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ABSTRACT
Reinforcement learning (RL), like any on-line learning method, in-
evitably faces the exploration-exploitation dilemma. When a learn-
ing algorithm requires as few data samples as possible, it is called
sample efficient. The design of sample-efficient algorithms is an
important area of research. Interestingly, all currently known prov-
ably efficient model-free RL algorithms utilize the same well-known
principle of optimism in the face of uncertainty. We unite these
existing algorithms into a single general model-free optimistic RL
framework. We show how this facilitates the design of new op-
timistic model-free RL algorithms by simplifying the analysis of
their efficiency. Finally, we propose one such new algorithm and
demonstrate its performance in an experimental study.
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1 INTRODUCTION
Reinforcement learning (RL) [24] is a popular framework for se-
quential decision-making problems in an unknown environment,
applicable to a wide range of problems. In general, RL methods
fall into two categories: model-based and model-free. Model-based
approaches build an approximate model of the environment and
use it to reason about optimality of actions. Model-free approaches,
in contrast, estimate optimality of actions directly. To find the best
possible course of actions, RL requires many repeated trials, which
is effective but costly. Therefore, one of the important challenges in
RL is the design of sample-efficient algorithms, that is, algorithms
utilizing as much information from each interaction as possible.
Sample efficiency of model-based RL has been studied extensively,
and several methods were proven to be sample efficient [4, 15].

Even though most RL breakthroughs—from seminal Q-learning
[27] to state-of-the-art deep Q-networks [11, 17]—are of the model-
free paradigm, theory on sample efficiency of model-free RL re-
mains limited. Only recently some dispersed results have appeared
for a few model-free methods. For proper understanding of the
potential of model-free RL, and thus of the design of optimal RL
algorithms, we need to better understand the relation between the
efficiency of these methods and various components of their design.
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The first provably efficient model-free RL algorithm was in-
troduced by Jin et al. [14]. It is called upper confidence bound Q-
learning and comes in two forms: with Hoeffding-style bonus (UCB-
H), and with Bernstein-style bonus (UCB-B). Its conception sparked
interest in sample complexity of model-free RL; as a result, several
similar methods have been proposed, namely, infinite-horizon UCB
(∞-UCB) Q-learning [26], optimistic pessimistically-initialized Q-
learning (OPIQ) [21], and UCB2-based methods in the context of
problems with limited adaptivity [5]. All of these methods attribute
their success to the use of the same learning rate [14].

Another factor that allows these (both model-based and model-
free) algorithms to achieve sample efficiency is their use of optimism
in the face of uncertainty [25], which postulates that a learning agent
should assume that its actions lead to the best realistically possi-
ble outcomes. In practice, this principle is implemented in two
ways: optimistic initialization—unencountered state-action pairs
are assumed to have the best outcomes [24, Chapter 2.6], and action
selection based on UCBs—each previously encountered state-action
pair is assumed to yield a reward that is as good as is statistically
plausible [24, Chapter 2.7]. While there exist other techniques to im-
prove the efficiency of learning, such as variance reduction methods
[8], posterior sampling [2, 19], or use of randomized value functions
[18], this research aims to better understand the effect of optimism.

The main contribution of this work is a generalized theory on
optimistic Q-learning which unifies the existing algorithms. In the
context of model-based methods, there already exists a generaliza-
tion known as optimistic initial model (OIM) [25]. Instead, we focus
on model-free methods because they have better space complexity
and can be adapted to deep learning, which is arguably the most
promising direction of future work, while being provably efficient.

We also perform a generalized theoretical analysis of sample
efficiency. In order to establish efficiency of an algorithm, two
related techniques are used. Some authors provide PAC-bounds
on the time required to achieve near-optimal performance [15, 22,
23, 26]. We employ another approach and establish efficiency by
showing that the regret of the algorithm—the total loss of reward
incurred while learning—grows sub-linearly with respect to the
number of interactions [5, 14, 21]. The two approaches are similar;
in fact, it is known that one implies the other, and vice versa [14, 19].

To summarize, in this work, we study the effects of optimism on
the regret of model-free RL algorithms. We start with examining
the existing sample-efficient Q-learning methods and identifying
their common features. Then we propose a generalized model of
optimistic Q-learning, which encompasses these methods. Next, we
perform a theoretical regret analysis and derive a regret bound for
the generalized model, which allows us to identify the sources of
regret. We show how these general results can be used to facilitate
the design of new optimistic model-free algorithms by proposing
one such algorithm, and evaluate its performance experimentally.
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2 BACKGROUND
This section introduces the underlying model and our notation.

2.1 Non-Stationary Markov Decision Processes
We use episodic non-stationary Markov decision process (NS-MDP)
as an underlying model because the total regret is a well-defined
value in episodic learning [26] but is not as clearly defined in
other settings. An episodic NS-MDP is defined as a tuple M ≜
⟨S,A,Ah ,ph , rh ,γ ,H ,K⟩. In this setting, the agent interacts with
the environment for K episodes, each consisting of H time steps
for the total number of T ≜ HK interactions. We denote the sets
of all episodes and steps of each episode as K ≜ {1, . . . ,K} and
H ≜ {1, . . . ,H }. At each time step h, an agent observes the state of
the environment sh ∈ S and chooses one of the available actions
ah ∈ Ah (sh ) ⊆ A. The environment transitions to a new state sh+1
with probability ph (sh+1 |xh ); the agent observes this transition and
receives a reward rh (xh ). We use xh ≜ (sh ,ah ) for state-action
pairs and Xh ≜ S × Ah for the set of all state-action pairs that can
be encountered in time step h. We denote the space of all possible
state-action pairs as X ≜

⋃
h∈H Xh ⊆ S×A, and its size as X ≤ SA.

