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ABSTRACT
In many decision-making problems, agents aim to balance multiple,
possibly conflicting objectives. Existing research in deep reinforce-
ment learning mainly focuses on fully-observable single-objective
solutions. In this paper, we propose DCRAC, a deep reinforcement
learning framework for solving partially-objective multi-objective
problems. DCRAC follows a conditioned actor-critic approach in
learning the optimal policy, where the network is conditioned on
the weights, i.e, relative importance for the different objectives. To
deal with longer action-observation histories, in the case of par-
tially observable environments, we introduce DCRAC-M which
uses memory networks to further enhance the reasoning ability of
the agent. Experimental evaluation on benchmark problems show
the superiority of our approach when compared to state-of-the-art.
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1 INTRODUCTION
Combining advances in Reinforcement Learning (RL) and deep
learning, deep reinforcement learning techniques [15] have helped
solve a number of complex, high-dimensional decision-making
problems [16]. Deep Q-Networks (DQNs) have shown to be capable
of learning human-level control policies [9]. This breakthrough
paved way for general-purpose agents that can learn a diverse
range of tasks which are challenging for humans.

DQN and its recent extensions [7, 18, 19] generalize Q-learning
to high-dimensional environments by using a neural network to
estimate the Q-function.

However, the focus in these recent advances has been on design-
ing deep RL algorithms for decision problems that can be modeled
as single-objective fully observable environments, i.e., Markov de-
cision processes (MDPs). While in most cases, the state is not fully
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observable, for example, an agent in a maze environment may have
a limited view and can only observe the surrounding in front of itself.
Thus, the agent may need to speculate the current state based on
its memory of past observations and actions. This kind of problems
can be modeled as partially observable MDPs (POMDPs). There are
few research works on deep RL methods for partial observability.
DRQN [4] and ADQRN [21] extend DQN by using recurrent neu-
ral networks for memorizing action-observation histories to solve
POMDPs. The objective of these POMDP algorithms is to maximize
the single scalar rewards across time. Given a single-objective scalar
reward rt , at time-step t , the agent has to find a policy π∗ which
maximizes the expected total rewardmaxπ Eπ [Σt rt ].

Though single-objective scalar rewards are intuitive, many real-
world problems have multiple and possibly conflicting objectives.
For example, a strategy for manufacturing should focus on maxi-
mizing quality and efficiency while minimizing operation cost; an
air traffic control system should ensure efficiency and flight safety
simultaneously. This leads to a vector of rewards, with a reward for
every objective at every time-step. Often, it is hard, or even unfea-
sible to do a priori scalarization of these vector-valued rewards to
a single scalar mainly because: 1) the scalarization function can be
unknown and complex; 2) the importance (weights) of the different
objectives can be unknown and change dynamically. In this paper,
we focus on this dynamic weights setting, where the priorities be-
tween the objectives change over time. This happens, for example
when objectives represent the goods traded in an open market.
The prices of the goods can fluctuate with time. For the dynamic
weights setting, [1] proposed the use of conditioned network by
extending DQN for multi-objective fully observable environments.

In this paper, we propose the Deep Conditioned Recurrent Ac-
tor Critic (DCRAC) method for handling environments that are
both multi-objective and partially observable. DCRAC uses the ad-
vantage actor-critic method for learning the optimal policy and
uses recurrent layers in the neural network architecture for re-
membering the action-observation histories. We further propose an
extension, DCRAC-M, by replacing the recurrent layers in DCRAC
with a memory network for learning longer action and observa-
tion histories. Diverse Experience Replay [1] is used for efficiently
learning the optimal policy. The main contributions of the paper
are listed below: 1) We propose a deep learning framework DCRAC
to handle partially observable multi-objective problems; 2) We use
memory networks (DCRAC-M) for learning long term dependencies
in action-observation histories and empirically show their impor-
tance for partially observable environments; 3) We use diverse
experience replay for effectively sampling transitions from the re-
play buffer tailored to partially observable environments; 4) We
conduct experiments using the partially-observable multi-objective
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version of Deep Sea Treasure [10]. Evaluation results comparing
the cummulative average episodic discounted rewards and cum-
mulative average episodic regret show that our approach performs
better than condition networks [1].

