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ABSTRACT
The area of computational social choice (COMSOC) analyzes collec-
tive decision problems from an algorithmic perspective. So far, the
main focus in this area lied on analyzing problems where a single
preference relation for each agent is given and a single solution
reflecting all agents’ preferences needs to be found. However, this
modeling is often not rich enough to capture the changing and
ambivalent nature of real-world problems. We will argue that one
possibility to incorporate such aspects is to allow for multiple pref-
erence profiles in the input and multiple solutions in the output. We
systematically review different types of arising settings, point out
how classical problems and solution concepts can be generalized,
and identify several research challenges.
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1 INTRODUCTION
Abstractly speaking, in a collective decision problem, given a set
of agents and a profile containing the preferences of each agent
over alternatives, the goal is to aggregate the preferences into a
compromise solution. Collective decision problems range from vot-
ing over coalition formation to fair allocation. Applications are
multifaceted such as fairly distributing tasks, matching students to
colleges, or selecting which results to display to a user querying an
online database or search engine.

In the majority of publications dealing with collective decision
problems, it is assumed that each agent has a single and fixed prefer-
ence relation, and the goal is to find a single solution. However, this
modeling disregards important aspects of many real-world prob-
lems: Agents, in particular humans, typically have multi-criteria
preferences over alternatives that may change over time, and agents
may repeatedly participate in the same collective decision problem.
To be able to model such aspects, one possibility is to relax the
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classical paradigm with only a single preference profile as input for
which a single solution needs to be found.1 Thereby, we allow for
multiple preference profiles (profiles for short) in the input and/or
for multiple separate solutions in the output. This makes it, among
others, possible to incorporate two important aspects of real-world
collective decision problems: time and multimodality. For instance,
if multiple preference profiles are given, then they may have some
time-based ordering or may reflect the preferences of agents with
respect to different evaluation criteria.

We propose a taxonomy of collective decision problems with
multiple profiles in the input and/or multiple solutions in the output.
Hence, three natural settings arise:

(MO) Given multiple profiles, the goal is to find one solution
for all profiles;

(OM) given one profile, the goal is to findmultiple solutions
for this profile; and

(MM) givenmultiple profiles, the goal is to findmultiple solu-
tions (one solution for each profile).

For each of these three settings, one can distinguish whether the
given profiles and computed solutions have some natural (e.g., time-
based) ordering or not. As this distinction is conceptually important,
we split each setting into an ordered and an unordered version, and
refer to the six resulting cases as subsettings. An overview of our
three settings and six subsettings is shown in Figure 1, which also
provides a roadmap for the remainder of the paper.

Running problem. We consider the task of fairly allocating a set
of resources to a set of agents who have preferences over subsets
(bundles) of resources. A notion of fairness here is envy-freeness:
An assignment of resources to agents is envy-free if no agent prefers
another agent’s bundle to her own. Finding an envy-free allocation
of resources to agents will be our running problem in the following.
However, we want to emphasize that most of our ideas and concepts
are applicable to a variety of collective decision problems.

Outline. In Section 2, we start by presenting some ideas how
classical solution concepts such as envy-freeness can be generalized
if multiple profiles are given and multiple solutions need to be
found. Subsequently, we present the six subsettings (see Figure 1)
in Sections 3 to 5. For each of them, we start with a pictogram
visualizing the situation. On the top of each pictogram, the structure
of the solutions to be computed is visualized (each puzzle piece
represents one solution). On the bottom, the structure of the given

1There also exist alternative approaches to model dynamic aspects of real-world
problems that we do not cover here. For instance, it is possible to assume that an
instance arrives part by part and decisions need to be made on the fly (see, e.g., [2, 28]).
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Figure 1: Overview of the three settings and the six subsettings we consider.

profiles is visualized (each group of persons represents one profile).
The pictogram is accompanied by a brief description under what
circumstances this subsetting can arise in our running problem.
Subsequently, we briefly describe related work and point to the
specific and most interesting features of this subsetting and give
some ideas how to approach them.

2 ON GENERALIZING CLASSICAL SOLUTION
CONCEPTS

A straightforward possibility to apply a classical solution concept
like envy-freeness to multiple profiles or multiple solutions is to
simply require that each solution has to fulfill the concept in all
profiles for which the solution is implemented. We refer to the
resulting concepts as local solution concepts. In contrast to this, it is
also possible to apply solution concepts globally, that is, to assess
all (or at least some) computed solutions and given profiles together.
Global concepts open the possibility to model long-time fairness
aspects or to relax classical concepts. On a high level, we distinguish
between two families of global solution concepts:

Profile-level concepts Solutions are evaluated with respect to
profiles, i.e., solutions satisfy certain properties in all profiles
from some specific subset of profiles.

