
User and System Stories: An Agile Approach for Managing
Requirements in AOSE

Sebastian Rodriguez
RMIT University

Melbourne, Australia
sebastian.rodriguez@rmit.edu.au

John Thangarajah
RMIT University

Melbourne, Australia
john.thangarajah@rmit.edu.au

Michael Winikoff
Victoria University of Wellington

Wellington, New Zealand
michael.winikoff@vuw.ac.nz

ABSTRACT
The agile software development life cycle is widely used in industry
today due to its highly flexible and iterative processes that facilitate
rapid prototyping. There has been recent work in bringing concepts
and processes from agile methodologies to agent-oriented software
engineering (AOSE). We contribute to this effort by presenting in
this paper a novel approach to capturing requirements of agent
systems in AOSE using and extending agile concepts. In this paper,
we propose to adopt and extend the well-known concept of User
Stories to facilitate the development of agent systems. We introduce
a novel concept, System Story, that defines requirements from the
perspective of the system. These System Stories are refinements of
User Stories and provide more intuitive mappings to agent concepts
in the design and implementation. We show how our approach
allows better traceability of requirements between stories and the
different software development artifacts. We validate our proposal
with a feature-based comparison to recent related work, and a
preliminary user evaluation based on a drone simulation of a simple
search and rescue case study.

KEYWORDS
AOSE; Engineering MAS; Agile methodologies
ACM Reference Format:
Sebastian Rodriguez, John Thangarajah, and Michael Winikoff. 2021. User
and System Stories: An Agile Approach for Managing Requirements in
AOSE. In Proc. of the 20th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2021), Online, May 3–7, 2021, IFAAMAS,
9 pages.

1 INTRODUCTION
The agile software development life cycle (SDLC) is widely used in
industry today. In 2017, 71% of the organizations consulted in [27]
responded that they use agile approaches in at least some of their
projects. The agile approach encourages a flexible and iterative
process that generates rapid prototypes that are continuously re-
fined. This involves much more interaction and collaboration with
the users and developers of the software system. The core values
expressed in the agile manifesto [2] are at the center of this success.

There has been recent work in bringing concepts and processes
from agile SDLC to agent-oriented software engineering (AOSE) [5,
21, 22, 31, 33]. We contribute to this effort in this paper - we present
a novel approach to capturing requirements of agent systems in
AOSE using and extending agile concepts.

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

A User Story is a brief informal description of a feature described
from the perspective of a user of the system. For example, for a
bookstore system: As a customer, I want to search for books by
keywords, so that I can find the book I want.

Some of the key benefits of using User Stories are that they [8]:
are comprehensible by both the users and the developers; enables
better scoping of requirements; encourage deferring details until a
better understanding of the needs are established; and promote a
greater understanding of the domain specific concepts and logic by
the system developers.

In current agent development methodologies such as TDF [16],
Prometheus [25], Tropos [4], O-MaSE [11], INGENIAS [26], and
ASPECS [10] the process of managing requirements from elicitation
to implementation follows the more traditional way of developing
software, rather than the more modern agile approaches.

Most of the agent methodologies use concepts and techniques
that are foreign to the domain experts and end users. The initial
stages of gathering the requirements of the system are often cum-
bersome and require extensive modelling to map the requirements
to suitable artifacts of the respective methodologies.

In this article we present an approach that not only adopts the
concept of User Stories, but also extends the concept to System
Stories, which capture features from the system’s perspective, con-
sidering the system as a first class citizen. In our approach, we refine
User Stories to System Stories. For example, w.r.t to the User Story
above, a System Story might be: As the System, I want to index all
the books by keywords, so that I can retrieve them by keyword.
These System and User Stories are mapped to AOSE design artifacts
and corresponding constructs in an agent programming language.
Although there has been recent work on agile AOSE methodolo-
gies (e.g. [5, 33]), they do not include System Stories or acceptance
criteria, the conditions under which the system behaviour can be
accepted by the stakeholders. Our work, by including both these
aspects, provides a richer approach with better traceability.