2 BACKGROUND AND RELATEDWORK
Partially Observable Markov Decision Process (POMDP).

When complete information of the environment is not available,
a RL problem is modeled as a Partially Observable Markov De-
cision Process (POMDP) [6]. POMDP is described by the tuple
⟨S,A,T ,R,Ω,O⟩, with S , the state space; A, the action space; T , the
transition function; R, the reward function; Ω, a finite set of ob-
servations and O , the observation model. At every time step t , the
environment has a state st ∈ S . The agent takes an action at ∈ A,
which causes a state transition from st to a new state st+1 using
the transition function T (st+1 |st ,at ). The agent also receives ob-
servations based on the observation function O(ot |at , st+1). For a
transition, the agent receives a reward R(st ,at , st+1). Since state st
is not fully observable, the agent needs to remember the entire his-
tory in order to act optimally. Let ht = (a0,o1,a1,o2, · · · ,at−1,ot )
be the history of actions and observations until time step t . The goal
of the agent is to learn a policy π (ht ) which maps the history to an
action such that it maximizes the expected discounted reward [5].
Assuming that π can sufficiently maintain a probability distribution
over trajectories, we sample τ , a trajectory conditioned on ht to
obtain the remaining history. The expected discounted reward, i.e.,
value function Vπ (ht ) is then calculated as,

Vπ (ht ) = Eτ |ht

[
∞∑
i=0

γ irt+i

]
(1)

Here, γ ∈ [0, 1] is the discount factor and rt is the reward ob-
tained at time step t based on ht .Vπ (ht ) can be reconstructed from
the Q-functionQπ (ht ,at ), which is the expected total reward of ex-
ecuting policy π , starting withht and taking action at ∈ A. The opti-
mal policy can be computed from the optimal Q-functionQ∗, where
the agent executes, at every time-step, the action whose Q-value for
the current history ht is maximal, i.e., π∗ = arдmaxat ∈AQ

∗
π (ht ,at ).

Deep Networks for Partially Observable Environments.
Deep Recurrent Q-Network (DRQN) [4] extends DQN for partially
observable environments by using a recurrence layer to remember
observation histories while approximating the Q-function. How-
ever, DRQN did not consider action histories. Action-based Deep
Recurrent Q-Network (ADRQN)[21] includes both action and ob-
servation histories using an LSTM layer, demonstrating that it
is possible to store only the sufficient statistics of the action ob-
servation histories using a recurrent layer instead of the entire
preceding history [20]. The network takes as input a sequence
of action, observation pairs and computes the Q-values for each
action. ADRQN uses experience replay by adding the transition
({at−1,ot },at , rt ,ot+1) to a replay buffer D at every time-step t .
The network is trained by uniformly sampling mini-batches of
experiencesU (D) using the loss function L(θ ) given below,

L(θ ) = E({at−1,ot },at ,rt ,ot+1)∼U (D) [yt −Q(ht−1,at−1,ot ,at |θ )]

yt = rt + γmaxa′Q(ht ,at ,ot+1,a
′ |θ−)

Here, θ represents the parameters of the Q-network. The Q-
network computes Q(ht−1,at−1,ot ,at |θt ), where at−1,ot are in-
puts to the hidden layer of the unrolled LSTM which stores the
sufficient statistics. yt is computed from the target network with
parameters θ− which is cloned from θ , periodically.

Recurrent Deterministic Policy Gradient (RDPG) [5] uses an
actor-critic technique for handling partial observability. Actor-critic
algorithms are better in handling larger state and action spaces.
Here, the actor and critic are neural networks. The actor is updated
using policy gradient in the direction suggested by the critic (which
determines the value function). Though the actor-critic method of
our approach DCRAC is inspired from RDPG, DCRAC additionally
handles multi-objectivity, uses memory networks and incorporates
diverse experience replay for improving sample efficiency.

Deep Networks for Multi-Objective Environments. For a
given n-objective decision problem, the reward r t is vector val-
ued, i.e., one reward per objective. Thus, for a policy π , the multi-
objective value function V π is also vector valued. Using a scalar-
ization function f , we can map the multi-objective value V π to a
scalar when the importance of the objectives, weight w ∈ Rn is
known. When f is linear, the scalarization function becomes,

f (V π ,w) = w ·V π (2)

However, in most casesw is not known in advance. An optimal
solution for the multi-objective MDP under a linear f is a convex
coverage set (CCS), i.e., a set of undominated policies containing at
least one optimal policy for any linear scalarization [14].

