
An Agent-Based Model to Predict Pedestrians Trajectories with
an Autonomous Vehicle in Shared Spaces

Manon Prédhumeau
Univ. Grenoble Alpes, LIG
38000 Grenoble, France

manon.predhumeau@univ-grenoble-alpes.fr

Lyuba Mancheva
Univ. Grenoble Alpes, LIG
38000 Grenoble, France

lyuba.mancheva@univ-grenoble-alpes.fr

Julie Dugdale
Univ. Grenoble Alpes, LIG
38000 Grenoble, France

julie.dugdale@univ-grenoble-alpes.fr

Anne Spalanzani
Univ. Grenoble Alpes, Inria
38000 Grenoble, France

anne.spalanzani@univ-grenoble-alpes.fr

ABSTRACT
This paper addresses modeling and simulating pedestrian trajec-
tories when interacting with an autonomous vehicle in a shared
space. Pedestrian motion models integrating pedestrians interac-
tions with an autonomous vehicle already exist. However, they fail
to accurately predict the individual trajectory of each pedestrian,
and they do not deal with the diversity of possible pedestrian inter-
actions with the vehicle in a shared space (front, back or lateral).
Moreover, previous works do not sufficiently provide a quantitative
evaluation of the model’s predictions. In this paper, we propose an
hybrid pedestrian model that combines the social force model and a
new decision model for conflicting pedestrian-vehicle interactions.
The proposed model integrates different observed pedestrians be-
haviors, as well as the behaviors of the social groups of pedestrians.
We validate the model and evaluate its predictive potential through
qualitative and quantitative comparisons with ground truth trajec-
tories. The proposed model reproduces observed behaviors that
have not been replicated by the social force model and outperforms
the social force model at predicting pedestrians trajectories on the
used dataset. This model will be used by an autonomous vehicle in a
shared space to predict the trajectories of surrounding pedestrians.
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1 INTRODUCTION
Modeling and simulating the movement of pedestrians around an
autonomous vehicle (AV) is of major concern for AV navigation
and pedestrian safety in urban environments. Classical approaches
are interested in predicting whether a pedestrian will cross the
road in front of the AV or not. Predicting pedestrians’ movement
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is more complex in a shared space because pedestrians are free
to move around in a wider area than just being constrained to a
pavement. Shared spaces are a relatively new urban design where
the segregation between pedestrians and vehicles is minimized
by removing curbs, road surface markings, traffic signs, and traffic
lights. Such spaces, which include pedestrians areas, parking lots, as
well as streets, crossroads and squares, have been shown to reduce
car speed and the number of accidents [14, 16].

In such environments, interactions between pedestrians and an
AV may be diverse. Pedestrians may be on a direct collision course
with the AV, or may be close, interacting with the AV from the
side, front, or rear. From previous studies, pedestrians will act with
an AV as they do with a conventional vehicle [5, 23, 29]. In the
absence of data with AVs, we observed the different pedestrian
behaviors when they encounter a conventional car in shared spaces
[15, 32]. In frontal or rear interactions, pedestrians slow down and
deviate from their trajectory to avoid the car path and pass alongside
it [15, 32]. In a lateral interaction, pedestrians adapt their speed,
without deviating from their trajectory; they may accelerate/run to
cross in front of the car, slow down/stop to let it pass, or hesitate
and step back [9, 15, 32, 35]. Moreover, a pedestrian is rarely alone
in a shared space, and interactions with surrounding pedestrians
influence his trajectory. Pedestrians moving in social groups remain
grouped and avoid the car together [6, 15]. However, if a collision
with the car is imminent, a pedestrian in a group will prioritize his
individual safety and separate from the group to avoid the car [8].

Several models of pedestrian-car interaction in shared spaces
combined the Social Force Model (SFM) by Helbing and Molnár
[10] with decision models for conflict resolution.

Anvari et al. were one of the first to develop amodel of pedestrian-
car interactions in a shared space [2]. The model combined an adap-
tation of the SFM with a collision detection and conflict resolution
layer via the geometrical "shadow" method. However, in this model
the pedestrians always decelerate and deviate when on a collision
course with a car. This is not representative of the observed behav-
iors and is unsuitable for predicting pedestrian trajectories. Our
model overcomes this problem by integrating different observed
behaviors.

Other works have developed quite complete models of pedestrian
interactions in shared spaces, integrating pedestrians groups, cars,
and bicycles, as well as a modeling the urban infrastructure [24, 28].
To model pedestrian-car interactions, these models combined the
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classical SFM for short-range conflicts and a decision model for
long-range conflicts. However, these models were designed with the
aim of assessing the suitability of shared space design compared to
a conventional intersection. They do not aim to accurately predict
the individual trajectories of pedestrians. Moreover, only lateral
interactions were studied. Our work focuses on wider shared spaces,
such as large pedestrian squares, where pedestrians will completely
share their space with AVs and where interactions will be more
varied than simple road crossing.

Models that integrate various interaction scenarios have been
proposed by combining SFM and game theory [12, 30]. However,
with this approach the computational needs are huge when there
is a large number of simulated agents. Being so computationally
expensive and slow thus makes this approach unsuitable for an
AV to use to predict pedestrian trajectories, which should work in
faster than real-time. Our model overcomes the high computational
demand and gives accurate results in real-time, and the simulator
can be accelerated to run faster than real-time.