Agent-level concepts Solutions are evaluated with respect to
each agent separately, i.e., solutions have to satisfy certain
properties from the perspective of each agent.

For instance, a profile-level generalization of envy-freeness in
the subsetting “successive profiles” (a sequence of profiles is given
for which a single solution should be found) is to enforce that the
computed solution is envy-free at least once every k profiles. In
contrast, an agent-level generalization is to require that each agent
is envy-free at least once every k profiles.

3 MULTIPLE PROFILES, ONE SOLUTION (MO)
Problems where multiple profiles are given and one solution needs
to be found arise naturally if the agents have multi-criteria prefer-
ences or the preferences of agents change over time.

3.1 Unordered: Multimodal (U-MO)
Running problem: Agents might assess resources based on differ-
ent, independent evaluation criteria (such as appearance, usefulness,
sales value) and may cast separate preferences for each criterion. Al-
ternatively, in decisions under uncertainty, each preference profile

Solution
may represent the preferences of agents in
some precomputed scenario for the future.

Multimodal preferences have been recently
considered in COMSOC by Chen et al. [14] in
the context of Stable Marriage. Subsequently,
Steindl and Zehavi [44] studied the problem
of allocating houses and Jain and Talmon [27]
analyzed committee elections in the presence
of multimodal preferences.

One goal in this subsetting is to find a solution that satisfies
certain properties (such as envy-freeness) in a given number k of
the profiles, which results in a profile-level solution concept. Instead,
it is also possible to impose such conditions on the agent-level and
only require that a solution makes every agent “happy” in at least k
of the given profiles or at least that an agent is not “unhappy” in
more than k profiles for the same reason [14]. In the context of
finding an envy-free allocation, this would mean that each agent
does not envy another agent in more than k of the profiles or does
not envy the same agent in more than k profiles.

A fundamentally different approach is to assume that agents
only care about the best/worst/average quality of the solution in
the preference relations of the agent [27]. Consequently, the goal
could be to search for a solution maximizing the minimum/average
of the resulting agent’s valuations of the solution.

3.2 Ordered: Successive Profiles (O-MO)

Solution

Running problem: The demand of an
agent might be predictable but can still
be quite different for different months.
However, some kinds of resources (such
as manpower) cannot be easily reallo-
cated. Thus, a single assignment for mul-
tiple months needs to be found.

The problem of finding a single solution for a sequence of two
or more profiles has, to the best of our knowledge, not been consid-
ered in COMSOC so far. Thus, novel solution concepts need to be
developed. One promising approach here is to use a sliding-window
technique and only require that the solution fulfills certain proper-
ties in each size-k subset of succeeding profiles.2 In the context of

2A similar temporal relaxation technique has been already applied in the context of
temporal graphs (graphs with a changing edge set) to classical graph problems such
as Clique [45], Coloring [37], and Vertex Cover [1].
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finding an envy-free allocation, one may want to find an allocation
that is envy-free in a majority of profiles from each size-k subset
of succeeding profiles. As in the multimodal subsetting (U-MO), it
is also possible to impose such global conditions on the agent-level,
that is, to find an allocation such that each agent is envy-free in
a majority of profiles from each size-k subset of succeeding pro-
files or an allocation where each agent envies each other agent
only in a minority of profiles from each size-k subset of succeeding
profiles. A natural motivation for this relaxation technique is that
agents and, in particular, humans tend to like the status-quo and
are rather reluctant to change, that is, they need to be dissatisfied
for k consecutive steps before a change may be requested.

4 ONE PROFILE, MULTIPLE SOLUTIONS (OM)
Sometimes the same set of agents with fixed preferences has to
make a collective decision repeatedly. Note that if multiple solutions
are considered, it is possible to impose restrictions on the usage of
objects (e.g., resources or candidates) in the solutions. For instance,
each object may only be part of a given number of solutions.

4.1 Unordered: Set of Solutions for One Profile
(U-OM)

Solution

Solution

SolutionSolution

Running problem: In most situations, it is
nearly impossible for decision makers to eval-
uate all solutions. Instead, they would like to
be presented a set of high-quality solutions,
reflecting all solutions in order to pick one
solution from it which will be implemented.