Scalarized deepQ-learning [10] extendsDQN for amulti-objective
fully observable setting by learning vector-valued Q-functions for a
givenw . By sequentially training Q-networks until convergence on
corner weights, they approximate the CCS with a set of Q-networks.
However, this method is hard to generalize across all weights as
the weights can vary over time and it can be time-consuming to
learn the entire CCS.[1] introduced Conditioned Network for the
dynamic weights setting. Instead of training a set of Q-networks, a
single Q-network, conditioned onw is used. For a given transition
(st ,at , rt , st+1), the loss L(θ ), is computed as the sum of the loss on
the active weight vector wi and w j , which is randomly sampled
from the set of previously encountered weight vectors.

L(θ ) =
1
2
|yw i
t −QCN (st ,at |wi , θ )| + |y

w j
t −QCN (st ,at |w j , θ )|

ywt = r t + γQCN (st+1,arдmaxa′[QCN (st+1,a
′ |w, θ ).w]|w, θ−)

Here, QCN (at , st |w, θ ) is the network’s Q-value-vector for ac-
tion at in state st using the weight vector w . θ represents the
network parameters. ywt is computed from the target network,
which is also a conditioned network with parameters θ−. Diverse
Experience Replay (DER), a diverse buffer from which relevant
experiences can be sampled for weight vectors whose policies have
not been executed recently is used for improving sample efficiency.
However, [1] can be applied only to fully-observable scenario. [14]
introduced OLSAR for partially observable multi-objective envi-
ronments, which finds the CCS by solving a series of scalarized
POMDP problems by selectingw . The OLSAR-complaint Perseus
solver was used to solve the POMDPs. However, these POMDP
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Figure 1: Architecture of DCRAC - Deep Conditioned Recurrent Actor-Critic

solutions are often intractable for large state, action spaces as find-
ing the optimal policy is PSPACE complete [12]. In this paper, we
will use deep networks as Q-function approximators for solving
Multi-Objective POMDPs (MOPOMDPs) as they can scale to high
dimensional spaces.

3 PROPOSED APPROACH
We propose DCRAC, a Deep Conditioned Recurrent Actor Critic
model for decision making in partially-observable multi-objective
environments. DCRAC uses the actor-critic technique for determin-
ing the optimal policy. Both the actor and critic are implemented
as neural networks. The actor specifies the policy, i.e., the map-
ping from histories to actions. Since we deal with a partially ob-
servable environment, the history ht represents a sequence of k
action-observation pairs {at−k−1,ot−k , · · · ,at−1,ot }, until the cur-
rent time-step t . Ideally, the entire sequence of action-observation
pairs from 0 to t should be used, however due to memory con-
straints, at a given time, we train the network with k sequenctial
action-observation pairs. The critic computes the value function
based on which the actor is updated using policy gradient [8]. Both
the actor and critic networks are conditioned on the weight vector
w , to generalize across different weights better. This helps to deal
with the dynamic weights setting. The actor and critic networks use
recurrent layers for handling sequences of action-observation pairs.
We also propose to use memory networks (DCRAC-M) in Sec. 3.3
to account for long term dependencies among the action and obser-
vation histories. We follow an off-policy setting, where the agent
stores its interactions in a replay buffer from which transitions
are sampled to train the DCRAC network. We use Diverse Expe-
rience Replay (DER) [1] to improve sample efficiency and prevent
replay buffer bias. In our work, the replay buffer stores transitions
of the form ({at−k−1,ot−k , · · · ,at−1,ot },at , rt ,ot+1), consisting of
action-observation histories (see Sec. 3.4 for details).