Finally, Yang et al. recently proposed a unified SFM to repre-
sent a vehicle’s influence on pedestrians in shared spaces [33, 34].
However, the model uses a single calibration for the magnitude and
direction forces for all types of interaction (frontal, lateral, rear.)
and thus cannot be applied to all cases of interaction [34]. A com-
parison between simulated and recorded trajectories shows that
simulated pedestrians do not turn enough to avoid the vehicle in a
front or rear interaction, and deviate too much from their trajec-
tory during a lateral interaction [34]. In addition, this model does
not include pedestrian social groups, even though they represent a
significant part of most urban crowds, and have a large influence
on pedestrian movement. Consequently the approach results in less
precise trajectories than with our approach.

A pedestrian reaction model, which integrates the behaviors
observed in various cases of interaction with a car in shared spaces,
including group behaviors, and which is accurate enough to be used
in predicting each pedestrian’s trajectory, is currently missing. To
address this gap, this paper provides the following contributions:

• Propose an hybrid model of pedestrians reactions to an AV
in a shared space. The model consists of the SFM for distant
interactions and a new decision model for conflicting inter-
actions. The model includes various observed pedestrians
behaviors, as well as social group behaviors.

• Evaluate the predictive ability of the proposed model by
qualitative and quantitative comparisons with ground truth
trajectories. The results are compared with the SFM and
show that the proposed model better reproduces observed
pedestrians behaviors.

• Bring additional proof that a general SFM is inadequate to
accurately reproduce pedestrians behaviors in all cases of
pedestrian-vehicle interactions.

The paper is structured as follows. In section 2, we describe
the proposed model for pedestrians reactions. This section first
explains the general approach and important model concepts, then
details the decision model. Section 3 describes the calibration of the
model’s parameters as well as the experimental setup for evaluating
the proposed model’s validity. Section 4 presents the simulation
results. Section 5 concludes the paper and discusses future work.

2 MODEL OF PEDESTRIANS REACTIONS
2.1 General Approach
To model pedestrians reactions to an AV in shared spaces, we used a
microscopic approach where pedestrians are represented as agents
with behaviors defined at the individual level. At each simulation
time step, the motion behavior of a pedestrian is composed of three
steps, as presented in Figure 1.

Figure 1: The hybrid model of pedestrians behavior.

First, the agent perceives its environment. The agent updates its
perceptions by considering static obstacles, pedestrians, and the
AV in its perception zone.

Then, the agent uses its perceptions to compute its future move-
ment. This computation is done with the SFM, a model that uses
physical forces to represent the internal pedestrians’ motivations to
perform actions. The agents want to move toward their destination,
avoiding static obstacles, pedestrians and the AV. If the agent travels
in a group, it tries to stay cohesive with other group members.

In the original SFM [10], a "desire" force represents the agent’s
desire to move towards its destination. A repulsive force is exerted
from static obstacles so that they can be avoided by the pedestrian. A
"social" force is exerted from nearby pedestrians, repelling the agent
to avoid collisions. For these forces, we use a modified version of the
SFM that we previously developed to take into account individuals
in open environments, e.g. shared spaces [25].

In shared spaces, pedestrians groups constitute a large part of
crowds and therefore their movement in groups should be modeled.
The SFM was expanded for group behaviors by adding a cohesive
force to keep the group members together, and a gaze force to repro-
duce groups members maintaining visual contact with each other
[18]. For these group forces, we use a version of the SFM that we
previously developed, that integrates four social groups relation-
ships: couples, friends, families and coworkers [26]. This version
can simulate the different types of groups in various contexts of
shared spaces (e.g. business zone, campus, shopping street).

To represent the pedestrians reactions to an AV, two levels of
treatment are used. When they interact with a moving obstacle,
pedestrians evaluate the time-to-conflict (TTC) (sometimes referred
to as the time-to-contact), to know if the interaction will lead to
a conflict or not [7]. The TTC is therefore used in our model to
distinguish conflicting interactions from non-conflicting ones.

A non-conflicting interaction occurs when the minimal predicted
distance (defined in [20] for pedestrians interactions) between the
pedestrian and the AV is large enough to be considered as safe or
when the conflict occurs in a distant future. For non-conflicting
interactions with the AV, the SFM is used. In this case, the repulsive
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force similar to the social force used for pedestrian-pedestrian in-
teractions comes from the AV and repels the pedestrian, as in [34].
The social force parameters were adapted to represent the AV char-
acteristics, as detailed in section 3. This force enables pedestrians
to adapt their speed (slowing down or accelerating) and trajectory
ahead of time to avoid being close to the AV.

For conflicting interactions, i.e. close approach (or collision) in
the near future, a decision model is used. Indeed, in case of future
conflict with the AV, pedestrians must take a decision to be sure to
avoid the collision. This decision depends on the type of interaction
(back, front or lateral) and on the expected crossing order for lateral
interaction [7]. The proposed decision model is then based on the
interaction angle (back, frontal or lateral) and on the expected
crossing order at the conflict point. Depending on these parameters,
pedestrians decide to run, stop, step back or turn. The decision
model also incorporates a joint decision for groups so that group
members avoid the AV together. If a collision is imminent for a
pedestrian in a group, an individual decision is taken.