Possible courses of actions are known as policies π ≜ {πh }h∈H,
where πh : S→ A maps states to admissible actions πh (s) ∈ Ah (s).
Given the state s at time step h, each policy has a value V π

h (s) that
can be found using the Bellman policy equations:

V π
h (s) = Qπ

h
(
s,πh (s)

)
, V π

H+1(s) = 0, (1)
Qπ
h (x) = [rh + γPhV π

h+1](x),
[Ph f ](x) ≜

∑
s ′∈Sph (s ′ |x)f (s ′) ∀f : S→ R. (2)

The agent needs to learn an optimal policy, that is, a policy π⋆ with
the highest possible values V π⋆

h (s) = V⋆
h (s) ≜ maxπ V π

h (s). The
optimal values V⋆

h (s) satisfy the Bellman optimality equations

V⋆
h (s) = [MhQ

⋆
h ](s), V⋆

H+1(s) = 0, (3)
Q⋆
h (x) = [rh + γPhV⋆

h+1](x), (4)
where [Mhд](s) ≜ max

a∈Ah (s)
д(s,a) ∀д : Xh → R.

In each episode k , the agent follows some policy πk . The (expected)
total regret R of such agent in an episodic NS-MDP M is defined as

R ≜
∑K
k=1R

k =
∑K
k=1

(
V⋆

1 (sk1 ) −V π k
1 (sk1 )

)
.

Finally, in this paper we assume that the rewards and values
are bounded, but the bounds may vary between steps, that is,
rh (x) ∈ [r−h , r+h ] and V π

h (x) ∈ [V −h ,V +h ] for all x ∈ X and π . For
simplicity, we use deterministic rewards; however, our results can
be extended to randomized rewards. We denote the reward bounds
of the whole episode as r±(H ), that is, r−(H ) ≤ minh∈H r−h and
r+(H ) ≥ maxh∈H r−h . We denote the reward span of a step as
r △h ≜ r+h − r−h , and of an episode as r △(H ) ≜ r+(H ) − r−(H ). We
define the value bounds V ±(H ) and spans V △h and V △(H ) similarly.

2.2 Reinforcement Learning
In RL the transition and reward functions of an MDP are not known,
so the Bellman equation (4) cannot be applied directly. Instead,
the optimal Q-values are learned through interactions with the
environment. The initial Q-valuesQ0

h (x) are chosen arbitrarily, and

at each episode k + 1 they are gradually updated from the previous
Q-values Qk

h (x). In Q-learning [27], the update rule is:

Qk+1
h (x) =

{(
1 − αt

)
Qk
h (x) + αtU k

h (x , sh+1) if x = xk+1
h ,

Qk
h (x) otherwise,

(5)

where U k
h (x , s) ≜ rh (x) + γ [Mh+1Q

k
h+1](s) is the update. To eas-

ier relate these values to the optimal Q-values Q⋆
h (x), we use the

empirical transition operator P̂kh for each k ∈ K and h ∈ H:
[P̂kh f ](x) ≜ f (skh+1) if h < H , and [P̂kH f ](x) ≜ 0. (6)

Using this operator, the update term can be written similarly to the
Bellman equations (3) and (4):

U k
h (x , skh+1) ≜ [rh +γ P̂khV k

h+1](x) with V k
h (skh ) ≜ [MhQ

k
h ](skh ).

The function αt is called the learning rate. We use t as a short-
hand for the visitation function #kh (x), which gives the number of
times the state-action pair x has been visited in time step h of the
first k episodes. The learning rate is used to balance the newly ac-
quired informationU k

h (x , s) with the old experiencesQk
h (x). For an

appropriate choice of the learning rate, the sequence {Qk
h (x)}∞k=1

converges to Q⋆
h (x) w.p. one, if the state-action space X is finite

|X| < ∞ and the rewards function r is bounded [13]. In particular,
the conditions on the learning rate are:∑∞

t=1αt (x) = ∞ and
∑∞
t=1α

2
t (x) < ∞ for all x ∈ X. (7)

The first condition ensures that the updates remain large enough to
affect Q-values, while the second condition guarantees that the vari-
ance of the resulting iterative stochastic process remains bounded
(i.e., that it converges).

Using the notation of [14], we introduce the following values,
which we call the cumulative learning rates:

α0
t =

∏t
j=1(1 − α j ), and α it = αi

∏t
j=i+1(1 − α j ). (8)

For t = 0, we define α0
t ≜ 1 and

∑t
i=1 α

i
t ≜ 0. If a state-action

pair x = (s,a) was previously visited in time step h of episodes
k1, . . . ,kt < k , then by the update equation (5) on ki we can write

Qk
h (x) = α0

tQ
0
h (x) +

∑t
i=1α

i
tU

ki
h (x , s

ki
h+1). (9)

3 OPTIMISM IN Q-LEARNING
This section presents our main contribution. We start with an
overview of optimism in model-free RL methods. Then we pro-
pose a generalized framework of optimistic RL. Next, we formulate
the conditions under which the total regret of optimistic Q-learning
can be bounded and present an intuitive interpretation of the bound.

3.1 Representation of Optimism
As briefly mentioned in Section 1, the principle of optimism in
the face of uncertainty is usually applied in two ways: optimistic
initialization, and use of UCBs in action selection. We looked at
UCB-H [14], UCB-B [14],∞-UCB [26], and OPIQ [21] to see how
they incorporate these two aspects of optimism.

For initialization, all of the methods use Q0
h (x) = V +(H ) = V +

except for OPIQ. The latter uses Q0
h (x) = V −, but additionally

augments Q-values with a bonus for optimismυ(t), depending on the
visitation counter t . These augmented Q-values Q̄h (x) ≜ Qh (x)+υ(t)
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overestimate the true Q-values (i.e., they are optimistic) and are
used for action selection. The particular choice of this bonus is
υ(t) = C/(t + 1)M , where C ≥ V △ and M is a sufficiently large
number. It ensures that the augmented Q-values Q̄0

h (x) of unvisited
state-action pairs are optimistic:

Q̄0
h (x) = Q0

h (x) + υ(t) ≥ V − +V △/1M = V +.
If t > 0, however, the bonus for optimism becomes close to zero as
limM→∞C/(t+1)M = 0 and the effect of the augmentation vanishes
fast. This bonus for optimism is motivated by deep learning models,
where it is hard to ensure optimistic initialization, but an addition
of an extra summand is easier to implement [21]. As deep learning
represents an interesting area of study, we choose to keep the bonus
for optimism in our model and allow arbitrary initialization. We
allow this bonus for optimism υh (t) to differ with time step h, and
therefore define the augmented Q-values and augmented values as

