3.3 GitHub Inverse Tree (ITree) model
Consider the following task: given a user 𝑢𝑖 and the repository

𝑟 𝑗 , predict the number of actions 𝑦𝑖, 𝑗 the user 𝑢𝑖 will perform on

a repository 𝑟 𝑗 . This translates to a typical regression problem

and could be approached in multiple ways. However, in GitHub

the target repository is often uncertain while the rate of user’s

actions is typically already known, since the users activity rate

varies slowly, and it is easily predicted just by observing the rates

in the past. The active users remain active and the new users usually

start with a slow rate of actions. Thus we solve the inverse problem:

given a user 𝑢𝑖 and the number of actions 𝑦𝑖 , predict the repository

𝑟𝑖 that user will most likely perform an action on. To predict the

repository, we build a model that narrows down our choice to the

set of repositories that share the same set of features.

For the given vectors of input and target variables, the regression

tree finds a mapping from the input variables to a finite number

of groups of output variables such that the average within group

squared error of the target variables is minimized. The IT traverses

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

899

the trained regression tree backwards and for a given target variable

and set of known features, extracts the boundaries of the unknown

features. A regression model relates 𝑦 to a function of 𝑋 , so that

𝑦 ≈ 𝑓 (𝑋). In our case, 𝑋 = 𝑋𝑢 ∥ 𝑋𝑟 ∥ 𝑋𝑐
, and we need to solve

𝑋𝑟 = 𝑓 (𝑦,𝑋𝑢 , 𝑋𝑐).
The problem of predicting the set of target variables resembles

the problem known as a multi-output regression [5, 11], known

also as the multi-target [1, 2] or multi-response regression [21].

Multi-output regression models are built to simultaneously predict

multiple real-valued target variables. The result is usually a vector

of values. However, instead of predicting a single vector, the ITree

algorithm outputs two vectors: the first one 𝐿𝑖 with lower bounds

and the second one𝑈𝑖 with upper bounds for each feature we want

to predict. Finally the output is processed as a set of tuples where

𝑌𝑖 = {(𝑙1, 𝑢1), . . . , (𝑙𝑚, 𝑢𝑚)}.
The ITree model works in the opposite direction compared to the

“traditional” regression tree model. First, we build a training data

set 𝐷 of 𝑁 instances such that each instance is characterized by

an input vector of𝑚 real variables 𝑋𝑘 = (𝑥1
𝑘
, . . . , 𝑥𝑚

𝑘
) and a single

target variable 𝑦𝑘 . The input vectors are built by concatenating the

user features 𝑋𝑢
𝑖
, repository features 𝑋𝑟

𝑗
and combined features

𝑋𝑐
𝑘
so that 𝑋𝑘 = 𝑋𝑢

𝑖
∥ 𝑋𝑟

𝑗
∥ 𝑋𝑐

𝑘
. Then, we build a regression tree

able to predict the number of user–repository actions, which is

the target variable 𝑦. During the simulation, we do not predict

𝑦, as it is already estimated based on the previous user’s activity.

However, we use the target variable𝑦𝑖 togetherwith known features

𝑋𝑢
𝑖
and 𝑋𝑐

𝑘
and back-traverse the previously trained regression

tree. By traversing the regression tree backwards, we extract the

boundaries of unknown features 𝑋𝑟
𝑗
which describe the repository.

Based on the lower and upper feature bounds, we select the set of

repositories to choose from. The initial version of the model picks

a single repository 𝑟 𝑗 from the set of chosen repositories uniformly

at random and assigns the 𝑦𝑖 actions from a user 𝑢𝑖 to a repository

𝑟 𝑗 . For instance, assume it is known that user 𝑢𝑖 will make 𝑧 push
actions. The ITree model will first calculate the feature boundaries

of the repositories the user is most likely to push. This way we

narrow down our selection to multiple repositories as the potential

targets. Then, ITree model randomly chose 𝑧 repositories from the

narrow selection and simulates the push action of user 𝑢𝑖 to chosen

repositories.