The pedestrian’s decision is then translated into action by modi-
fying the forces previously calculated in the SFM. For example, a
pedestrian who has decided to stop will get his "desire" force, which
initially makes him move towards his goal, changed to an opposite
force, which makes him slow down and stop. After all forces have
been calculated, the agent computes the sum of all the forces in
order to obtain an acceleration.

Finally, the agent acts and updates its walking speed by using
the computed acceleration and moves.

2.2 Important Concepts
The decision model uses three key concepts: the 𝑇𝑇𝐶 , the interac-
tion angle 𝜃 and the expected crossing order at the conflict point.

The 𝑇𝑇𝐶 is the time required for two agents to enter in conflict
if they continue on their trajectory at their current speed. In the
decision model, we defined 3 conflict zones for pedestrian-AV inter-
action, illustrated in Figure 2. A collision zone is delimited by the
physical size of the agents: 𝑟𝑎𝑑𝑖𝑢𝑠𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 = 𝑟𝑎𝑑𝑖𝑢𝑠𝑝 and 𝑟𝑎𝑑𝑖𝑢𝑠𝐴𝑉 .
A danger zone, where the agents are very close, is delimited by
𝑟𝑎𝑑𝑖𝑢𝑠𝑑𝑎𝑛𝑔𝑒𝑟 . A risk zone, where the agents are at a risky distance,
is delimited by 𝑟𝑎𝑑𝑖𝑢𝑠𝑟𝑖𝑠𝑘 .

Figure 2: The 3 conflict zones in the decisionmodel: collision
zone (red), danger zone (orange) and risk zone (yellow). At
time t0, the positions of 𝑝 and 𝐴𝑉 appear opaque. 𝑡 seconds
later, 𝑝 will enter the danger zone around 𝐴𝑉 .

A danger conflict will occur in 𝑇𝑇𝐶𝑑𝑎𝑛𝑔𝑒𝑟 = 𝑡 seconds if the
distance between the pedestrian 𝑝 and the 𝐴𝑉 in 𝑡 seconds is equal

to the danger radius, as shown in Figure 2:

𝑑 (𝑝𝑜𝑠𝑝 (𝑡), 𝑝𝑜𝑠𝐴𝑉 (𝑡)) = 𝑟𝑎𝑑𝑖𝑢𝑠𝑝 + 𝑟𝑎𝑑𝑖𝑢𝑠𝐴𝑉 + 𝑟𝑎𝑑𝑖𝑢𝑠𝑑𝑎𝑛𝑔𝑒𝑟 (1)

The future positions of 𝑝 and 𝐴𝑉 at time horizon 𝑡 are given by

𝑝𝑜𝑠𝑝 (𝑡) = 𝑝𝑜𝑠𝑝 (𝑡0) + 𝑡 × ®
𝑣
𝑝𝑟𝑒 𝑓 𝑒𝑟𝑟𝑒𝑑
𝑝 and 𝑝𝑜𝑠𝐴𝑉 (𝑡) = 𝑝𝑜𝑠𝐴𝑉 (𝑡0) +

𝑡 × ®𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝐴𝑉

.
By computing the discriminant Δ of the quadratic Equation 1,

we determine if a danger conflict is possible between 𝑝 and 𝐴𝑉 ,
and by solving the equation, we find 𝑇𝑇𝐶𝑑𝑎𝑛𝑔𝑒𝑟 . A 𝑇𝑇𝐶 > 0 means
that a conflict will occur between the two agents in 𝑇𝑇𝐶 seconds.

𝑑𝑎𝑛𝑔𝑒𝑟 =

{
𝑡𝑟𝑢𝑒, if Δ ≥ 0
𝑓 𝑎𝑙𝑠𝑒, otherwise

If Δ = 0, Equation 1 has one solution, equal to 𝑇𝑇𝐶𝑑𝑎𝑛𝑔𝑒𝑟 . The
agents are in danger conflict at a single instant (in 𝑇𝑇𝐶𝑑𝑎𝑛𝑔𝑒𝑟 s),
i.e. the pedestrian touches the danger zone without entering it. If
Δ > 0, then Equation 1 has two solutions. The first solution is the
instant when the pedestrian enters the danger zone and the second
solution is the instant when the pedestrian leaves the danger zone.
𝑇𝑇𝐶𝑑𝑎𝑛𝑔𝑒𝑟 is equal to the first solution because we want to know
when the pedestrian enters the danger zone.

The same reasoning is done with 𝑟𝑎𝑑𝑖𝑢𝑠𝑟𝑖𝑠𝑘 to find𝑇𝑇𝐶𝑟𝑖𝑠𝑘 , with
the difference that 𝑇𝑇𝐶𝑟𝑖𝑠𝑘 is equal to the second solution because
we want to know when the pedestrian leaves the risk zone.