3.1 Actor-Critic Network
Both the actor and critic networks take as input a transition of
the form ({at−k−1,ot−k , · · · ,at−1,ot },at , rt ,ot+1), containing a se-
quence of k action-observation pairs, along with the weight vector

w as shown in Fig. 1. Here, rt is vector valued, i.e., one reward per
objective1. Instead of having two different networks with differ-
ent parameters for processing the same input, the actor and critic
networks share the weights for the layers upto Step. 3, as shown
in Fig. 1, representing the DCRAC architecture. A LSTM layer is
used to process the history of actions {at−k−1 · · ·at } and observa-
tions {ot−k · · ·ot+1}, as shown in Fig. 1[Step. 3]. However, since
each observation (for example ot ) in our case, is an image, it is first
passed though convolution layers, as shown in Fig. 1[Step. 2]. The
extracted features are then concatenated with the corresponding
action (at−1), which are encoded as one-hot vectors.

The concatenated vector then serves as input to the LSTM layer.
Fig. 2 shows the unrolled LSTM for 2 time-steps t −1, t . At time step
t , the LSTM takes as input the concatenated features obtained from
ot and at−1, as well as the hidden state ĥt−1, which summarizes
the action and observation histories till time t − 1. Depending on
memory availability, the LSTM can be unrolled for k time-steps.

Figure 2: Unrolled LSTM Layer

The output of the LSTM layer is concatenated with the weight
vectorw , as shown in Fig. 1. The weight vectorw is introduced after
the LSTM layer in order to minimize interference while processing
1The vector-valued variables are mentioned in bold throughout the paper.
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action-observation histories. The actor π (ht ,w |θ ) with parameters
θ is a policy network which maps history ht to an action ∈ A. The
concatenated result of the LSTM output and weight vectorw is then
passed through a fully connected layer to determine the probability
of selecting each action. The actor network is updated using policy
gradient ∇θ Jπ ,

∇θ Jπ =
1
2
[
∇θπ (ht ,we |θ ) · A

w e + ∇θπ (ht ,wr |θ ) · A
w r

]
(3)

Aw =
[
ywt − Ea∈AQ(ht ,a,w |ω)

]
·w (4)

The gradient is calculated based two different weight vectors,
the current weightwe as well as a random previously encountered
weightwr . Training the actor on two different weights at the same
time avoids the problem of overfitting [1]. Aw is the advantage-
based objective function, ywt is the target value and Q(ht ,a,w |ω) is
the Q-value computed using the critic network as described below.

The critic Q(ht ,at ,w |ω) is a Q-network (with parameters ω)
for estimating the Q-values for the actions at ∈ A, given the his-
tory ht and the weight vector w . The critic has a different struc-
ture than the actor as shown in Fig. 1[Step. 4]. A dueling architec-
ture [19] is followed for the critic, where the first fully connected
layer is connected to two separate heads, one to estimate the state
value V(ht ,w |ω, β) and the other to estimate the action advan-
tageA(ht ,at ,w |ω,α), respectively. Here, ω denotes the parameters
until the first fully connected layer, while α and β are the param-
eters of the two separate dueling heads. The advantage function
A(ht ,at ,w |ω,α) gives the relative measure of importance of each
action. Q(ht ,at ,w |ω) is then be obtained using Eqn. 5.

Q(ht ,at ,w |ω,α, β)) = V(ht ,w |ω, β)
+ [A(ht ,at ,w |ω,α) − Ea∈AA(ht ,a,w |ω,α)]

(5)

The critic network is updated by minimizing the loss Lω based
on TD error, given by Eqn. 6, where we is the current sampled
weight,wr is randomly chosen previous weight.

Lω =
1
2
(��yw e

t − Q(ht ,at ,we |ω)
�� + ��yw r

t − Q(ht ,at ,wr |ω)
��) (6)

To improve stability and convergence, we use the target actor
π ′ and critic Q′ networks with parameters θ ′ and ω ′, respectively.
The parameters θ ′ and ω ′ of the target networks are updated using
soft updates [8]. The target value ywt is computed as,

ywt = r t + γQ
′(ht+1, π

′(ht+1,w |θ
′),w |ω ′) (7)

3.2 Algorithm
Algorithm. 1 describes DCRAC in detail. In lines 1-4, we initialize:
the actor π and critic Q networks; the target networks π ′, Q′; the
replay buffer D; the unique weight historyW; and k , the number
of time-steps for which the LSTM can be unrolled. At beginning of
each training episode e , the agent receives a weight vectorwe . If
we is new and not previously encountered, it is added to W (Lines
6-7). The complete history of action observation pairsH for episode
e , is initialized to an empty set. ht=0 which represents the previous

k action-observation pairs is also initialized to an empty set (Line
8). Based on h0, the initial observation o0 is obtained (Line 9).