Q̄h (x) ≜ Qh (x) + υh (t), V̄h (s) ≜ min
{
V +h , [MhQ̄h ](s)

}
. (10)

For exploration, all of the models store UCBQ-values and explore
greedily based on them. Compared to regular Q-learning, these Q-
values include an additional confidence bonus b(t) in their updates
U k
h (x , s) ≜ rh (x)+γ [Mh+1Q

k
h+1](s)+b(t). The goal of this bonus is

to ensure that the learned Q-valuesQk
h (x) are the UCB-estimates of

the optimal Q-values Q⋆
h (x). The exact form of the bonus depends

onwhich concentration inequalities are used in themethod’s design.
These concentration inequalities provide probabilistic bounds on
the total regret, and the bonuses are carefully crafted to ensure that
the resulting bounds hold with high probability 1 − δ . Instead of
designing bonuses to guarantee the probability that regret bound
holds, we do the reverse, that is, we allow arbitrary bonuses bh (t),
and see how they affect the probability δ .

Additionally, we introduce a cumulative confidence bonus βh (t):
βh (t) ≜

∑t
i=1α

i
tbh (i).

We choose the cumulative bonus form as it simplifies presentation
of the theoretical results. For example, it allows us to define the
total cumulative bonus

ϑh (t) ≜ βh (t) + υh (t),
which represents all of the optimistic bias of an algorithm and
which plays an important role in our analysis.

Summarizing the aforementioned, a generalization of the UCB-
based methods should include two kind of bonuses: a bonus for
optimism υh (t) and a confidence bonus bh (t) (or its cumulative
form βh (t)), and use the augmented Q-values Q̄h (x).

3.2 Generalized Optimistic Q-Learning
Following the discussion of Section 3.1, the existing sample-efficient
optimistic Q-learning methods differ with respect to three hyper-
parameters: initial Q-values Q0

h , bonus for optimism υh (t), and
cumulative confidence bonus βh (t). We unify these methods into a
single algorithm, which we name Generalized optimistic Q-learning.
It is presented in Algorithm 1. Table 1 summarizes how the existing
methods fit into the generalized optimistic Q-learning framework.

Algorithm 1 has two extra hyperparameters, a learning rate αt
and an exploration rate ϵ . It is shown in [14] that the learning rate
αt = (H+1)/(H+t) offers significant improvements in performance

compared to previously considered rates αt = t−1 and t−ω , where
0.5 < ω ≤ 1 is a constant. Therefore, it is possible that other
learning rates may offer similar, or even better improvements.

We want generalized optimistic Q-learning to be as general as
(reasonably) possible, so we include the exploration rate ϵ as a
parameter. This allows us to represent several other methods in our
framework as well, as shown at the top of Table 1. In our theoretical
study, however, we assume greedy action selection, that is, ϵ = 0,
as is the case for all variants of UCB, and we leave the analysis of
regret for ϵ > 0 as an interesting future direction.

Following the discussion of Section 3.1, we would like to point
out that the update equation (5) of Algorithm 1 uses a slightly
different update term (see step 9) by adding a bonus term υh (t):

U k
h (x , s) ≜ rh (x) + bh

(
#kh (x)

)
+ γV̄ k

h+1(s), where (11)

V̄ k
h+1(s) ≜ min

{
V +h+1, [Mh+1Q̄

k
h+1](s)

}
and (12)

Q̄k
h (x) ≜ Qk

h (x) + υh
(
#kh (x)

)
. (13)

New optimistic model-free RL algorithms can be expressed by
Algorithm 1with different hyperparameter combinations. Belowwe
present a novel algorithm, which is designed using this framework.

Example 3.1 (UCB-H with generalized learning rate, UCB-H+).
UCB-H+ follows the flow of Algorithm 1 with the hyperparameters
presented in the last row of Table 1. In particular, UCB-H+ utilizes
a new learning rate

αt ≜
λH+1
λH+tω , where λ ≥ 0 and 1

2 < ω ≤ 1. (14)
The learning rate of UCB-H+ generalizes the previously used learn-
ing rates, complies with the learning rate conditions (7), and is
motivated by two observations. Firstly, for the discounted problems
the learning rate t−ω outperforms 1/t , and the best performance is
achieved for ω ≈ 0.8 [3, 9]. Secondly, switching from αt = 1/t to
(H + 1)/(H + t) allowed Jin et al. to bound the regret blow-up with
respect to H and achieve efficiency [14]. We would like to note that
our generalized framework does not rely on this particular learning
rate, instead, this example serves as an illustration of its use.

The generality of our framework complicates the theoretical anal-
ysis of Algorithm 1. To achieve interesting, interpretable results, we
need to impose at least some conditions on the hyperparameters of
the model. We would like to point out that none of these conditions
are particularly restrictive, and they (sometimes trivially) hold for
all of the existing optimistic methods, albeit not being explicitly
mentioned. At the same time, these conditions encompass a broader
class of models, including the aforementioned UCB-H+.

3.2.1 Conditions on the learning rate. We start with conditions
on the learning rate αt . By inspection of various proofs involving
the learning rates presented in Table 1, we identified that their
successful application can be attributed to the following condition.

Condition 1. The learning rate satisfies α1 = 1.

Intuitively, Condition 1 means that when a state-action pair
is visited for the first time, the update equation becomes Qk =

(1−α1)Q0 +α1U = U , and the initial valueQ0 becomes “forgotten”,
being replaced by a UCB-based update U . Thus, under a condition
α1 = 1 the initialization affects the optimistic view of unencoun-
tered state-action pairs only.
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Algorithm 1: Generalized optimistic Q-Learning
Data: episodic NS-MDP M, initial Q-values Q0

h , bonuses υh (t) and βh (t), learning rate αt , and exploration rate ϵ .
1 Initialize Q-table Qh (x) ← Q0

h and visitation counter #h (x) ← 0 for all h ∈ H,x ∈ Xh ;
2 for episode k ← 1, . . . ,K do
3 observe initial state s1;
4 for step h ← 1, . . . ,H do
5 take action ah ← Greedyϵ (Q̄h , sh ); ▷ where Q̄h (x) ≜ Qh (x) + υh (t)
6 receive reward rh , observe next state sh+1, and let xh = (sh ,ah ) denote the current state-action pair;
7 increment visitation counter t = #h (xh ) by 1;
8 compute confidence bonus bh (t) ← α−1

t βh (t) + (1 − α−1
t )βh (t − 1);