For pedestrians in a group, the 𝑇𝑇𝐶𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 is also computed,
using 𝑟𝑎𝑑𝑖𝑢𝑠𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 instead of 𝑟𝑎𝑑𝑖𝑢𝑠𝑝 + 𝑟𝑎𝑑𝑖𝑢𝑠𝐴𝑉 + 𝑟𝑎𝑑𝑖𝑢𝑠𝑑𝑎𝑛𝑔𝑒𝑟
in Equation 1. This 𝑇𝑇𝐶𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 determines if an individual in a
group is in imminent collision with the AV and needs to separate
from his group. 𝑇𝑇𝐶𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 is equal to the first solution because
we want to know when the pedestrian will enter in collision.

The interaction angle 𝜃 indicates the type of interaction: back,
frontal or lateral. 𝜃 denotes the angle in degrees between ®𝑣𝑝 and
®𝑣𝐴𝑉 . To classify the interaction, a threshold 𝜙 is used (we arbitrarily

choose 𝜙 = 25° because with an angle too close to 0° we would
ignore some frontal cases and with a too large angle (close to 45°),
we would consider as frontal interactions that are actually lateral):

𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =


𝑏𝑎𝑐𝑘, if 𝜃 ∈ [−𝜙 ;+𝜙]
𝑓 𝑟𝑜𝑛𝑡𝑎𝑙, if 𝜃 ∈ [180 − 𝜙 ; 180 + 𝜙]
𝑙𝑎𝑡𝑒𝑟𝑎𝑙, otherwise

The expected crossing order at a conflict point is key information
used by pedestrians in order to adapt their trajectory [21]. Pedestri-
ans visually perceive obstacles under a given angle i.e. the bearing
angle 𝛼 [7]. When interacting with a moving obstacle, the expected
order of passage of the pedestrian at the conflict point, i.e, first or
second, can be inferred from 𝛼 and its time derivative ¤𝛼 [22]:

pedestrian arrive


𝑓 𝑖𝑟𝑠𝑡, if 𝑠𝑔𝑛(𝛼) × ¤𝛼 > 0
𝑠𝑒𝑐𝑜𝑛𝑑, if 𝑠𝑔𝑛(𝛼) × ¤𝛼 < 0
𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝑙𝑦, if ¤𝛼 = 0

However, pedestrians are not perfect. Their perception of the
situation may be erroneous or they may act in a way that seems
irrational, e.g. speeding to go first when they are expected to pass
second. If the crossing order is not clearly defined, pedestrians
may hesitate. An hesitation threshold was then added on ¤𝛼 (we
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arbitrarily choose a threshold of 0.1 rad s−1. This value can be
reduced to 0 to eliminate hesitant behavior or can be increased for
more erratic behavior.).

When the pedestrian clearly arrives first (𝑠𝑔𝑛(𝛼) × ¤𝛼 > 0.1),
he decides to go first. When the pedestrian arrives clearly second
(𝑠𝑔𝑛(𝛼) × ¤𝛼 < −0.1), he decides to go second. If the crossing order
is unclear, i.e. ¤𝛼 ∈ [−0.1; 0.1], there is hesitation.

2.3 Decision Model
A flowchart of the decision model is shown in Figure 3.

For individuals, all calculations (𝑇𝑇𝐶𝑑𝑎𝑛𝑔𝑒𝑟 , 𝑇𝑇𝐶𝑟𝑖𝑠𝑘 , 𝜃 , 𝛼 and
¤𝛼) use the AV’s current position, direction and velocity, and the
pedestrian’s current position, direction and preferredwalking speed.
His preferred speed, rather than his current speed is used because
we want to know what would happen if he walked at his ideal
speed, without adaptation.

The pedestrian calculates whether he will be in danger in the
near future. If so, he examines the type of interaction. If the AV
comes from the front or the back, the pedestrian decides to turn
sharply. Otherwise (i.e. lateral interaction), the pedestrian estimates
the expected crossing order if the AV continues its trajectory and if
the pedestrian continues walking at his preferred speed. If he will
clearly arrive first at the crossing, he runs in order to arrive earlier
and puts some distance between him and the AV at the moment of
the crossing. If he will clearly arrive second, he decides to stop. In
cases where the crossing order is unclear, there is hesitation. Then,
several cases are possible. Either the pedestrian had to come second
and decided to stop and is now hesitating; in this case, he steps back
to clarify his decision to let the AV pass. Or, the pedestrian was
supposed to pass first and was running and momentarily hesitates;
in this case, he will keep running. Finally, the pedestrian may also
hesitate and has not yet made a decision. In this case, the pedestrian
will randomly decide to either run or stop.

After detecting a future conflicting interaction, the pedestrian
has made a decision and has left the danger zone, but has not yet
left the risk zone. As long as the pedestrian is in the risk zone, he
continues to act according to the decision he has made. Thus, he
continues to run, stop or step back until he is out of the risk zone.