We hypothesize that the agile approach we propose will provide
a more natural and flexible way to managing requirements that are:
(i) easy to understand; (ii) mapped to the agent design concepts
that realise them; (iii) easier to maintain; and (iv) allow traceability
from execution to requirements.

Our approach is general and complementary to existing AOSE
methodologies. For the purpose of illustrating our approach we
use in this paper the TDF (Tactics Development Framework) agent
design methodology [16] and the SARL agent implementation plat-
form [29]. The choice of these tools are due to the fact that they
are used for an industry project that necessitates this work.

In this paper we: (i) present an agile approach to capturing the
requirements via User and System Stories (USS); (ii) show how USS

Main Track AAMAS 2021, May 3-7, 2021, Online

1064



map to agent concepts in AOSE; (iii) describe a traceability frame-
work with supporting tool; (iv) present a feature-based comparison
of USS to other approaches; and (v) provide a proof-of-concept
evaluation of the above mentioned hypotheses with users from our
current industry collaborations.

2 BACKGROUND
In this section we introduce the preliminaries in terms of User
Stories and acceptance criteria as used in agile approaches, and a
brief overview of TDF and SARL.

2.1 Agile & User Stories
Agile approaches finds their roots in the movement started by the
Agile Manifesto [2] that defines its core values and principles. A
number of software development life cycles (SDLC) have embraced
the fundamental principles, e.g. Scrum [30] and Extreme Program-
ming [1]. A key value of agile approaches is the close collaboration
of the development team with stakeholders. Agile methods always
favor and encourage conversations to develop a shared understand-
ing over rigid requirement specification documents. A number of
techniques have been proposed to understand the objectives and ex-
pectations of the stakeholders (e.g User Interviews, Questionnaires,
Story-Writing workshops) [8]. In this context, the most common
technique to gather and document requirements in agile frame-
works are User Stories [1]: a brief informal description of a feature
described from the perspective of a user of the system.

Writing good User Stories and capturing sufficient detail is still
a matter of debate and often requires specialized training. However,
there is a general agreement that stories should remain high level
in the early stages [8, 9]. They are then refined and detailed as they
get a higher priority in the project development.

While there is no single format of User Stories, the most widely
used template is: As (role), I want to (do something), so that (reason).
For example, for a bookstore system: As a customer, I want to search
for books by keywords, so that I can find the book I want.

The User Stories contain as well Acceptance Criteria (AC), which
are a set of statements that identify the conditions under which a
system behaviour can be accepted by the user or stakeholders. A
common format for AC is the scenario-oriented Given/When/Then,
derived from Behavior Driven Development (BDD) [24]. The essen-
tial idea is to break down the scenario into three main sections: (a)
Given - describes the state of the world before the system executes
the behavior being described; (b)When - identifies the triggers of
the behavior; and (c) Then - details the expected outcomes of that
behavior. For example, Given a set of keywords, when I search for a
book, then books matching those keywords are displayed.

2.2 TDF & SARL
There aremany agent-oriented software engineering (AOSE)method-
ologies to help software engineers to conceptualise, design, and
implement agent-based systems. MaSE [11], Tropos [4], INGE-
NIAS [26], Gaia [35], PASSI [6], Prometheus [25], and TDF [16],
are some of the most commonly used AOSE methodologies for
developing agent-based systems. Although these methodologies
differ in many ways, they follow the common software engineering
core activities of: specification, design, implementation, and testing.

The requirements specification approach described in this paper
via User and System Stories is intended to complement the existing
AOSE methodologies rather than replace any of them. For the pur-
pose of grounding our work we chose the TDF methodology as it
is used in the industry project that motivates this work.

TDF [15, 16] is the successor to Prometheus [25], a mature and
popular AOSE methodology. A pilot study has shown that TDF sig-
nificantly improves comprehension of behaviour models, compared
to UML [18]. The methodology follows 3 phases in an iterative
manner: System specification where the system-level artifacts are
identified, namely goals, scenarios, percepts, actions, data, actors
and roles; System architecture where the internals of the system
are specified, namely the agents that enact the different roles and
the interactions between them; and Detailed design that defines the
internals of the agents, namely plan diagrams, tactics and internal
messages/sub-goals.