3.4 Dual queue event scheduling and burstiness
The framework has two queues: one for scheduling agents own ac-

tivation time (self-activation) and one for external signal or triggers.

Events that are scheduled in the main event queue are executed

as a discrete event schedule. Events from external signal queue

represent triggers that activate events on the main queue. In this

paper external queue was used for burst events. Use of the external

signal queue is optional because agents can schedule their next

events on the main queue using self-activation rate.

In this paper we discuss only one type of external triggers - burst

events. In our experiments we observed that using only agent self-

activation rate does not simulate burstiness of events well. For this

reason we used the external signal queue to trigger bursts of events.

Bursts were measured in training data. Sequence of bursts observed

in training data was sampled replayed in simulation. Each burst

event was scheduled in the external signal queue. When a burst

event is handled by the simulation controller, it creates multiple

events associated with this burst and schedules them in the main

queue. Size and length of each burst as well as participating users

were sampled from bursts observed in training data. Kleinberg’s

algorithm [17] was used to detect bursts.

3.5 Horizon and limited visibility models
Limited visibility models determine what active discussions and

events are visible to agents to react to. Formally we define the

agent’s horizon at a time step as all resources that are visible to

an agent at the step. Depending on the platform it may be a list of

repositories for GitHub, tweets and retweets for Twitter, posts and

comments for Reddit that are visible to an agent. In our experiments

we used resource age (time between when it was posted and when

is viewed) to determine if it should be visible to an agent.

Resources from different platforms have different life spans. For

GitHub we used all repositories observed during the training period

(2-6 weeks of training data) and kept them during the test period

(6 weeks). Twitter, Reddit and Telegram are more fast-paced social

platforms. For example, the majority of Twitter discussions have a

life span of 2 days.

We used the following algorithm to determine visible resources

for each agent. Each information cascade (resource tree) stays visi-

ble 𝑥 number of days where 𝑥 is minimum between a fixed threshold

(2 days) and estimated lifespan of the information cascade. Lifespan

of the information cascade is estimated using training data. It is

done as follows. When new information cascade is created (agent

creates a root resource, e.g. original tweet), its metadata (e.g. fea-

tures) is sampled from training data. These features include lifespan,

which becomes an estimation for a lifespan of a new cascade.

4 RESULTS
4.1 Experiments and models
Our simulation produces a sequence of events that represent users’

activity on Reddit, Twitter, and GitHub. The resulting sequence

of events is then compared to the ground truth according to a set

of metrics described below. The ground truth is the sequence of

events recorded from the actual social networks for the simulated

period, as illustrated in Fig 1. In this paper we discuss the following

model configurations:

• Random null model - this does not use the simulation frame-

work but instead replays the training data in the test time

period, randomly shuffling the order of events.

• Base model - a model where each step in agent’s decision

workflow is executed using simple probabilistic model. Prob-

ability of each decision is based on frequency of that decision

in the training data. For example, steps such as selecting ac-

tion type or selecting a resource are separately determined

using this approach.

• ML model (Twitter and Reddit) - an extension of the base

model where for Reddit and Twitter platforms we use the

ML model to determine how cascades grow (what tweets are

retweeted and what posts are commented on). This is step 5

in Figure 2.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

900

• Bursts model - an extension of the base model where in

additions to self-activation agents are activated by burst

events using the external signal queue as described in sec-

tion 3.4. The approach samples from a set of bursts detected

in the training data using Kleinberg’s algorithm [17]. For

each burst, we sample from a subset of agents that are acti-

vated during a very short period of time (within 30 minutes)

after the burst.

• Combined model - a combination of the Bursts and ML mod-

els from above.

• ITree for GitHub model - an extension of the base model

where GitHub agents use ITree models to determine action

type and resource (step 3 in Figure 2)

TheMLmodel, Burstsmodel, Combinedmodel and ITree for GitHub

model are all built on top of the base model. The ML and ITree

models augment the agent’s decision flow, and the Bursts model

adds bursts in the event queue.