9 compute update Uh (xh , sh+1) ← rh (xh ) + bh (t) + γV̄h+1(sh+1); ▷ where V̄h (s) ≜ min
{
V +h , [MhQ̄h ](s)

}
10 update Q-table Qh (xh ) ← (1 − αt )Qh (xh ) + αtUh (xh , sh+1, t);

Q-learning variant Q0
h αt ϵ υh (t) βh (t) regret

Regular [9, 27] any t−ω ϵ 0 0 ΩH,X (T )
Optimistic [10] V +/α0

T t−ω ϵ 0 0 ?
Speedy [3] any t−1 ϵ 0

∑t
i=1 Pi (Qi −Qi−1) ÕH,X (T 2/3)

UCB-H [14] V + H+1
H+t 0 0 c1H

∑t
i=1 αi

√
H ι/i Õ(H2√TX )

UCB-B [14] V + H+1
H+t 0 0 1

2 min
{
c1(

√
H (Wt + H )ι/t +

√
H7X ι/t), c2

√
H3ι/t} Õ(H√HTX )

∞-UCB [26] V + H+1
H+t 0 0 c1(1 − γ )−1 ∑t

i=1 αi
√
H ι/i ÕH (

√
TX )

OPIQ [21] V − H+1
H+t 0 C

(t+1)M c1H
∑t
i=1 αi

√
H ι/i Õ(H2√TX )

UCB-H+ [this] V +h
λH+1
λH+tω 0 0 cγV △h+1

√
(λH + tω )−1(λH + 1)ι Õ

(
µ
√
Hω−1T 2−ωXω )

Table 1: Different Q-Learning algorithms as generalized optimistic Q-learning. Below the line are provably efficient methods.

Iterative approximation of optimal Q-values via equation (9)
leads to a scaling factor of

∑t
i=1 α

i
t . As the learning process is sto-

chastic, we want to ensure that its variance remains bounded simi-
larly to equations (7). Moreover, as UCB depends on this variance,
we need to be able to quantify it in order to compare the bonus
terms we use to the actual confidence bounds. This observation
leads us to the following condition.

Condition 2. There exists a function 0 ≤ ζ (t) ≤ 1 such that∑t
i=1(α it )2 ≤ ζ 2(t).

Next, to quantify the total regret, we need to be able to express
its propagation from one time step to another; we see from Corol-
lary 4.8 that the total regret inflates by a factor of γη(H ,K) with
each step, where η(H ,K) satisfies the following condition.

Condition 3. There exists a function η(H ,K) ≥ 1 such that∑K
n=tα

t
n ≤ η(H ,K).

Knowing the learning rate, it is possible to expressη analytically.1
For example, Jin et al. show that

∑∞
n=t α

t
n ≤ 1 + 1/H = η(H ) in

their analysis [14], which implies Condition 3. However, without
any assumptions on the form of the learning rate, we have to fall
back to η as a generalized term.

1We omit the arguments of η and other functions introduced later for brevity of
notation, if it does not lead to ambiguity.

Function η serves as a “scaling factor” for the total regret, but
there are other scale parameters, for example, the discounting factor,
the lower r−h and the upper r+h reward functions affect the total
regret scale as well. We want to be able to quantify their effect and
combine all of the scale parameters together as follows.

Condition 4. Let V ↑h denote the asymptotically dominant term
between the upper value function V +h and the value span V △h , that is,

V
↑
h ≜

{
V △h if V +h = O(V △h ),
V +h otherwise,

and similarly for the reward bound r ↑(H ) and the value boundV ↑(H ).
Then there exists a function µ(H ,K ,γ ) such that∑H

h=1
(
γη

)h−1
V
↑
h = O

(
µ(H ,K ,γ )) . (15)

We call the function µ of Condition 4 the magnitude function,
because it quantifies the asymptotic behavior of the total regret
blowup in all H time steps. Intuitively, regret of each time step is
at most V △ = O(V ↑), which means that the total regret grows at
most at a rate of

∑H
h=1(γη)h−1V ↑h as H grows.

All of the existing UCB-based methods utilize the same learning
rate αt = (H+1)/(H+t) as showed in Table 1. It is easy to check that
this learning rate satisfies Conditions 1–4. In particular, ζ (t) = 2H/t
and η(H ) = 1 + 1/H are proposed by Jin et al. and used by other
authors [14, 21, 26]. Due to the fact that (1+1/H ) < e , themagnitude
function equal to µ(H ) = V ↑ = H is used.
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3.2.2 Conditions on the bonuses. All of the remaining conditions
are rather intuitive. The first one addresses the initialization and
was already discussed in Section 3.1. We require that the initial
values are not too high or too low, and that the augmented initial
values Q̄0

h used in action selection are optimistic.

Condition 5. The initial values Q0
h belong to intervals [V −h ,V +h ],

and the bonus for optimism υh (t) is such that Q0
h + υh (0) ≥ V +h .

Finally, we present two conditions (6 and 7) on the bonuses.

Condition 6. The total bonus function is non-negative and non-
increasing in t , ϑh (t) ≥ ϑh (t + 1) ≥ 0 for all t ∈ N.

As t represents the number of visitations of a state-action pair,
we want the bonus to decrease as it grows, that is, as we collect
more samples and build higher confidence. Non-negativity ensures
that the bonuses are optimistic.

Condition 7. There exists a function θ (t) such that∑t
n=1ϑh (n) ≤ O

(
V
↑
h θ (t)

)
.

This condition is used to quantify the effect of the total bonus
ϑh (t) on the regret by a function θ (t), similarly to how the magni-
tude function µ quantifies the other effects. We call this function
the bonus scaling function.

The existing methods satisfy Conditions 5 and 6 trivially. Con-
dition 7 depends on the particular bonus design, and also holds
for all of the methods. For example, UCB-H and OPIQ both use
θ (t) = √Htι as the bonus scaling function, although implicitly.