There are several agent implementation frameworks that support
the implementation of intelligent agent systems, e.g. JACK [34],
SARL [29], Jadex [28], and Jason [3]. We use SARL in our work,
since it is what is currently used in our industry project and the TDF
design artifacts are readily implemented in SARL (recent work [18]
also used this combination).

SARL is a general-purpose agent-oriented system implemen-
tation framework that provides the fundamental abstractions to
develop and deploy distributed complex systems. Due to its generic
and highly extensible architecture, SARL is able to integrate new
concepts and features quickly and has been adopted by a number
of academic and industrial institutions to develop a wide range of
applications. Space preclude a more detailed introduction to SARL,
which is not required for this paper. For further details see [29].

3 APPROACH
In this section we describe our approach to specifying the require-
ments of the system via User and System Stories and how they
translate to agent concepts, resulting in all of the benefits described
in the Introduction of this paper. Our approach is general and
does not necessitate any particular development process per se.
(e.g. Scrum, Kanban, etc.).

Given a high level specification of the system in terms of objec-
tives, our approach comprises the following steps:

(1) for each objective, identify User Stories using classical tech-
niques (see [8]);

(2) refine each User Story into system level requirements in the
form of System Stories and their acceptance criteria; and

(3) during the development process (defined by the selected
SDLC and generally iterative):
• map the System Stories, including the associated accep-
tance criteria, to the relevant agent concepts.

• maintain a process ledger for the purpose of traceability.
We will describe each of the above steps in detail in the following

subsections. In the remainder of this paper, we will use the term
‘story’ when the discussion applies to both User and System Stories.

Search and rescue case study and testbed: In order to illustrate
our approach wewill use an example case study: a search and rescue
domain where autonomous drones assist humans to locate and
assist disaster victims. The drones assist in locating and identifying

Main Track AAMAS 2021, May 3-7, 2021, Online

1065



Objectives User Story System Story As I want to So that Technology
Opportunities

Ethical
Consideration

Explore 1 Explore Area Drone
Operator

assign to drones areas to
explore They find victims and notify me.

Explore 1.1 Find Victims Drone explore an area assigned to me. I can find victims. Path Planning
Exploration

Explore 1.2 Detect Victims Drone detect victims I can locate their position Computer Vision;
Infrared Sensors

Potential Bias,
Accuracy

Explore 1.3 Locate Victims Drone locate victims I can inform operator GPS; Galileo;
Indoor Positioning

Intervene 2 Assist Victim First
Responder reach victims I can render appropriate aid

Intervene 2.1 Inform First
Responder System use Drone images to identify

victim
I can provide First Responder
with personal medical data

Computer
Vision Data Privacy

Intervene 2.2 Guide First
Responder System use Drone mapping to guide

First Responder to victim
First Responder can
reach victim safely and quickly Path Planning

Intervene 2.3 Signal First
Responder Drone visually signal to First Responders

a victim’s location
First Responder can find
the victim faster

Table 1: Sample User and System Stories from Drone Case Study

victims, via tasks assigned to them by the human drone operator,
which they carry out autonomously. When victims are located and
identified, human first-responders assist the victims. Therefore, there
are interactions between the drones and the humans. There are two
primary objectives: exploration in order to search for victims; and
intervention, providing assistance to any victims found.

3.1 Identifying User Stories
Consider the objective of exploring to identify victims in our case
study. A User Story for the drone operator might be: As drone
operator, I want to to be able to assign to the drones areas to explore
so that they can locate victims and notify me. This follows the
Who/What/Why format as described in §2.1. We can represent these
User Stories as shown in Table 1.

There are well-developed existing techniques for gathering, pri-
oritizing, and scoping User Stories [8], and we propose to simply
use them for this step in our approach.