We use ϵ-greedy exploration which is annealed over time (Lines
11, 29), increasing the probabilty of choosing the action suggested
by the actor at = π (ht ,we |θ ) (Line 12). at is executed to receive
reward rt and observation ot+1 (Line 13). H is updated with the
new action-observation pair (Line 14). For every timestep, the tran-
sition (e, {at−k−1,ot−k , · · · ,at−1,ot },at , rt ,ot+1), which includes
the episode number e , previousk-1 action-observation pairs, the cur-
rent action at , the current reward rt and the observation obtained
ot+1 is added to the replay buffer D (Line 15). Then, a mini-batch of
N transitions is randomly sampled using diverse experience replay
(Line 16) to update the actor and critic networks (See Sec. 3.4 for
more details). The mini-batch can contain transitions from differ-
ent episodes. Such random sampling reduces correlation among
samples and is found to improve computational efficiency [4].

We train the networks using two different weight vectors, the
active weight we and wr , which is randomly sampled from a uni-
form distribution of previously observed weightsU (W). Doing so,
prevents over-fitting the recent weights. The target value ywt is
computed by Eqn. 7 (Lines 19), and used to update critic (Line 21) by
minimize Eqn.6. The actor is updated using policy gradient based
on advantage given by Eqn. 3 & 4 (Line 22-24). A soft update [5] of
the parameters of the target network is performed in each round
(Lines 25 - 27). The whole process is repeated until termination
(Line 10) and for E episodes (Line 5).

3.3 DCRAC with Memory Networks
We also propose DCRAC-M, in which DCRAC uses memory net-
works (instead of LSTM) for learning long term dependencies
among the action-observation histories, especially when the his-
tory is lengthy [17]. The memory of recurrent layers is small and
they encode the entire history as dense vectors ĥt , thereby, fail-
ing to explicitly focus attention on different parts of the history.
Memory networks use an external memory space (other than the
neural network) to store action and observation pairs for each time-
step independently rather than summarizing the entire history as a

Figure 3: Memory Network
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Algorithm 1 DCRAC: Deep Conditioned Recurrent Actor-Critic

1: Randomly initialize actor network π (ht ,w |θ ), critic network Q(ht ,at ,w |ω) with weights θ , ω, respectively.
2: Initialize target networks π ′, Q′ with weights θ ′ ← θ , ω ′ ← ω
3: Initialize (diverse) replay buffer D and unique weight history W
4: Initialize k , the number of time-steps of the unrolled LSTM
5: for episode e = 1 to E do
6: we = getWeightVector(e)
7: addwe to W
8: Initialize full history H = {}, current empty history h0 = {}
9: Receive initial observation o0
10: while ot , terminal do
11: With probability ϵ select a random action at
12: Otherwise select action at = π (ht ,we |θ ), where ht = {at−k−1,ot−k , · · · ,at−1,ot } contains sequence of k action-observation pairs.
13: Execute action at and obtain reward r t and new observation ot+1
14: Update full history H ← H ∪ {at ,ot+1}
15: Store transaction (e, {at−k−1,ot−k , · · · ,at−1,ot },at , rt ,ot+1) in replay buffer D
16: Sample a mini-batch of N transactions from D using diverse experience replay (see Sec. 3.4)
17: Randomly samplewr fromU (W)
18: Compute target values forwe andwr :
19: Target value ywt = r t + γQ

′(ht+1, π
′(ht+1,w |θ

′),w |ω ′)
20: Update the critic network by minimizing the loss:

21: Lω =
1
2
(��yw e

t − Q(ht ,at ,we |ω)
�� + ��yw r

t − Q(ht ,at ,wr |ω)
��)

22: Update the actor network using policy gradient:

23: ∇θ Jπ =
1
2
[
∇θπ (ht ,we |θ ) · A

w e + ∇θπ (ht ,wr |θ ) · A
w r

]
24: where Aw =

[
ywt − Ea∈AQ(ht ,a,w |ω)

]
·w

25: Update the target networks with learning rate λ:
26: ω ′ = λω + (1 − λ)ω ′
27: θ ′ = λθ + (1 − λ)θ ′
28: end while
29: Anneal(ϵ)
30: end for

dense vector. Such a design helps to store accurate histories and can
easily focus attention to specific portions of the stored memory [13].
We replace the recurrent layer (Fig. 1[Step. 3]) of DCRAC with an
adapted version of Feedback Recurrent Memory Q-Network [11].