3.3 The Total Regret Bound
Finally, we are ready to give a high-probability bound on the total
regret, which is our main theoretical contribution. The total regret
is bounded by the sum of three different terms, each amplified by
the magnitude function µ of Condition 4. These terms are:
• the size of the state-action space X ,
• the total effect of the bonuses B ≜ Xθ (K/X ), which depends
on the bonus scaling function of Condition 7, and
• the total effect of the estimation error E ≜ c

√
Kι, where

ι ≜ ln(TX/δ ) is the logarithmic term.
The state-action space size X represents the effect of the optimistic
initialization, as the number of initial values is proportionate to X .
The bonus effect B relates to optimistic action selection.

The third factor E is caused by replacing the unknown transi-
tion operator (2) with its empirical counterpart (6). The constant c
depends on how much uncertainty there is in the transitions, and is
formally introduced later. An important property is that for deter-
ministic problems c = 0, and the estimation term disappears. The
probability δ used in the estimation error term E depends on our
confidence in the total regret bound, that is, the bound holds w.p. at
least 1 − 2δ . It depends on the choice of the cumulative confidence
bonus βh (t) as follows:

δ =


2KX

∑
h∈H exp

(
− 1

2

(
βh (t )

γ cV △h+1ζ (t )

)2)
if c > 0,

0 if c = 0,
(16)

Theorem 3.2 formalizes these results.

Theorem 3.2. Let Conditions 1–7 hold. Then for some constant
0 ≤ c ≤ 1, w.p. at least 1−2δ the total regret of generalized optimistic
Q-learning with no exploration (i.e., when ϵ = 0) is bounded by

R(M,α ,ϑ ) = O
(
µ(X + B + E)), (17)

If there are no random transitions in the NS-MDP, the learning
process becomes fully deterministic as well (we assume no random
exploration). This leads us to the following corollary.

Corollary 3.3. If the transitions of the underlying NS-MDP M
are deterministic, the total effect of the estimation error is equal to
zero, E = 0. Moreover, the bound of Theorem 3.2 holds w.p. 1.

4 PROOF OF THEOREM 3.2
We prove Theorem 3.2 by using a recurrent decomposition of the
regret of a time step h in terms of the next time step h + 1. We
bound the regret of each time step using the differences between
augmented Q-values Q̄h (x) of generalized optimistic Q-learning
and the optimal Q-valuesQ⋆

h (x), provided by Lemma 4.5. To derive
these bounds, we employ some properties of the learning rate.

4.1 Properties of the Learning Rate
We prove two lemmas, both relying on Condition 1 only.

Lemma 4.1. If α1 = 1, then
• α0

t = 0 and
∑t
i=1 α

i
t = 1 for t ≥ 1;

• ∑t
i=0 α

i
t = 1 for any t ≥ 0.

Proof. By definition, α0
t = (1 − α1) ·

∏t
j=2(1 − α j ) = 0.

We prove that
∑t
i=1 α

i
t = 1 by induction. For t = 1,

∑t
i=1 α

i
t =

α1 = 1. Assume that
∑t
i=1 α

i
t = 1. Then using the definition of α it ,∑t+1

i=1α
i
t+1 =

∑t
i=1αi

∏t+1
j=i+1(1 − α j ) + αt+1

=
(∑t

i=1αi
∏t

j=i+1(1 − α j )
)
(1 − αt+1) + αt+1

where the expression in the first brackets is equal to
∑t
i=1 α

i
t = 1

by the induction hypothesis, and therefore
∑t+1
i=1 α

i
t+1 = 1.

The second statement follows trivially from the first for t ≥ 1
and from the definition of α it for t = 0. □

Lemma 4.1 allows us to write Q⋆
h (x) =

∑t
i=1 α

i
tQ

⋆
h (x) similarly

to the decomposition (9) of Qk
h (x) in order to relate them to each

other.
We also prove the following relation between the confidence

bonus b(t) and the cumulative confidence bonus β(t), justifying our
choice of the bonus in step 8 of Algorithm 1.

Lemma 4.2. If b(t) ≜ α−1
t β(t)+(1−α−1

t )β(t −1) for some function
β(t), and either α1 = 1 or β(0) = 0, then

∑t
i=1 α

i
tb(i) = β(t).

Proof. By induction. For t = 1,
∑1
i=1 α

i
1b(i) = α1b(1) = β(1) +

(α1 − 1)β(0) = β(1). Assume
∑t
i=1 α

i
tb(i) = β(t) for some t . Then∑t+1

i=1α
i
t+1b(i) =

∑t
i=1α

i
t+1b(i) + αt+1b(t + 1) = (1 − αt+1)β(t)

+ αt+1b(t + 1) = (1 − αt+1)β(t) + β(t + 1)
+ αt+1(1 − α−1

t+1)β(t) = β(t + 1). □
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4.2 Bounds on Q-Value Differences
First, we show that the augmented Q-values Q̄h (x) are related to
the augmented values V̄h+1(s) of previous episodes as follows.

Lemma 4.3 (recursion on Q̄ , generalization of Lemma 4.2
of [14]). For any step h ∈ H, state-action pair x = (s,a) ∈ Xh and
episode k ∈ K, let t ≜ #kh (x) and suppose that for state s action a

was previously taken in time step h of episodes k1, . . . ,kt < k . Then
under Condition 1

[Q̄k
h −Q⋆

h ](x) =α0
t [Q0

h −Q⋆
h ](x) +

∑t
i=1α

i
t

(
γ [V̄ ki

h+1 −V⋆
h+1](s

ki
h+1)

+ γ
[(P̂kih − Ph )V⋆

h+1
](x)) + ϑh (t). (18)

Proof sketch. Similarly to the proof of Lemma 4.2 of [14], we
use equations (13) and (9) to express Q̄k

h (x) in terms of the initial
values Q0

h . Then we apply Lemma 4.1 and the Bellman optimality
equation (4) to do a similar decomposition for Q⋆

h (x). □

Next, we introduce the parameter c that quantifies the difference
between the empirical transition operator (6) and the true transition
operator (2), both of which appear in the equation (18).