When identifying User Stories, it is also important to identify the
acceptance criteria for that User Story, which identifies the expected
behaviour of the system in different scenarios. As mentioned in
§2.1 these are typically in the form Given/When/Then. Since there
are already well-developed and accepted techniques for identifying
and deriving acceptance criteria [8], we simply propose to use these.
Table 2 shows some example acceptance criteria for the User Story
1 that shows the expected behaviour of the drones in situations
where the drone is idle and busy, respectively: if the drone is idle,
then when receiving a request to explore an area, it commences
exploring the area immediately. However, if the drone is already
exploring, then instead it adds the new area to its exploration queue.

3.2 Extracting System Stories
Whilst the standard agile approaches would take the User Stories
and map them to design and implementation of the system in an
iterative fashion, we introduce the novel concept of System Stories
which further refine the requirements enabling them to be more
easily mapped into agent concepts.

System Stories. The basic intuition is that each User Story is re-
fined into one ormore System Stories. The System Stories associated

with a given User Story consider the requirement from the system’s
perspective, and expand on the functionality that the system needs
to have, in order to be able to meet the user’s needs.

We represent System Stories using the same Who/What/Why
format as User Stories. For example, given User Story 1 (see Table 1),
we could firstly define a System Story (story 1.1) along the lines of
As Drone, I want to explore an area assigned to me, so that I can
identify victims. Note that here we changed the perspective from
the user to system.

The process of developing System Stories involves two tech-
niques. Firstly, as illustrated above, we take a User Story and convert
it into a System Story by changing the role, and shifting responsi-
bility for the requirement to the system (or part of it). Secondly, we
refine System Stories by breaking them down, asking “how might
this be done?”. For example, finding victims may require detecting
humans, and then confirming their location.

Table 1 shows example refinements for our scenario. The so that
column captures the rationale (or, alternatively, explanation) for
each system goal. In some cases the rationale for a given System
Story relates to its associated User Story. For example, the drone
identifies humans so that it can inform the operator. In other cases,
it may relate to a subsequent System Story. For example, the drone
explores an area (System Story 1.1) so that it is then able to locate
humans (System Story 1.3). Essentially, new System Stories can be
derived from other User Stories or System Stories, which creates a
hierarchy of requirements.

It is also possible to describe System Stories at the early stages of
the SDLC without identifying the specific roles (or agents) within
the system by using the generic term ‘System’ as in Story ID 2.1 in
Table 1. As the system is refined further the generic term can be
replaced with a specific role (or agent). In the process of defining
both User and System Stories, it is important to recall that, as
discussed in [8], stories need to remain negotiable and we should
resist the temptation of including too much detail upfront, in the
details of the User Story or derived Systems Stories. Stories should
remain as reminders to have a conversation.

Acceptance Criteria. As with a User Story, when defining a Sys-
tem Story we identify a set of acceptance criteria, which will be

Main Track AAMAS 2021, May 3-7, 2021, Online

1066



Story ID Scenario Actor Given When Then

1 Drone Idle Drone Operator the drone is at base it is assigned an area to explore it starts exploring autonomously
Drone Busy Drone Operator the drone is exploring it is assigned an area to explore it adds the area to its exploration queue

1.1 High Priority Drone A high priority area X the area X is assigned to me I employ a Plow Sweep
Low Priority Drone A low priority area Y the area Y is assigned to me I employ a Random Walk

Table 2: Sample Acceptance Criteria for Stories defined in Table 1.

used for testing and validation purposes. As in the previous section,
we propose to use existing techniques [8]. Table 2 shows some
sample acceptance criteria for System Story 1.1 from Table 1. For
example, in the situation where a high priority area is assigned to
a drone, it should employ a Plow Sweep, as opposed to a Random
Walk (these are different exploration strategies). Note that the ex-
pected behaviours of the Plow Sweep and Random Walk can also
be defined as acceptance criteria at later stages of the SDLC prior
to the implementation of these techniques.