The memory network implementation is shown in Fig 3. The
left-side shows how information is written to the memory. The
concatenated output of action at−1 and feature vectors from the
convolutional layer for ot (output of Step. 2 in Fig. 1) is considered
to be the embedded feature ft ∈ R

f that is saved in the memory at
time-step t . This operation is given by φenc as shown below,

ft = φenc (ot ,at−1) (8)

Two memory blocks, key block Mkey
t , value block Mval

t ∈ Rm×M ,
withm dimensional embeddings are used. The length of each mem-
ory block isM . Though every embedded feature ft is added to the
memory separately, we can consolidate that memory network lin-
early transforms the embedded feature of lastM action-observation
pairs as key and value memory blocks using Eqn. 9, 10.

Mkey
t = U keyFt (9)

Mval
t = UvalFt (10)

where, U key ,Uval ∈ Rm×f are parameters of the linear trans-
formations for the key block and value block, respectively. Here,
Ft = [ft−1, ft−2, . . . , ft−M ] ∈ Rf ×M is the concatenation of em-
bedded features from the lastM action-observation pairs.

The right side of Fig. 3 shows how to read information from
the memory using soft attention [2]. To retrieve the memory, the
attention weights pt (i) for the ith memory block at time-step t is
calculated. Specifically, we compute the softmax attention σ , given
the hidden state ĥt and key memory Mkey

t using Eqn. 11. Then
value xt is retrieved from the memory using Eqn. 12.

pt (i) = σ (ĥ⊤t M
key
t [i]) (11)

xt = Mval
t pt (12)

ĥt is obtained from an LSTM layer which takes as input the con-
catenated vector [ft , xt−1] and the previous hidden state ĥt−1.

ĥt = LSTM([ft , xt−1], ĥt−1) (13)

The final output of the memory network is computed using the
retrieved memory xt and the hidden state ĥt , using φout with
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Figure 4: Evaluation Environments: Partially observable Deep Sea Treasure with different size field of view

parameter u as shown below.

φout (ĥt , xt ) = ReLU (uĥt + xt ) (14)

3.4 Experience Replay
We follow an off-policy setting where the transitions are stored in a
replay buffer and are randomly sampled to train the network. Tran-
sitions are of the form (e, {at−k−1,ot−k , · · · ,at−1,ot },at , rt ,ot+1),
including the episode number e , previous k − 1 action-observation
pairs, the current action at , the current reward rt and the observa-
tion obtained ot+1. In our paper, we use k = 10, based on the mem-
ory availability. The transition always contains action-observation
histories for previous k time-steps. During bootstrapping when
previous k time-steps do not exist, they are filled with zero vectors
which are masked during neural network training.

Additionally, since different weights should be trained at the
same time to avoid the models from being over-fitted using the
same weight spaces or the early trained weights being gradually
ignored in the training progress, we use Diverse Experience Replay
(DER) [1]. Standard experience replay keeps a replay buffer that
drops a transition in the first-in-first-out order when the buffer
becomes full. However, in the multi-objective environment with
dynamic weights, it is important to always keep a diverse replay
buffer with transitions relevant to all possible objective preference
weights’ optimal policies. This ensures that the agent learns appro-
priately without ignoring other possible policies.