4.2 Evaluation metrics
In order to capture information spread across platforms we track in-
formation units, which are keywords, hashtags or associated URLs,

depending on the platform. These are typically gathered from meta-

data, and one action or resource may be associated with multiple

information units. In order to evaluate the predicted information

spread across platforms, we measure the number of shares (e.g.

number of retweets in Twitter, or comments in Reddit), the size of

the audience (the number of unique users who shared), the speed

of information spread, and its lifetime.

For model performance evaluation we use the following metrics:

• Temporal correlation of shares (audience sizes) - the Pear-

son correlation between the number of shares (audience

sizes) time series is computed between all pairs of platforms.

This distribution is computed for both simulation and the

ground truth. Then the Kolmogorov-Smirnov test and Jensen-

Shannon divergence are computed to measure similarity.

• Time delta - determines the number of hours it takes for

a piece of information to appear on another platform. The

Kolmogorov-Smirnov test and Jensen-Shannon divergence

are computed to measure similarity.

• Correlation of shares (audiences) - the Pearson correlation

between the activity (audience size) time series between all

pairs of platforms. Measured as 𝑅𝑀𝑆𝐸.

• Correlation of lifetimes - the Pearson correlation of the av-

erage lifetime for each platform, then correlation between

simulation and the ground truth is computed. Measured as

𝑅𝑀𝑆𝐸.

• Correlation of speeds - the Pearson correlation between

speeds of information across platforms for each information

unit, then correlation between simulation and the ground

truth is measured. Measured as 𝑅𝑀𝑆𝐸.

For burst measurements we use Kleinberg’s algorithm [17] to de-

tect bursts on all platforms (population level measurement). Each

metric related to bursts is computed as the 𝑅𝑀𝑆𝐸 of the correlation

between simulation and the ground truth. Figure 4 shows 𝑅𝑀𝑆𝐸 of

correlation of the following distributions:

• Distribution of the number of bursts

0.0 0.2 0.4 0.6

Audience (js)

Audience (ks)

Share (js)

Share (ks)

Time delta (js)

Time delta (ks)

Cross-platform communities (JS and KS)

Random Null model

Base model

ML+Bursts model

Bursts model

ML model

GitHub ITree

10−2 10−1 100

Burst
lifetime

New users
per burst

Avg. users
per burst

Avg. burst
size

Number of
bursts

Bursts metrics (RMSE)

Figure 4: Cross-platform community and burst metrics. Our
models outperform the base model in the majority of met-
rics.

0.00 0.25 0.50 0.75

Share
(js)

Share
(ks)

Audience
(js)

Audience
(ks)

Bounded metrics (KS and JS)

Random Null model

Base model

ML+Bursts model

Bursts model

ML model

GitHub ITree

0 5 10

Audiences

Lifetimes

Shares

Speeds

Unbounded metrics (RMSE)

Figure 5: Cross-platform population metrics. Our models
outperform both the base model and the random model in
the majority of metrics.

• Distribution of the average burst size

• Distribution of the average number of users per burst

• Distribution of the number of new users per burst

• Distribution of bursts lifetime

In this paper we present measurements for two scales: population

level and community level. Community is a subset of users grouped

by a certain criteria (e.g. active on the same sub-reddit, use the same

repositories or use similar information units, etc.). We identified

several dozens of communities. Community level metrics were

computed separately for each community and average is shown

in Figure 4. Results for population level metrics (burst and cross-

platform) are shown in Figure 5. Higher value are better in Figure 4

and 5 as we show 1/𝑅𝑀𝑆𝐸.
We discuss these results in greater detail in below in Section 6.

5 RELATEDWORK
There were several approaches proposed to study structure and

user behavior on social media networks. In [4] authors explore

various models to simulate a static structure of the social networks

enabled by social media. The authors introduced several metrics for

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

901

network characterization generated by several agent-based simula-

tions. Similar metrics were used in the DARPA SocialSim Challenge.

Models discussed there focus on a static structure of the network

and often limited to simulation of one social platform.