The pedestrian’s decisions are translated into actions as follows.
When a pedestrian decides to turn sharply, the social force is re-
placed by a force perpendicular to the car direction (to the left or to
the right depending on the pedestrian’s relative position). When a
pedestrian decides to run, the social force is set to 0 and the desire
force is replaced by a force in the pedestrian’s current direction, at
running speed. Moreover, the pedestrian is no longer limited by his
walking speed, but by his running speed. When a pedestrian de-
cides to stop, the social force is set to 0. When conflict is imminent
(𝑇𝑇𝐶𝑑𝑎𝑛𝑔𝑒𝑟 ≤ 1.5s [11]), the pedestrian effectively stops: the desire
force is replaced by a force in the direction opposite to the current
direction. When a pedestrian decides to step back, the social force
is set to 0 and the desired force’s direction is reversed. The social
force is set to 0 because when pedestrians are on a collision course
with a vehicle, this interaction prevails over other interactions.

For each pedestrian moving in a group, the 𝑇𝑇𝐶𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 is com-
puted. If there is no imminent collision with the AV, the pedestrian
takes his group into account. The computations of 𝜃 , 𝛼 and ¤𝛼 are

Figure 3: Flowchart of the proposed decisionmodel, with cal-
culations in orange, tests leading to decisions in red and ac-
tion decided in blue. The two green areas are for groups.

made using the AV’s current position, direction and velocity, and
the group’s current center of mass, average direction and average
speed. If a collision is imminent, then the pedestrian temporarily
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leaves his group and considers his individual safety. For the calcula-
tions, he uses his group’s average direction and speed, but uses his
individual position instead of the group’s position. In addition, the
pedestrian will ignore forces that make the group move together.

With these changes, the calculated interaction angle and cross-
ing order will be the same for all pedestrians in a group. Thus, all
members of a group will make a joint decision. If hesitating, a pedes-
trian in the group follows the decision of the first group member
to decide. If hesitating but in an imminent collision situation, he
makes an individual decision, regardless of the group’s decision. In
addition, all members of a group act jointly. When they decide to
turn sharply, all members turn in the same direction, depending on
the group’s position. When they decide to run, all members run in
the same direction, i.e. in the current average group direction.

3 EXPERIMENT DESIGN
3.1 Calibration
For pedestrian-pedestrian interactions, the SFM and its parameters
are the ones used in [25] (based on [17]) for individual pedestrians,
and in [26] (based on [18]) for pedestrian groups. Parameter values
have been previously calibrated in these works and are kept here.

For pedestrian-AV interactions, the SFM is similar to that for indi-
vidual pedestrians [25] with some parameters adapted to represent
the AV. The adapted parameters and their values for pedestrian-
pedestrian and pedestrian-AV interactions are in Table 1.

Table 1: Adapted SFM parameters with their values for
pedestrian-pedestrian and pedestrian-AV interactions.

Parameter Value for ped.-ped. Value for ped.-AV
interaction [25] [17] interaction

𝛾 0.35 0.2
social force factor 5.1 10.2
perception zone 220° 10m + 220° 10m +

360° 1.5m 360° 3.3m
physical size Ellipse Ellipse

body size 1.2 × 2.2 m
margins vary with density 2m × 2m × 5m
preferred speed 1.34 ± 0.26 m/s 2.5-4.5 m/s

In the SFM, 𝛾 makes the interaction range dependent on the
relative speed of the two agents. 𝛾 is lower with the AV than with
pedestrians because the AV has a high relative speed compared to
pedestrians; a too high 𝛾 would make the pedestrians avoid the
AV too early. 𝛾 and the social force factor were calibrated by hand
with a visual analysis of the magnitudes of vehicle influence and by
comparing the vehicle’s influence to ground truth. The perception
zone of pedestrians is extended behind them since pedestrians
perceive a vehicle from a greater distance than another pedestrian
because of engine noise. The value of 3.3m is approximated from
data [32]. The AV’s margins are zones around the vehicle that
pedestrians absolutely avoid. The values of 2m at the back, 2m on
the sides and 5m at the front are derived from data [32]. The AV’s
size and speed are determined from real data and can be modified
according to any vehicle. The focus was not on a perfect calibration

of the SFMparameters since calibrating themagnitude and direction
forces cannot fit with all of the interaction cases.

The parameters of the proposed decision model are in Table
2. The AV and pedestrians radii are the circles that enclose the
physical sizes of the agents. For the other parameters, these values
were from the literature or were obtained by trial and error, with
a visual inspection of the simulation output over an acceptable
range of values. The observed behaviors and model parameters are
qualitatively and quantitatively evaluated in sections 4.1 and 4.2.

Table 2: Parameters of the decision model.

Parameter Value

𝑟𝑎𝑑𝑖𝑢𝑠𝐴𝑉 1.1 m
𝑟𝑎𝑑𝑖𝑢𝑠𝑝 0.35 m
𝑟𝑎𝑑𝑖𝑢𝑠𝑑𝑎𝑛𝑔𝑒𝑟 0.5 m
𝑟𝑎𝑑𝑖𝑢𝑠𝑟𝑖𝑠𝑘 1.0 m
running speed [2-3] × preferred speed m/s [31]
𝜙 25°
𝑇𝑇𝐶𝑑𝑎𝑛𝑔𝑒𝑟 considered [-1s;+5s]
TTC imminent 1.5s [11]
¤𝛼 hesitation threshold [-0.1;0.1] rad s−1

3.2 Experimental Setup
The hybrid model in section 2 was implemented using Pedsim_ros
[19], an open source crowd simulator that implements the SFM de-
scribed by [25, 26]. All simulations were run both with the SFM and
with the hybrid model for comparison. The SFM is used as a refer-
ence to show the potential benefits of the hybrid solution. The SFM
models pedestrian reactions with a repulsive force, while the pro-
posed hybrid model combines a repulsive force for non-conflicting
interactions and a decision model for conflicting interactions.