DER separates the existing replay buffer D into two parts: a stan-
dard first-in-first-out replay buffer Ds and a diverse replay buffer
Dd . The transitions are added and removed to the standard buffer
Ds in a first-in-first-out manner. To add a new transition to the di-
verse replay bufferDd , the diversity between the new transition and
the existing transitions in Dd is computed and the new transition
is included only if it improves the diversity of the buffer Dd . When
Dd is full, the least diverse transition is dropped. Diversity among
transitions is computed using the crowing distance [3] of their dis-
counted cumulative rewards. Half of the existing experience replay
buffer is used as diverse replay buffer, while the sampling is made
across the whole buffer D without any distinction. During training,
mini-batches of transitions are randomly sampled from D. These
transitions can belong to different episodes, thereby, avoiding cor-
relation among the samples. We can also sample a list of contiguous

transitions belonging to the same episode. But, random sampling
is shown to achieve similar performance as sequential transitions
with much lower training cost [4, 21].

4 EXPERIMENTS
4.1 Setup
We perform experiments on Deep Sea Treasure (DST) [10], a multi-
objective environment. DST is originally fully observable. The states
are represented as images in DST.We introduce partial observability
by limiting the field of vision of the agent to its surroundings,
rather than the entire image. We evaluate different versions of
our approach: (1) DCRAC with standard experience replay; (2)
DCRAC-M which uses memory networks instead of the recurrent
layer along with standard experience replay; (3) DCRAC+DER, in
which DCRAC uses diverse experience replay; and (4) DCRAC-
M+DER in which DCRAC-M uses diverse experience replay. We
compare our approach with Conditioned Networks (CN) [1] and
use CN+DER, i.e., CN with diverse experience replay as the baseline.
Here, CN is given the partially observable view of the environment
instead of the full image as the input.We use the cumulative average
episodic discounted reward as an evaluation metric. Ideally, as
the number of training steps increases, the cumulative episodic
discounted reward should increase, demonstrating the learnability
of the approach. We also compare the cumulative average episodic
regret for the approaches. Regret [1] is calculated as the difference
between optimal value (for each weight vector) and actual return.
The optimal value is computed using guidelines given in [1].

To compute the actual return, the rewards for the different objec-
tives are scalarized using weight vectorwe for that episode.we is
randomly sampled from a Dirichlet distribution (α=1) every 5, 000
steps to introduce the dynamic weights setting. The same set of
weight vectors are used across all the approaches for fair compari-
son. We trained using Nvidia RTX 2070 GPU and it took an average
of 1 hour to run 100, 000 training steps for DCRAC approach.

For DCRAC and DCRAC-M, the observation input is scaled to
45 × 45 × 3. The first convolution layer contains 32, 6 × 6 filters,
with stride 2. The second convolution layer contains 48, 5× 5 filters
with stride 2. Each convolution layer is followed by a max-pooling
layer. The features extracted from the convolution layer are then
fed into another dense layer of 512 units and then concatenated
with the action input, encoded as a one-hot vector. For DCRAC,
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Algorithm
Overall Last 25k steps

Standard ER DER Standerd ER DER
Mean reward vs. baseline Mean reward vs. baseline Mean reward vs. baseline Mean reward vs. baseline

CN* – – 10.373 – – – 7.199 –
DCRAC 10.377 +0.038% 10.491 +1.138% 7.513 +4.362% 8.173 +13.530%

DCRAC-M 10.354 -0.183% 10.248 -1.205% 7.642 +6.154% 7.251 +0.722%
Mean regret vs. baseline Mean regret vs. baseline Mean regret vs. baseline Mean regret vs. baseline

CN* – – 3.755 – – – 0.459 –
DCRAC 3.773 +0.479% 3.324 -11.478% 0.590 +28.540% 0.306 -33.333%

DCRAC-M 5.585 +22.104% 3.845 +2.397% 0.846 +84.314% 0.352 -23.312%
*CN+DER is the baseline used for comparison.

Table 1: Cumulative Episodic Discounted Reward and Regret for 5 × 5 partial view in DST

we use a 64-unit LSTM. The LSTM is unrolled for 10 time-steps.
For DCRAC-M, which uses a memory network, the length of the
external memory is 32. The memory network also uses a 64-unit
LSTM, unrolled for 10 time-steps. For the separate actor and critic
streams each of the fully connected (FC) layers are of size 256. The
remaining are dense layers with size as mentioned in Fig. 1.