In recent years there has been evolving interest in studying cross-

platform information spread (e.g. [13, 15, 18]). For example, in [18]

authors studied a cross-platform spillover effects of viral videos.

They found that when a video content appears on a lag platform it

doubles its subsequent view growth on the original platform.

Simulation of information spread across-multiple platforms on

the scale of tens of thousands and hundreds of thousands of agents

can be computationally intensive. Previous work on scalability of

agent-based simulation frameworks was done in [7, 8].

Applications of machine learning methods were also widely

discussed for link prediction in social networks. There has been an

extensive research done in the area of network embedding and it’s

application in link prediction [14, 16, 19, 22]. Wang et al [23] shows

a link prediction problem as a two class discrimination problem

and used machine learning approaches to learn prediction models.

Link prediction is often used for recommending links on social

networks [3].

Content-based link prediction methods have been developed

and gained popularity among researchers. The large set of those

models focus on predicting the activity in social networks based on

combination of numerous content and user features [12, 25] Link-

prediction and information spread prediction on social networks is

often challenging because available training data can only provide

positive feedback. Authors in [24] use retweet networks to address

this problem (retweet network was used to reconstruct negative

feedback).

6 CONCLUSION AND DISCUSSION
In this paper we present several agent-base simulation models that

utilize machine learning in the agent’s decision workflow. We also

introduce a dual queue technique for discrete event scheduling

that allows incorporating external event signals such as bursts. Our

experiments on cross-platform information spread show that ma-

chine learning methods can be successfully used in multi-platform

agent-based simulations, and they improve performance metrics

compared to simple probabilistic models (base model and random

null model).

In our experiments, all models perform significantly better in

terms of the temporal correlation of cross-platform information

spread than the random null model (see Figure 4 and Figure 5.). In

fact, the random null model scores zeros across all community level

metrics.

Both ML models and ITree model score on average 23% higher

in Jensen-Shannon divergence of the temporal correlation of audi-

ences. The results are similar for population and community level

measurements, showing that the Reddit and Twitter ML models

help agents to make a better (relative to base model) decisions about

what tweets and posts should be retweeted. Also the GitHub ITree

model helps make better decisions about which repositories agents

interact with.

All models presented in the paper are data-driven, which allows

us to build large-scale high-fidelity simulations. The results also

suggest that predicting bursts of events is hard without external

signals. Reproducing bursts using burst samples taken from training

data can improve temporal metrics.

The base model and random null model perform relatively well

in burst metrics. In most burst metrics the bursts model does not

perform well compared to all other models. This suggest that re-

playing sequence of bursts from the initial conditions data-set does

not improve the metrics that measure burst properties and distri-

butions. However, the combined model (ML + Bursts) scores the

best across almost all population level cross-platform information

spread metrics while the bursts model and ML model separately

come second and third respectively in these metrics. This can be

explained by the fact that explicit modeling of bursts (bursts model)

affects all time-sensitive metrics. Introducing bursts alone did not

improve the burstiness metrics but improved temporal correlations

of content shares and audience sizes.

The results presented in this paper lay ground for the future

research and extensions of the proposed models. This includes

incorporating external signals that drive activation of the agents.

It can potentially improve prediction of event bursts (reaction of

a subset of agents on external signal). Machine learning methods

can also be applied to other aspects of agent’s decision workflow.

For example, when agents generate new information cascades they

have to choose information units. This choice can also be learned

from observational data.

Finally, there are multiple ways how event visibility horizon can

be implemented. In this paper we used a naive approach with an

estimation of the resource life span (which determines how long it

will stay within the horizon). What rules define visible events can

affect agents decisions. The visibility horizon model can be also

used as a tool for modeling social network users’ cognitive load

and limitations.

7 ACKNOWLEDGEMENTS
The authors are grateful to the Defense Advanced Research Projects

Agency (DARPA), contract W911NF-17-C-0094, for their support.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

902

REFERENCES
[1] Timo Aho, Bernard Ženko, Sašo Džeroski, and Tapio Elomaa. 2012. Multi-Target

Regression with Rule Ensembles. Journal of Machine Learning Research 13, Aug

(2012), 2367–2407.