The objective is to predict trajectories for pedestrians interacting
with an AV, knowing their initial position, speed, and orientation.
However, trajectories cannot be perfectly reproduced (i.e. a zero
prediction error), because there is a risk of overfitting. Overfitting
occurs when the model is too closely matched to the limited data
available and does not account for the variability of behaviors, and
therefore cannot be applied to new situations. The model must
be able to realistically handle various interaction situations and
behaviors in a shared space.

In order to evaluate the realism of the simulated trajectories, we
compared them to real trajectories from an open dataset [32]. This
dataset includes videos and trajectories of pedestrians and vehicles
interacting in several shared space scenarios. The dataset is com-
posed of two sub-datasets; the CITR dataset focuses on fundamental
scenarios in controlled experiments, and the DUT dataset consists
of uncontrolled interactions in a crowded university campus.

We first used the DUT dataset to perform a qualitative evaluation
of the simulated pedestrian behaviors. The scenario considered is a
lateral interaction between a car and a pedestrian flow, as in the
dataset. The simulation has been replicated 20 times in order to
smooth out stochastic errors. This qualitative evaluation validates
whether the proposed model can reproduce well the variety of
pedestrians behaviors observed in the dataset.
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We then used the CITR dataset to perform a quantitative evalua-
tion of the model. The dataset is composed of 4 interaction scenarios
between 8 pedestrians and one AV, with 4 instances of each scenario:
a front interaction (vehicle arriving in front of pedestrians), a back
interaction (vehicle coming from behind pedestrians), an unilateral
interaction (vehicle approaching from the right side of pedestrians),
and a bilateral interaction (vehicle approaching from the side of
pedestrians, with 4 pedestrians facing 4 other pedestrians).

For each of the 4 scenarios and 4 instances, we simulated pedes-
trians with the same initial conditions as in the data. In order to
have the same rate as in the dataset we set the simulation time step
to 0.033s, i.e. 30 frames per second. Simulated agents were placed at
positions corresponding to the initial positions in the dataset and
given a destination point corresponding to a straight line trajectory
from their initial position to the arrival point. The agents were
assigned a preferred walking speed following a normal distribution
with 𝜇 = 1.34 m/s and 𝜎 = 0.26 m/s [4]. The pedestrians identified
as particularly slow in the first data measurement (speed ≤ 1m/s)
were assigned a preferred walking speed of 1 m/s. The simulated
AV moves in the simulation according to its ground truth trajectory.

The model is partially stochastic, that is, the pedestrians’ speeds,
body size, and the decision to run, stop or hesitation, are random
variables. Therefore, each of the 16 simulation cases was replicated
20 times in order to obtain average results.

This quantitative evaluation allows us 1) to provide a quantified
indication of the model’s accuracy for prediction, and 2) to compare
the accuracy of the model’s predictions with the predictions from
other models, i.e. with the SFM.

4 RESULTS AND DISCUSSION
4.1 Qualitative Evaluation
The ability of the SFM and the proposed model to reproduce various
pedestrians behaviors identified in the DUT dataset [32] when
interacting laterally with a vehicle are shown in Table 3. A video
illustrates the simulated pedestrian behaviors in both models [27].

Table 3: Observed pedestrians behaviors reproduced by the
SFM and the proposed model.

Observed behavior SFM Proposed model

Accelerate to cross ✓ ✓

Run to cross ✘ ✓

Slow down to let pass ✓ ✓

Stop to let pass (without sliding) ✘ ✓

Hesitate and step back ✓ ✓

Stay in group, without collision ✘ ✓

The proposed model reproduces observed behaviors such as
pedestrians running to cross in front of a vehicle, pedestrians stop-
ping to wait for a vehicle to pass, and pedestrian group members
avoiding a vehicle together without colliding, in addition to the
behaviors that were already reproduced by the SFM.

Moreover, the observed trajectories are more accurately repro-
duced with the proposed model than with the SFM. In empirical
observations, pedestrians in lateral interaction with the car run

to cross, or stop to wait without deviating from their trajectory.
Figure 4a shows that pedestrians trajectories remain straight.

With the SFM, some collisions are observed and the agents devi-
ate from their trajectories, as shown in Figure 4b. This deviation
is caused by the SFM calibration, which was carried out on a mix
of several scenarios. As detailed in section 1, the SFM cannot ac-
curately reproduce all possible interaction cases. A different set of
parameter values, calibrated for each interaction case, is required.
With the proposed model, the agents adapt their speed and do not
deviate from their trajectory, as shown in Figure 4c.

(a) From data (b) With SFM (c) With our model

Figure 4: Pedestrians trajectories after a lateral interaction
with a car (large red line).