Proposition 4.4. Let f (x) : Xh+1 → [a,b]. There exists a con-
stant 0 ≤ c ≤ 1 such that c(a − b) ≤ [(P̂kh − Ph )f ](x) ≤ c(b − a).
Remark 4.1. Note that while the case c = 1 holds trivially for any
problem, a smaller constant possibly exists. For example, if the
transitions of an NS-MDPM are not random, operators P̂kh and Ph
coincide and c = 0 provides a sharper bound.

Using Proposition 4.4 and Lemma 4.3, we bound the difference
between the augmented Q-values Q̄k

h (x) and the optimal Q-values
Q⋆
h (x). The bound consists of four summands, three of which corre-

spond to the three factors of the total regret discussed in Section 3.3.
The fourth term,γ∆hζ (t), disappears from the regret bound because
it is asymptotically dominated by the total bonus ϑh (t).

Lemma 4.5 (bound on Q̄k −Q⋆, generalization of Lemma 3
of [21]). Let Conditions 1, 2, 5, and 6 hold. Given constants δh > 0
such that βh (t) ≥ γ∆hζ (t), where ∆h ≜ cV △h+1

√
2 ln(2/δh ), and c is

a constant from Proposition 4.4, the following holds with probability
at least 1 − δ , where δ ≜ KX

∑
h∈H δh :

0 ≤ [Q̄k
h −Q⋆

h ](x) ≤ α0
t (Q0

h −V −h ) + γ
∑t
i=1α

i
t [V̄ ki

h+1 −V⋆
h+1](s

ki
h+1)

+ ϑh (t) + γ∆hζ (t). (19)

Proof sketch. Let Y it (x) ≜ α it
[(P̂kih − Ph )V⋆

h+1
](x). Note that��Y it (x)�� ≤ α itcV △h+1. Follow the argument of the proof of Lemma 4.3

of [14], we apply the Azuma–Hoeffding inequality [16, Theorem
3.13] to see that w.p. at least 1 − δ��∑t

i=1Y
i
t (x)

�� ≤ √
2
∑t
i=1(α iτ cV △h+1)2 ln(2/δh ) ≤ ∆hζ (t), (20)

for all x ∈ X, h ∈ H, and k ∈ K. The r.h.s. of inequality (19) follows
from Lemma 4.3 and the fact that Q⋆

h (x) ≥ V −h . The l.h.s. proof
follows the existing proof [21] using equation (20). □

A direct consequence of Lemma 4.5 is that for an arbitrary chosen
bonus function we can lower-bound the probability that inequali-
ties (19) hold (note that sometimes the bound can be zero though).

Corollary 4.6. Under Conditions 1, 2, 5, and 6, for an arbitrary
chosen cumulative confidence bonus function βh (t), inequalities (19)
hold w.p. at least 1 − δ , where δ is given by (16) for c introduced in
Proposition 4.4.

Proof. The special case c = 0 trivially follows from Condition 6
and Lemma 4.5. Otherwise δ can be obtained by solving βh (t) =
cγV △h+1ζ (t)

√
2 ln(2/δh ) for δh . □

4.3 Properties of the Total Regret
We are now ready to provide an upper bound on total regret of
generalized optimistic Q-learning using the results of the previ-
ous sections. We start by introducing the following proposition,
generalizing the arguments used in the literature [14, 21].

Proposition 4.7 (recursion on total regret bound). Denote

ψk
h ≜ [V̄ k

h −V
πk
h ](s

k
h ), ξkh ≜

[(P̂kh − Ph )(V̄ k
h+1 −V⋆

h+1)
](xkh ).

Let Conditions 1–3, 5 and 6 hold. Using notation of Lemma 4.5, the
following two statements hold w.p. at least 1 − δ :

(1) the total regret R is upper-bounded by R ≤ ∑K
k=1ψ

k
1 .

(2) for any h ∈ H and k ∈ K,ψk
h is upper-bounded by

ψk
h ≤ γηψk

h+1 + Ψ
k
h (t), where (21)

Ψk
h (t) ≜ α0

t (Q0
h −V −h ) + ϑh (t) + γ

(
∆hζ (t) + ξkh

)
. (22)

Next, applying the bounds (21) iteratively on h = 1, 2, . . . ,H + 1
and noticing thatψk

H+1 = 0 by equations (3) and (1), we bound R.

Corollary 4.8. Under Conditions 1–3, 5 and 6 w.p. at least 1 − δ
the total regret is upper-bounded by

R ≤ ∑K
k=1

∑H
h=1(γη)h−1Ψk

h (t), (23)

where δ and Ψk
h (t) are given by equations (16) and (22).

Finally, we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. We study the right-hand side of inequal-
ity (23) by rewriting it as

R(K) ≤ ρK
(
α0
t (Q0

h −Q−h )
)
+ ρK

(
ϑh (t)

)
+ γ ρK

(
∆hζ (t)

)
+ γ ρK (ξkh ),

where ρK
(
дkh (t)

)
≜

∑H
h=1(γη)h−1∑K

k=1д
k
h (t).

For the first element ρK
(
α0
t (Q0

h −Q−h )
)
, by changing the summa-

tion order and using the fact that Q0
h −Q−h ≤ V △h we write

ρK
(
α0
t (Q0

h −Q−h )
) ≤ ∑K

k=1
∑H
h=1(γη)h−1α0

tV
△
h .

In this sum α0
t = I[t = 0] by Lemma 4.1 and α0

0 = 1. In this sum,
I
[
#kh (xkh ) = 0

]
, 0 means that x has never been visited in step

h before episode k , and the number of such state-action pairs is
O(X ) independent of K and H ; therefore, we have O(X ) summands
(γη)h−1V △h , and each of them is O(µ), so ρK (α0

tV
△
h ) = O(µX ).

For ρK (ξkh ) we use the fact that {ξkh }k ∈K is a martingale dif-
ference sequence [14, proof of Theorem 1]. Note that V −h+1 ≤
V⋆
h+1(x) ≤ V̄ k

h+1(x) ≤ V +h+1, therefore [V̄ k
h+1 −V⋆

h+1](x) ∈ [0,V △h+1].
Using these bounds, Proposition 4.4, an argument similar to the
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proof of Lemma 4.5, and Azuma–Hoeffding inequality, we see that
w.p. at least 1 − δ���∑K

k=1ξ
k
h

��� ≤ √
2
∑K
k=1(cV +h+1)2 ln 2HX

δ = O
(
cV +h+1

√
K ln HX

δ

)
,

for all h ∈ H and x ∈ X. Note that ln(HX )/δ = O(ι), therefore
ρK (ξkh ) = O

(
c
∑H
h=1(γη)h−1V +h+1

√
Kι

)
= O

(
cµ
√
Kι

)
= O

(
µE

)
.