Technology opportunities and ethical considerations. As Sys-
tem Stories are designed, various specialised technological solu-
tions may need to be considered in the system development stage
to realise these requirements. For example, story 1.1 may require
strategies for exploration and path planning techniques; and story
1.2 may require computer vision techniques to identify humans.
The other critical aspect in designing any intelligent system that
incorporates AI technology, is the ethical considerations [13, 32].
Considering the ethical issues at the requirements stage allows a
more systematic and thorough manner of capturing them which
also affords traceability at later stages. In our case study, story 1.2
should consider the potential bias in the computer vision techniques
in identifying victims, and story 2.1 needs to consider data privacy
issues. We document both the technology opportunities and ethical
considerations in our template as shown in Table 1.

3.3 System Story Mappings and Traceability
The User and System Stories described above are typically defined
during the requirements gathering meetings1 where the stakehold-
ers and the system development team discuss and develop a shared
understanding of the system’s features. During the system devel-
opment phase, the development team will have to translate those
stories into appropriate design artifacts and executable code making
sure that all expected behaviors are met. In this section, we pro-
vide some guidelines on how this translation could be carried out.
Additionally, we show how to maintain records of these mappings
for traceability purposes. As mentioned, we ground our approach
in the TDF design methodology and SARL agent implementation
language, though the general concepts (e.g. goals, agents, plans,
actions, etc.) are adaptable to other approaches2.

Translating Stories. The system design and architecture is a criti-
cal part of the SDLC for the long term maintainability of the system
and for the productivity of the development team [19, 20]. The
design is then translated into implementation artifacts.

In our approach we map stories to both agent design and imple-
mentation artifacts. We can intuitively relate the Who/What/Why
1The events will take different names according to the methodologies (e.g. Sprint
Planning, Backlog Grooming, etc.)
2See [12] for similarities between some AOSE methodologies.

Story
Element

Story type
User System

Who (As) <agent/role/system module> <agent/role/system module>
What
(I want to) <user input / percept> <achieve or maintain goal>

<do action>
Why
(so that) <system output / action> <achieve or maintain goal>

<handle perception>
Table 3: Story mapping templates

Story
ID

Story
Element Story Line ⇒ Agent

Concept Instance

1
Who (As) Drone Operator User Operator UI
What
(I want to)

assign to drones
areas to explore Percept Area

Assignment
Why
(So that)

They find victims
and notify me Action Inform

Operator

1.1
Who (As) Drone Agent Drone
What
(I want to)

explore an area
assigned to me Goal Explore Area

Why
(So that) I can find victims Goal Find Victim

2.1
Who (As) System Agent C2 System
What
(I want to)

use Drone images
to identify victim Goal Identify Victim

Why
(So that)

I can provide F.R.
with medical data Goal Obtain

Medical Data
Table 4: Stories to agent concepts mapping.

format of a story to agent concepts using the generic template
shown in Table 3. Using the template, we can then create the map-
pings depicted in Table 4. Note that we identify a particular instance
for each agent concept in the mapping process. Note that the “what”
part of a system story can, in the case where the system story in-
volves performing a single action, be mapped to an action, rather
than a goal. Similarly, the system story’s “why” can sometimes be
to respond to a percept.

The User Stories in general help identify the inputs (percepts)
and outputs (actions) of the system. For instance, from User Story
1 we can know that the Operator UI module3 will trigger an input
(percept) Area Assignment that will generate the intention (goal)
Find Victim and produce the output (action) Inform Operator. Figure
1(a) shows the TDF architecture overview diagram illustrating a
sample of the concepts associated with the the User Stories.

Using the System Stories related to the User Stories, we can
further decompose the high level goals into subgoals. For instance,
we can deduce that in order to Find Victim (from User Story 1) the
agent is required to perform other goals such as Explore Area and
Locate Victim (from System Story 1.1). Following this approach

3An alternative design could represent the Operator as an agent that represents the
human user in the agent system

Main Track AAMAS 2021, May 3-7, 2021, Online

1067



Figure 1: TDF System Design Extract

we start to identify dependencies and hierarchies of goals and
plans. Note that these initial goals can be later refined into more
convenient ones when needed.

The System Stories therefore enable the development of the
agent whose perspective the story captures. Figures 1(b) and 1(c)
shows a sample of the agent overview diagrams of the C2 System
(“command and control system”) and Drone agents, respectively.
Note that for the Drone agent, the goals Detect Victim, Locate Victim
(from System Story 1.2 and 1.3) and Inform First Responder (from
System Story 2.1) are merged as steps of the Find Victim plan.