Finding a set of solutions for a single pro-
file is useful in different contexts with impli-
cations on which solutions one wants to put
in the set. For instance, if the goal is to pick
a single solution to be implemented from the

set, a popular general approach is to find a diverse set of solu-
tions, that is, a set of optimal or close to optimal solutions with
maximum summed pairwise difference. This problem has been
already considered in the context of graph algorithms [4] and con-
straint programming [42] but not in COMSOC. An interesting open
(problem-specific) question here is how diversity is measured.

Alternatively, one may want to find a set of solutions to be
all implemented simultaneously. In this case, one goal could be
to make everyone “happy” to a “fair” extent. That is, the set of
solutions proportionally represents the agents or, simpler, every
agent is “happy” in at least a given number of solutions. The prob-
lem of finding a set of proportionally representative winners of a
single-winner election has been already (extensively) studied in
the context of multi-winner elections [13, 17, 32]. Recently, voting
rules from approval-based multi-winner voting were used to find
a proportionally representative set of matchings of agents having
approval preferences over each other [7]. More generally, the quite
well understood concepts of proportional representation and diver-
sity developed in the context of multi-winner voting form a natural
starting point for finding a set of solutions also for other collective
decision problems.

4.2 Ordered: Successive Solutions (O-OM)

Solution Solution Solution Solution

Running problem: Under certain
circumstances, the preferences of
agents do not change over multiple
months. However, to treat agents as
fairly as possible, different assign-
ments in each month may be selected.

Again, this subsetting is applicable
in different contexts. For instance, one may want to find a sequence
of solutions to be implemented one after each other. In COMSOC,
the only work in this direction we are aware of is due to Bredereck
et al. [12] who studied finding a sequence of committees for a multi-
winner election. It is possible to explore different solution concepts.
If, for instance, no single solution satisfying everyone exists, then
one can instead search for a sequence of solutions such that every-
one is satisfied at least once every k steps (agent-level concept). It
is also natural to combine such solution concepts with availability
constraints, for instance, restricting that each resource can only be
included in some given number of solutions or that resources need
some recovery time before being included in a solution again. Ad-
ditionally, depending on the application, it might also be important
to impose that successive solutions need to fulfill some properties,
for instance, overlap or differ to a certain extent. If such constraints
are imposed, then it is also natural to consider profile-level solution
concepts, for example, enforcing that the sequence of solutions has
to fulfill some given property once every k steps, or local solution
concepts, for example, imposing that every solution makes half of
the agents “happy”.

An alternative interpretation of the computed ordered sequence
of solutions, which calls for fundamentally different solution con-
cepts, is that they provide a ranking of solutions. Already studied
by Kemeny [29] and Mallows [35], this problem has a comparably
long history in COMSOC. Again, different applications requiring
different solution concepts need to be distinguished. For instance,
Skowron et al. [43] studied finding proportional rankings in con-
texts where initial segments of the ranking of different lengths are
relevant. Further, Lu and Boutilier [33] studied finding a consensus
ranking to cope with situations where only a single candidate is
selected in the end but candidates may become unavailable.

5 MULTIPLE PROFILES, MULTIPLE
SOLUTIONS (MM)

The settings in Sections 3 and 4 (MO and OM) can be considered
as special cases of the setting of this section when either the given
profiles or the computed solutions are identical.

5.1 Unordered: Set of Solutions for Multiple
Profiles (U-MM)

Running problem: Assuming that each agent represents different
groups of individuals with contradicting preferences (multiple pro-
files; one for each group), in certain applications decision makers
may want to assign resources specifically to each of the groups
(multiple solutions; one for each group).

Here, we are given a set of profiles and the goal is to find a
separate solution for each of them, thereby reflecting desirable
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Solution

Solution

SolutionSolution

overall constraints. To the best of our knowl-
edge, this subsetting has not yet been studied
in COMSOC. A (loosely) related work is a re-
cent paper by Boehmer et al. [6] dealing with
finding solutions to multiple single-winner
elections where every candidate is only al-
lowed to win one of the elections. This cor-
responds to the presented subsetting if every
object (e.g., resources or candidates) is only
allowed to be included in one solution.

From a conceptual point of view, this sub-
setting is closely related to the subsetting “set
of solutions for one profile” (U-OM). However,

because agents may have different preferences in the different pro-
files here, computational and axiomatic questions are a lot harder to
tackle. It is nevertheless interesting to come up with proportionality
and fairness axioms that can be applied. A starting point could be
to search for a set of solutions such that each agent is “happy” in at
least k of them in the corresponding profile.