Finally, for the last two termswe notice thatϑh (t) ≥ γ∆hζ (t) ≥ 0
and thusϑh (t) is the asymptotically dominant term, that is,∆hζ (t) =
O

(
ϑh (t)

)
. We write

ρK
(
ϑh (t)

)
=

∑H
h=1(γη)h−1∑K

k=1ϑh
(
#kh (xkh )

)
.

First, we consider the inner sum Σϑh ≜
∑K
k=1 ϑh

(
#kh (xkh )

)
. Instead of

summing in order of episodes k ∈ K, we can sum the total bonuses
ϑh

(
#kh (xkh )

)
separately for each state-action pair x ∈ Xh first, and

add all visitations n = 1, . . . , #Kh (x) of x in all episodes. This yields

Σϑh =
∑
x ∈Xh

∑#Kh (x )
n=1 ϑh (n) where

∑
x ∈Xh #Kh (x) = K .

Because ϑh (t) is decreasing in t by Condition 6, Σϑh is maximized
when as many state-action pairs x are visited, which happens when
#Kh (x) = K/X for all x ∈ X:

Σϑh ≤
∑
x ∈X

∑K/X
n=1 ϑh (n) = X

∑K/X
n=1 ϑh (n) = O

(
V
↑
h Xθ (K/X )

)
,

where θ (t) is defined in Condition 7. Thus, ρK
(
ϑh (t)

)
= O(µB).

Adding the three factors together, the bound (17) holds with
probability at least 1 − 2δ . □

5 DESIGNING A NEW UCB-BASED METHOD
In this section, we apply Theorem 3.2 to prove efficiency of UCB-H+
presented in Example 3.1. We show how the proposed generalized
learning rate (14) satisfies the required condition, and how the
bonus design is based on it. We only consider the case λ > 0, as
inclusion of H is required to achieve sub-linear regret [14], but
similar analysis can be performed for λ = 0, yielding worse bounds.

Conditions on the Learning Rate. First, we want to ensure that
the generalized learning rate (14) satisfies the Conditions 1–4. Con-
dition 1 holds trivially. We now show that so do the other ones.

Proposition 5.1. tω + j ≥ (t + j)ω for any t ∈ N0 and j ∈ N0.

Lemma 5.2. For the generalized learning rate given by equation
(14), Condition 2 holds with ζ (t) =

√
(λH + 1)/(λH + tω ).

Proof. Notice that
∑t
i=1(α it )2 ≤ maxti=1 α

i
t ·

∑t
i=1 α

i
t , which by

Lemma 4.1 is equal to maxti=1 α
i
t . By definition,

α it =
λH+1
λH+iω

( (i+1)ω−1
λH+(i+1)ω ·

(i+2)ω−1
λH+(i+2)ω · · · tω−1

λH+tω

)
= λH+1

λH+tω

( (i+1)ω−1
λH+iω ·

(i+2)ω−1
λH+(i+1)ω · · · tω−1

λH+(t−1)ω
)
.

By Proposition 5.1 for j = 1 each fraction in the brackets is less
than 1, so α it ≤ (λH + 1)/(λH + tω ) ≜ ζ 2(t). □

Proposition 5.3 (c.f. eqation B.1 of [14]). For anym ≥ k ,

m
k = 1 +

∑∞
i=1

∏i
j=1

m−k+j−1
m+j .

Lemma 5.4. For the learning rate given by equation (14), Condi-
tion 3 holds with η(H ) = 1 + (λH )−1 if λ > 0.

Proof. By Proposition 5.3 withm = λH + tω and k = λH ,∑K
n=tα

t
n ≤

∑∞
n=tα

t
n = αt

(
1 +

∑∞
i=1

∏i
j=1(1 − αt+j )

)
≤ λH+1

λH+tω

(
1 +

∑∞
i=1

∏i
j=1

tω+j−1
λH+tω+j

)
= λH+1

λH+tω
λH+tω
λH = 1 + 1

λH ,

where the second inequality holds by Proposition 5.1, because

1 − αt+j = (t+j)ω−1
λH+(t+j)ω ≤

tω+j−1
λH+tω+j . □

Lemma 5.5. For the generalized learning rate Condition 4 holds
with µ(H ,V ↑,γ ) = HV ↑ if γ = 1 and V ↑/(1 − γ ) otherwise.

We omit the proof of Lemma 5.5. It is straightforward as the sum
in the definition (15) can easily be computed directly.

Conditions on the Bonuses. Lemmas 4.5 and 5.2 explain our choice
of the bonuses, namely,

βh (t) ≜ cγV △h+1

√
8 λH+1
λH+tω ln 2TX

δ and υh (t) = 0 (24)

for the constant c of Proposition 4.4. By Corollary 4.6, Lemma 4.5
holds w.p. at least 1 − δ for this cumulative bonus for any δ . Condi-
tions 5 and 6 both hold trivially.

Lemma 5.6. For the bonuses given by equation (24), Condition 7
holds with θ (t) =

√
Ht2−ω ι.

Proof. Note that
∑t
n=1(λH + nω )−1/2 ≤ ∑t

n=1 n
−ω/2 = H(ω/2)t ,

where H(r )n denotes the generalized harmonic number of n of order
r . By Euler–Maclaurin sum [1, formula 3.6.28], for a given r , 1,
H(r )n = ζ (r ) + (1 − r )−1n1−r + o(n1−r ) = O(n1−r ). Thus∑t

n=1βh (n) = O
(√

H ι
∑t
n=1

1√
λH+nω

)
= O

(√
H ι · t1−ω/2) . □

Regret Bound. Combining the aforementioned results, we prove
the efficiency of UCB-H+.

Theorem 5.7. For any δ > 0 w.p. at least 1 − δ the total regret of
UCB-H+ with λ > 0 is bounded by O

(
µ
√
Hω−1T 2−ωXω ι

)
, where the

magnitude µ is given by Lemma 5.5.