[2] Annalisa Appice and Saso Džeroski. 2007. Stepwise Induction of Multi-target

Model Trees. InMachine Learning: ECML 2007. Springer Berlin Heidelberg, Berlin,
Heidelberg, 502–509. https://doi.org/10.1007/978-3-540-74958-5_46

[3] Lars Backstrom and Jure Leskovec. 2011. Supervised Random Walks: Predicting

and Recommending Links in Social Networks. In Proceedings of the Fourth ACM
International Conference on Web Search and Data Mining (WSDM ’11). ACM, New

York, NY, USA, 635–644. https://doi.org/10.1145/1935826.1935914

[4] Federico Bergenti, Enrico Franchi, and Agostino Poggi. 2011. Selected models for

agent-based simulation of social networks. In 3rd Symposium on Social Networks
and Multiagent Systems (SNAMAS 2011). 27–32.

[5] Hendrik Blockeel, Luc De Raedt, and Jan Ramon. 2000. Top-down induction of

clustering trees. (nov 2000). arXiv:cs/0011032

[6] Jim Blythe. 2012. A dual-process cognitive model for testing resilient control

systems. In 2012 5th International Symposium on Resilient Control Systems. IEEE,
8–12. https://doi.org/10.1109/ISRCS.2012.6309285

[7] James Blythe, Emilio Ferrara, Di Huang, Kristina Lerman, Goran Muric, Anna

Sapienza, Alexey Tregubov, Diogo Pacheco, John Bollenbacher, Alessandro Flam-

mini, et al. 2019. The DARPA SocialSim Challenge: Massive Multi-Agent Simula-

tions of the Github Ecosystem. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems. International Foundation for

Autonomous Agents and Multiagent Systems, 1835–1837.

[8] J. Blythe and A. Tregubov. 2018. FARM: Architecture for Distributed Agent-Based

Social Simulations. InMassively Multi-Agent Systems II, Donghui Lin, Toru Ishida,

Franco Zambonelli, and Itsuki Noda (Eds.). Springer International Publishing,

96–107.

[9] Jim Blythe and Alexey Tregubov. 2019. FARM: Architecture for Distributed

Agent-Based Social Simulations. Springer, Cham, 96–107. https://doi.org/10.

1007/978-3-030-20937-7_7

[10] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016.

Enriching Word Vectors with Subword Information. (jul 2016). arXiv:1607.04606

[11] Hanen Borchani, Gherardo Varando, Concha Bielza, and Pedro Larrañaga. 2015.

A survey on multi-output regression. WIREs Data Mining Knowl Discov 5 (2015),

216–233. https://doi.org/10.1002/widm.1157

[12] Ethem F. Can, Hüseyin Oktay, and R. Manmatha. 2013. Predicting retweet count

using visual cues. In Proceedings of the 22nd ACM international conference on
Conference on information & knowledge management - CIKM ’13. ACM Press, New

York, New York, USA, 1481–1484. https://doi.org/10.1145/2505515.2507824

[13] Joseph D O’Brien, Ioannis K Dassios, and James P Gleeson. 2019. Spreading of

memes on multiplex networks. New Journal of Physics 21, 2 (2019), 025001.

[14] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications,

and performance: A survey. Knowledge-Based Systems (2018). https://doi.org/10.
1016/j.knosys.2018.03.022 arXiv:1705.02801

[15] Anna-Katharina Jung, Milad Mirbabaie, BjÃrn Ross, Stefan Stieglitz, Christoph

Neuberger, and Sanja Kapidzic. 2018. Information Diffusion between Twitter and

Online Media. (2018).

[16] Seyed Mehran Kazemi and David Poole. 2018. Simple embedding for link predic-

tion in knowledge graphs. In Advances in Neural Information Processing Systems,
Vol. 2018-December. Neural information processing systems foundation, 4284–

4295. arXiv:1802.04868

[17] Jon Kleinberg. 2003. Bursty and hierarchical structure in streams. Data Mining
and Knowledge Discovery 7, 4 (2003), 373–397.