5.2 Ordered: Multistage (O-MM)

Solution Solution Solution Solution

Running problem: The demand
of an agents may be quite differ-
ent each month. To cope with this,
decision makers decide on a new
distribution every month.

The multistage view on combi-
natorial optimization problems has been introduced by Eisenstat
et al. [16] and Gupta et al. [24] and has attracted quite some follow-
up work, especially in the graph algorithms community [3, 20, 25].
Bredereck et al. [11] introduced the multistage view to COMSOC
by studying a series of Plurality multi-winner elections. Their goal
was to find a sequence of committees, each committee being ap-
proved by x voters in the corresponding election such that two
consecutive committees overlap in at least/most ℓ candidates. As
this subsetting can be understood as a direct generalization of the
subsetting “successive profiles” (O-MO) and the subsetting “succes-
sive solutions” (O-OM), a natural starting point here are ideas and
methods described for the other two subsettings.

This subsetting (in contrast to the other presented subsettings)
also admits a natural and meaningful online variant, which has
already been addressed in the literature before: Not all profiles may
be initially known and it may be necessary to already fix the solu-
tions for some profiles before other profiles arrive. In the resulting
online version of this subsetting, the goal is typically to guarantee
some long-term fairness or maximize some other objective which
takes all profiles and solutions together into account [21, 31].

6 CONCLUSION AND OUTLOOK
Over the last twenty years, COMSOC has become an established
research area and the community has made tremendous progress on
understanding (algorithmic aspects of) various collective decision
problems [9, 19]. However, so far, apart from some notable excep-
tions (e.g., [5, 22, 39, 40]), the impact of most of the theoretical work
on the real world remained rather limited. That is why the future
success of the field may significantly depend on the applicability

of the considered problems and mechanisms [23]. One particular
challenge here is that real-world problems often need a complex
modeling (agents may have ambivalent and changing preferences
and multiple solutions fulfilling demanding properties may need to
be found). Such facets and considerations can often not be captured
by traditional models. To allow for modeling them, we propose to
generalize classical collective decision problems to settings where
multiple profiles are given for which multiple solutions need to be
found.

We presented a taxonomy of subsettings naturally arising in
this context. This taxonomy offers a unified view which has sev-
eral advantages. First of all, it highlights the (close) connections
of the different subsettings, for instance, the symmetry of the two
subsettings “successive profiles” (O-MO) and “successive solutions”
(O-OM). These connections are interesting because they can help us
to better understand the different subsettings and their multifaceted
relationships. In addition to that, our unified view also underlines
that some general considerations and ideas are relevant in multiple
subsettings, for instance, availability constraints, enforcing that suc-
ceeding solutions are similar/different, or distinguishing between
employing solution concepts on the profile- or agent-level. This
allows one to study the same ideas not only in different collective
decision problems but also in the context of different subsettings.
Such a broader unified study may contribute to a true and wider
applicable understanding of the power and properties of such ideas.

Finally, our taxonomy allows a clean separation, relation, and
classification of different models. This can help to identify open
and overlooked problems and subsettings, to draw inspiration from
previous work in other subsettings, and also to model a real-world
problem. Hopefully, at some point, works in the different subset-
tings will have created a rich and easily configurable toolbox of
well-understood solution concepts, axiomatic properties, and algo-
rithmic techniques to choose from in the quest for dealing with
complex aspects of real-world collective decision problems.

A similar development towards studyingmore expressive models
has also already taken place in the algorithmic graph community, for
instance, in the context of studying multilayer [30, 34] and temporal
graphs [26, 38]. General techniques and concepts developed there
might be also applicable to collective decision problems.

Lastly, we want to highlight two specific challenges that might
arise in the study of settings and subsettings from our taxonomy.
Firstly, we expect most classical algorithmic problems to become
computationally worst-case intractable if generalized to multiple
profiles and/or solutions. Thus, it is important to consider different
paths to tractability such as preference restrictions [18] or more
advanced algorithmic techniques such as approximation [36] and
parameterized algorithmics [10, 15]. Secondly, in the presence of
multiple preference profiles, there exists a variety of possibilities
how to model the agents’ preferences, which also impact the ap-
plicability and tractability of the resulting models. Some first steps
in this direction have already been made by Boutilier and Procac-
cia [8] and Parkes and Procaccia [41] by modeling preferences as
Markov decision processes.
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