With regard to pedestrian groups, empirical observations show
that group members stay together during an interaction with a car.
With the SFM, group forces make group members stay together, but
they collide with the car and/or deviate from their initial trajectory.
In case of imminent collision, an agent either follows his group and
collides with the car, or separates from his group but still walks very
close to the car. In the SFM, the group coherence force can actually
counterbalance the repulsive force emitted by the car. A calibration
of forces with a different magnitude from individual forces is needed
for groups. With the proposed model, group members stay together;
they all stop to wait or all run to cross. In case of imminent collision,
an agent abandons his group and acts individually to avoid the car.

With a decision model, integrated with our adapted SFM, the
simulated behaviors are more in line with the observed behaviors.

4.2 Quantitative Evaluation
In order to evaluate the predictive ability of the proposed model,
we used measures commonly used in the literature for trajectory
prediction [1, 3, 13], for time horizons 1s to 5s. To be able to compare
and aggregate prediction errors, the prediction time is limited by
the shortest interaction time in the dataset, which was 5s.

For each measure, we computed the prediction error in each
simulation for each pedestrian and for each time horizon from
1s to 5s. For each scenario (front, back, unilateral and bilateral)
and for each time horizon, we computed the median error and the
associated interquartile range (IQR). The median and IQR provide a
good way to study the predicted accuracy, because the errors follow
a right-skewed distribution. All of the following figures show error
measures; smaller values are better. We compared the prediction
errors of the proposed model and the SFM with a Mann-Whitney
U test to determine if the errors produced by the models differ
significantly, i.e. if the model with the lowest error produces a
significant improvement in prediction. The Mann-Whitney U test
is used because the test does not meet the normality assumption.

The Final Displacement Error (FDE) is the distance between the
position in predicted trajectory and the position in ground truth
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at the prediction horizon t. The median FDEs with the proposed
model and the SFM are shown in Figure 5.

Figure 5: Median final displacement error and interquartile
range, with the proposed model (dark lines) and the SFM
(light lines), for a prediction time from 1s to 5s and for each
interaction scenarios: back (blue), front (red-orange), unilat-
eral (green) and bilateral (purple-pink).

For the front (red-orange lines), the unilateral (green lines) and
the bilateral (purple-pink lines) scenarios, the proposed model pro-
duces significantly smaller FDEs than the SFM for prediction times
of 4s and 5s; 3s, 4s and 5s; 4s and 5s, respectively (p-values < 0.05).
For a 5s prediction, the median FDEs with the proposed model
are smaller from 17 cm to 30 cm depending on the scenario. For
other prediction times and for the back scenario (blue lines), no
significant differences were found in the FDEs with the two models.

The Final Linear Velocity Error (FLVE) is the absolute difference
between the linear velocity in a predicted trajectory and the linear
velocity in ground truth at prediction horizon t. The median FLVEs
with the proposed model and the SFM are shown in Figure 6.

Figure 6: Median final linear velocity error and interquar-
tile range, with the proposedmodel (dark lines) and the SFM
(light lines), for a prediction time from 1s to 5s and for each
interaction scenarios: back (blue), front (red-orange), unilat-
eral (green) and bilateral (purple-pink).

The FLVE remains constant with an increasing prediction time
for the back, front and unilateral scenarios. This indicates that the
error is mainly due to the initialization of the walking speed. This is

confirmed by a high FLVE (0.27-0.35 m/s) after only 1s of prediction.
We therefore assume that with a more accurate speed initialization,
better predictions would be made. The model is generic; simulated
pedestrians have a generic preferred walking speed as detailed in
section 3.2. However, with more data available, we could observe
the first few seconds of data to compute each pedestrian’s preferred
speed and use it to initialize the model.

The FLVE increases at 4s and 5s for the bilateral scenario (purple-
pink lines), which corresponds to when pedestrians stop or run
to avoid the AV. An analysis of the dataset videos show that in
bilateral scenarios some pedestrians have more unusual behaviors;
running to pass when the car is close or stopping early when they
would have had time to pass. More data are needed to study these
behaviors since other factors can affect pedestrians’ reactions (e.g.
influence of surrounding pedestrians, trust in the AV, etc.).

For the front (red-orange lines) and bilateral (purple-pink lines)
scenarios, the proposed model produces significantly smaller FLVEs
than the SFM for prediction times of 3s and 4s; and 4s and 5 s, re-
spectively (p-values < 0.05). However, the differences in the median
FLVEs of the two models are small; from 0.04 m/s to 0.1 m/s. For
other prediction times, and for the back and unilateral scenarios,
no statistically significant differences were found.

The Final Orientation Error (FOE) is the absolute difference
between the pedestrian’s orientation in a predicted trajectory and
the orientation in the ground truth at the prediction horizon t. The
median FOEs are shown in Figure 7.

Figure 7: Median final orientation error and interquartile
range, with the proposed model (dark lines) and the SFM
(light lines), for a prediction time from 1s to 5s and for each
interaction scenarios: back (blue), front (red-orange), unilat-
eral (green) and bilateral (purple-pink).

For the back (blue lines), front (red-orange lines), unilateral
(green lines) and bilateral (purple-pink lines) scenarios, the pro-
posed model produces significantly smaller FOEs than the SFM
for prediction times of 4s; 3s; 1s, 2s, 3s 4s; 2s and 3s respectively
(p-values < 0.05). For other prediction times, there is no statistically
significant differences in the FOE produced with the two models.