4.2 Deep Sea Treasure (DST)
In DST, a submarine should dive to collect treasures on the sea floor.
The environment is a 12 × 12 RGB map as shown in Fig. 4(a) with
treasures encoded in green (0,255,0), water encoded in blue (0,0,255)
and sea-floors encoded in red (255,0,0). The submarine agent is
encoded in white (255,255,255). The agent only has a partial view of
the environment, which is a 5 × 5 or 3 × 3 view of the surrounding,
with the agent in the center as shown in Fig. 4(c),(d). The regions
in the 5 × 5 or 3 × 3 view which fall outside the original RGB map
are filled in black (0,0,0). The agent can move up, down, left and
right anywhere within the map except the seafloor. The reward is 2-
dimensional: first dimension representing the value of the treasure
collected, second dimension representing the penalty for power
consumption when moving. The penalty is always set to −1 for
each movement. The reward for each treasure is shown in Fig. 4(a).

4.3 Results
Table. 1 shows the cumulative average episodic discounted rewards
and cumulative average episodic regret for the DST problem with
5× 5 view. The values are computed every 100 steps and the experi-
ments are run for 100, 000 steps. The results for the last 25, 000 steps
is also reported. We can see that DCRAC+DER performs better than
the baseline CN+DER by 13.53% in terms of rewards and 33.33%
in terms of regret for last 25, 000 steps. DCRAC-M+DER obtains a
regret of 0.352, also better than the baseline.

Fig. 5 shows how the cumulative average episodic discounted
reward increases with time steps for the last 25, 000 steps to show
the results after the convergence of the model. We can see that, with
time, the approaches are able to learn better policies and obtain
better rewards. However, DCRAC+DER learns faster and is able to
obtain better rewards at final stage when compared to the baseline.
Fig. 6 shows the cumulative average episodic regret. We can see
that DCRAC+DER stabilizes effectively with the number of training
steps, obtaining the best performance, i.e., higher reward and lower

Figure 5: Cumulative Avg. Episodic Rewards with 5 × 5 view

Figure 6: Cumulative Avg. episodic regret with 5 × 5 view

regret. The vertical lines in the figures represent the weight changes,
which happens every 5, 000 steps.

Table. 2 shows the average episodic cumulative rewards and
regret for the 3 × 3 partial view. This environment is more partially
observable than the 5 × 5 view. DCRAC+DER outperforms all ap-
proaches with a mean regret of 2.591 outperforming the baseline
by 11.78% for last 25, 000 steps. From the experiment, we can see
that using DER always produces better results than using standard
ER for both 5 × 5 and 3 × 3 view for the dynamic weights setting.
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Algorithm
Overall Last 25k steps

Standard ER DER Standerd ER DER
Mean reward vs. baseline Mean reward vs. baseline Mean reward vs. baseline Mean reward vs. baseline

CN* – – 8.883 – – – 7.085 –
DCRAC 8.923 +0.450% 9.433 +6.192% 7.642 +7.862% 8.525 +20.325%

DCRAC-M 8.437 -5.021% 9.131 +2.792% 6.653 -6.097% 8.843 +24.813%
Mean regret vs. baseline Mean regret vs. baseline Mean regret vs. baseline Mean regret vs. baseline

CN* – – 4.689 – – – 2.937 –
DCRAC 4.856 +3.562% 4.053 -13.564% 3.360 +14.402% 2.591 -11.781%

DCRAC-M 4.385 -6.483% 4.321 -7.848% 3.164 +7.729% 2.676 -8.887%
*CN+DER is the baseline used for comparison.

Table 2: Cumulative Average Episodic Reward and Regret for 3 × 3 partial view in DST

5 CONCLUSION
We propose DCRAC, a Deep Recurrent Actor-Critic approach, for
decision making in partially-observable multi-objective environ-
ments. The actor-critic network is conditioned on the weights, i.e.,
the preferences of different objectives. Hence, DCRAC can gen-
eralize to different weights and can handle scenarios where the
weights change dynamically over time. We also propose DCRAC-M,
which uses memory networks for remembering long-term depen-
dencies in the action-observation histories. We use diverse expe-
rience replay to sample transitions while training the network to
prevent overfitting on recently trained weights. Experiments on
the partially-observable version of DST shows that the DCRAC
outperforms Conditioned Networks. As future-work, we plan to
conduct experiments on more complex scenarios such as minecart.
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