[18] Haris Krijestorac, Rajiv Garg, and Vijay Mahajan. 2019. Cross-Platform Spillover

Effects in Consumption of Viral Content: A Quasi-Experimental Analysis Using

Synthetic Controls. Available at SSRN 3011533 (2019).
[19] L. L. Linyuan and Tao Zhou. 2011. Link prediction in complex networks: A

survey. (mar 2011), 1150–1170 pages. https://doi.org/10.1016/j.physa.2010.11.027

arXiv:1010.0725

[20] F. Mordelet and J.-P. Vert. 2014. A bagging SVM to learn from positive and

unlabeled examples. Pattern Recognition Letters 37 (feb 2014), 201–209. https:

//doi.org/10.1016/J.PATREC.2013.06.010

[21] Timo Similä and Jarkko Tikka. 2007. Input selection and shrinkage in multire-

sponse linear regression. Computational Statistics & Data Analysis 52 (2007),

406–422.

[22] Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.

2015. LINE: Large-scale information network embedding. InWWW 2015 - Pro-
ceedings of the 24th International Conference on World Wide Web. Association for

Computing Machinery, Inc, 1067–1077. https://doi.org/10.1145/2736277.2741093

arXiv:1503.03578

[23] Peng Wang, BaoWen Xu, YuRong Wu, and XiaoYu Zhou. 2015. Link prediction

in social networks: the state-of-the-art. Science China Information Sciences 58, 1
(01 Jan 2015), 1–38. https://doi.org/10.1007/s11432-014-5237-y

[24] Tauhid R Zaman, Ralf Herbrich, Jurgen Van Gael, and David Stern. 2010. Predict-

ing information spreading in twitter. In Workshop on computational social science
and the wisdom of crowds, nips, Vol. 104. Citeseer, 17599–601.

[25] Qi Zhang, Yeyun Gong, Jindou Wu, Haoran Huang, and Xuanjing Huang. 2016.

Retweet Prediction with Attention-based Deep Neural Network. In Proceed-
ings of the 25th ACM International on Conference on Information and Knowl-
edge Management - CIKM ’16. ACM Press, New York, New York, USA, 75–84.

https://doi.org/10.1145/2983323.2983809

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

903

https://doi.org/10.1007/978-3-540-74958-5_46
https://doi.org/10.1145/1935826.1935914
http://arxiv.org/abs/cs/0011032
https://doi.org/10.1109/ISRCS.2012.6309285
https://doi.org/10.1007/978-3-030-20937-7_7
https://doi.org/10.1007/978-3-030-20937-7_7
http://arxiv.org/abs/1607.04606
https://doi.org/10.1002/widm.1157
https://doi.org/10.1145/2505515.2507824
https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1016/j.knosys.2018.03.022
http://arxiv.org/abs/1705.02801
http://arxiv.org/abs/1802.04868
https://doi.org/10.1016/j.physa.2010.11.027
http://arxiv.org/abs/1010.0725
https://doi.org/10.1016/J.PATREC.2013.06.010
https://doi.org/10.1016/J.PATREC.2013.06.010
https://doi.org/10.1145/2736277.2741093
http://arxiv.org/abs/1503.03578
https://doi.org/10.1007/s11432-014-5237-y
https://doi.org/10.1145/2983323.2983809

	Abstract
	1 Introduction
	2 Challenge problem description
	3 Agent framework and models
	3.1 ML ready agents and simulation components
	3.2 Twitter and Reddit ML models
	3.3 GitHub Inverse Tree (ITree) model
	3.4 Dual queue event scheduling and burstiness
	3.5 Horizon and limited visibility models

	4 Results
	4.1 Experiments and models
	4.2 Evaluation metrics

	5 Related work
	6 Conclusion and Discussion
	7 Acknowledgements
	References