For the unilateral interaction (green lines), the FOE with the SFM
increases from 8.5° to 15.3° during the interaction, while the FOE
remains almost constant with the proposed model (from 7.7° to 8.9°).
This confirms the observations in lateral interactions in section 4.1.
With the SFM, the simulated pedestrians deviate from their initial
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trajectory; which is contrary to what is observed empirically and
leads to a higher error. The proposed model produces no deviation
during a lateral interaction, which is closer to reality.

A limitation of how prediction errors are measured is that it
does not take into account the different possible trajectories for
a pedestrian. In some cases, two pedestrians in the exact same
situation with the vehicle may take very different decisions. For
example, we observed in the dataset that in a lateral interaction,
one pedestrian decides to run in front of the car while another
pedestrian decides to stop to let the AV pass. In such a case, two
very different trajectories may be realistic for a given pedestrian.
However, if the real pedestrian stops, the error will be smaller for a
simulated trajectory where the agent collides with the car than for
a simulated trajectory where the agent runs in front of the car and
avoids collision.

We therefore completed the quantitative evaluation with ad-
ditional measures. In each simulation and for each pedestrian,
we measured the distance of closest approach between the pedes-
trian and the AV, considering the entire interaction (similar to the
𝑀𝑃𝐷 (𝑡𝑐𝑟𝑜𝑠𝑠) measure for pedestrians interaction [20]). We then
computed the error in the distance of closest approach (DCAE), i.e.
the absolute difference between the distance of closest approach
measured in simulation and the distance of closest approach in
ground truth. The DCAE measures the model’s ability to predict
the minimum distance kept by each pedestrian around the AV. For
each scenario, the median DCAE and the IQR are shown in Figure
8. Again, we used a Mann-Whitney U test to determine if the errors
produced by the two models significantly differ.

Figure 8: Median error in distance of closest approach and
interquartile range, with the proposed model (dark green)
and the SFM (light green), for each interaction scenario.

For the back and front scenarios, both models accurately predict
the distance of closest approach of the pedestrians around the
vehicle. No statistically significant differences were found in the
DCAEs produced with the two models (p-values of 0.36 and 0.38
respectively). For the unilateral and bilateral scenarios, the proposed
model (dark green) produces significantly smaller DCAEs than the
SFM (p-values of 3.21 × 10−6 and 2.11 × 10−7 respectively).

Finally, we computed the percentage of agents that collided
with the AV with both models, in order to check that there are no
simulated trajectories leading to a collision. With the SFM some
collisions happened; 0% to 5% of the agents collided with the AV,
depending on the scenario. The SFM forces sometimes counterbal-
ance each other and produce unrealistic behaviors. No collisions
are observed in the ground truth data and with the proposed model.

This is coherent with the model implementation; simulated pedes-
trians perceive the AV before it reaches the crossing point and they
have enough time to avoid the collision.

4.3 Proposed Model Predictions Accuracy
The median prediction errors obtained with the proposed model
and the SFM on the available data (all 16 interactions considered)
are in Table 4: median FDE, FLVE and FOE on the 5 first seconds,
as well as the median DCAE. Mann-Whitney U tests reject the null
hypothesis and support the hypothesis that errors produced by the
two models (Table 4) differ significantly (p-values <0.01).

Table 4: Median prediction errors (± interquartile range) of
the proposedmodel and the SFM. Smallest errors are in bold.

Predicted feature Median error
Proposed model SFM

Displacement (m) 1.02 ±0.91 1.08 ±0.99
Linear velocity (m/s) 0.28 ±0.33 0.29 ±0.34

Orientation (°) 9.3 ±14 10 ±15.3
Closest approach dist. (m) 0.40 ±0.65 0.53 ±0.79

Finally, the proposed model requires no more time and resources
than the SFM. The simulation runs in real time even with a large
number of pedestrians; at 25Hz, a simulation with an AV in a crowd
of 100 pedestrians at a density of 0.5 pedestrian/m2 runs in real
time on standard PC hardware (Intel Core i7-7920HQ, 4.10GHz).
The simulator can be accelerated to run faster than real time and
be used for online predictions.

5 CONCLUSION
We proposed an hybrid model for pedestrian reactions to an AV in
a shared space. The model combines the SFM with a new decision
model, which integrates various observed reactions of pedestrians
and pedestrians groups. We implemented the proposed model and
performed a qualitative and quantitative evaluation, through com-
parisons of the simulated trajectories with ground truth trajectories.

We identified some pedestrians behaviors that were not repro-
duced accurately by the SFM: running to cross, stopping to wait
without deviating, staying in social group to avoid the AV. The
proposed model reproduces well these various behaviors. More-
over, the proposed model performs better than the SFM for pre-
dicting pedestrians’ displacement, linear velocity, orientation, and
approach distance around the AV in fundamental interactions.

We are currently conducting a sensitivity analysis and a precise
calibration of the decision model’s parameters. Future work will
focus on further evaluation, with more diverse scenarios and social
groups. The simulator with the proposed model will be used to
test AV navigation algorithms within simulated crowds, with AV
dynamic adaptation to pedestrians behavior.
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