Proof. Using θ =
√
Ht2−ω ι, we write the sum in Theorem 3.2 as

X + B + E = X +
√
Hω−1T 2−ωXω ι + c

√
Kι. The last term is trivially

dominated by the second one, so it can be omitted. Now we show
that the first term is also dominated in the total regret bound.

Assume T ≤
√
H1+ωT 2−ωXω ι. The total regret is bounded by∑K

k=1ψ
k
1 ≤ V +K ≤ V +T /H = O(V ↑

√
Hω−1T 2−ωXω ι),

which is dominated by the second term multiplied by µ. The oppo-
site assumption implies that T > H1+1/ωX ι1/ω , and√
HωT 2−ωXω ι >

√
Hω (

H1+1/ωX ι1/ω
)2−ω

Xω ι ≥
√
H3X 2 > HX .

In either case µ
√
Hω−1T 2−ωXω ι is the dominant term. □
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6 EXPERIMENTS
To illustrate the performance of UCB-H+, we consider two prob-
lems, one stochastic and one deterministic. The latter, while being
less interesting in context of RL, allows us to alleviate the regret
caused by the estimation error, highlighting the effect of optimism.

We start with a classical problem known as the automobile re-
placement problem [12]. This problem is based on real data and is
considered as a benchmark by different authors [6, 9, 20]. In the
replacement problem, the agent operates an automobile, which can
be in one of the 40 states (from brand new one to ten years old,
quantified quarterly). At the beginning of each quarter the agent
chooses to either keep the automobile, or to replace it with a differ-
ent one, which can be in any of the 40 available states. The detailed
description of the problem, including transition probabilities and
rewards, can be found in the original paper [12].

We consider a two-year plan (i.e., H = 8 steps), and K = 62,500
episodes, each starting with state s = 1 (i.e., a brand new car).
Therefore, the problem size is equal to HX = 13,120, and the total
duration of the learning is T = 5 × 105 time steps. We assume
no discounting γ = 1, and use the same values δ = c = 10−3

for UCB-based algorithms. As a baseline for comparison, we use
regular Q-learning optimistically initialized with Q0

h (x) = V + with
an exponentially decaying exploration rate ϵ = 0.9999k−1 and the
same learning rate αt = (H + 1)/(H + t) as UCB-H. For UCB-H+
we use ω = 0.8 and λ = 1 as the learning rate parameters.

The experiment was repeated 50 times. The results are presented
in Figure 1. The thin horizontal line represents the optimal valueV⋆,
the vertical bars show 95%-confidence intervals on mean estimates,
and the ribbons show the interquartile range. Data is smoothed
using a moving average with a bandwidth of 0.05K .

This experiment shows that the total regret of Q-learning, equal
to the area between the line and the optimal line above it, is 1525±2
thousand dollars on average. While the plot lines may seem close to
each other, UCB-Hwas able to achieve a regret of 1037±2 thousands,
showing a 32% reduction over the naïve approach. Finally, UCB-H+
incurred a regret of 907 ± 3 thousand dollars, enjoying a reduction
of 41% compared to Q-learning and 13% when compared to UCB-H.
Interestingly, UCB-H+ has only a slightly higher variance, whichwe
expect to increase as the exponent ω approaches 0.5 (with ω = 0.5
preventing convergence by violating conditions (7)).

Our second experiment is based on the 8×8 Frozen lake problem
of OpenAI Gym [7]. The agent navigates a grid world searching for
a goal state. The world has holes, stepping into one terminates the

−1.40

0.02

0 3.6 6.25
episode k (×104)

ep
iso
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lu
eV

(×
10
00
$) UCB-H+

UCB-H
Q

Figure 1: Replacement problem. UCB-H+ offers a 41% total
regret improvement over Q-learning and 13% over UCB-H.

current episode. All states give no rewards, except for the goal with
a reward of 1. We consider K = 104 episodes of up to H = 16 time
steps. The problem size is HX = 16 × 64 × 4 = 4,096, and the total
duration of the learning is T = 1,6 × 105 time steps. Because this
problem is simpler, we can use a faster decaying exploration rate
ϵ = 0.99k−1 for Q-learning. For UCB-H and UCB-H+ we use c = 0
as per Remark 4.1. The rest of the parameters remain the same.

The results are presented in Figure 2. Interestingly, UCB-H suf-
fered from the largest regret of 5503, while Q-learning and UCB-H+
achieved the regret of ≈ 4900 and 3144 respectively. UCB-H+ offers
a 43% improvement over UCB-H. As mentioned earlier, this prob-
lem has no stochasticity in transitions, and thus the last term of the
regret is zero. Moreover, all algorithms use the same initialization,
therefore, the only reasons for the performance difference is the
choice of the learning rate and the optimism representation.

7 CONCLUSIONS
This paper presents generalized optimistic Q-learning, a novel
framework for optimistic model-free reinforcement learning that
incorporates many existing methods, such as Q-learning, UCB-H,
and OPIQ. We showed that under some mild conditions the total
regret of optimistic model-free methods is driven by three distinct
terms multiplied by the magnitude of the problem. These terms are:
the size of the state-action space, the total effect of the bonuses,
and the total effect of the estimation error.

To the extent of our knowledge, this is the first study of RL per-
formance that does not rely on a particular form of the learning rate.
This high level of abstraction facilitates transfer of our results to
new algorithms within the generalized optimistic Q-learning frame-
work. As an example, we present one such algorithm, UCB-H+,
prove its efficiency in terms of regret, and illustrate its performance
in experiments. Our analysis shows that the regret is driven by the
bonuses and the learning rate, therefore, their choice is a promising
direction for the design of more efficient optimistic RL algorithms.

Future work includes further relaxations of the conditions used,
and extensions of generalized optimistic Q-learning to other set-
tings such as infinite-horizon non-episodic learning, deep reinforce-
ment learning, and models with continuous state and/or action
space. The algorithm UCB-H+ can be extended to the continuous
setting as well. One of the possible ways to do this is to employ
deep Q-networks and pseudo-visitation counters similarly to [21].
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Figure 2: Frozen lake. UCB-H+ offers a 43% total regret im-
provement over UCB-H.
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