System stories are related (and typically mapped to) goals, but
differ in that they can also be mapped to an action and/or a percept
(see Table 3), and that a system story identifies both the “what” and
the “why”.

Most agent design methodologies support the translation from
design to implementation. The detailed agent diagrams in TDF are
readily translated to implementation constructs in agent implemen-
tation languages such as JACK [17] and SARL [15].

Translating Acceptance Criteria. As mentioned, User and Sys-
tem Stories provide the initial mappings to define the architecture
of the agents, which may be incomplete. For instance, System Story
1.1 identifies that Drones should be able to Explore Area, but nothing
is detailed on how to handle that goal in different scenarios. We
use Acceptance Criteria for the purpose of refining the details.

When examining the acceptance criteria in Table 2 for Story ID
1.1, we notice that the Drone has two options to explore: (a) Random
Walk or (b) Plow Sweep. Further, we can define the conditions under
which each option is chosen based on the priority of the area to
explore: low or high. This is translated in the design as two different
plans to achieve the Explore Area goal as shown in figure 1(c).

Thus, acceptance criteria enables the identification of plans for
the associated System Story, as a first iteration in the design process.
More detailed acceptance criteria will further detail the plans for
the different goals. For instance, to answer questions such as: what
is the separation between lines in a plow sweep? how long should

the drone do random walk of the assigned area? A template to map
acceptance criteria to appropriate agent concepts is then:
Scenario ⇒ a plan that handles a goal related to the associated story.
Given ⇒ the context that describes the applicability of the plan.
When ⇒ the trigger of the plan (goals, messages and percepts).
Then ⇒ the expected outcomes of the plan.
The above clear mapping is one of the reasons for choosing the
Given/When/Then format for representing acceptance criteria. Al-
though the primary mapping of acceptance criteria is to establish
plans to achieve goals, they can also provide other information
such as insights into the belief sets the agent will need access to.
Expanded versions of the System Stories for our case study will
include other conditions like battery level, time of exploration, etc.
that gives rise to the need for a DroneState belief set to store this
information. Additionally, acceptance criteria should be used as a
basis for the generation of tests, for example see [5] for a behaviour
driven development (BDD) approach.

Traceability. The process of translating the User and System Sto-
ries into the agent design artifacts as described above results in
a single story mapped to different parts of the design and the de-
signers may further refine them in the design and indeed in the
implementation. Further, it is also common practice in any SDLC,
for different development teams to work on the different phases
according to the project needs, their experience, preferences, etc.
This results in the distribution of the rationale of design and im-
plementation choices. This distribution, whilst necessary, makes it
difficult to maintain the evolution of the requirements over time
and to trace the behaviors of the system back to the stories. For
these reasons, we propose a requirements tracing framework to
keep track of the changes and concepts derived as described below.

The main concepts of the framework (inspired by [23]) are pre-
sented in the metamodel shown in Figure 2. At its core, is a Process
Ledger of traces, where each Trace is a mapping between the con-
cepts of the different artifacts used during the SDLC. A SDLCArtifact
represents any conceptual artifact used in a particular phase of the
SDLC. For example, Story is a SDLCArtifact of the requirements

Main Track AAMAS 2021, May 3-7, 2021, Online

1068



Figure 2: Traceability Framework
metamodel

Figure 3: Traceability Support tool

phase. Each SLDCArtifact would contain concepts used in that
phase and the specific ones of interest for the purpose of traceabil-
ity are TraceableConcepts. In order words, a TraceableConcept is a
concept where we need to keep track of its mappings. For instance,
for a TDF design the TraceableConcepts are plans, goals, agents,
etc. The particular instances of these concepts used in the system
are the TraceableInstances that are captured in a particular Trace.
E.g. the Plow Sweep plan or Explore Area goal (see Figure 1).

The Process Ledger keeps a log of these traces and the relation-
ships. Some example traces from our case study are:

• Actor Drone modeled with (TDF) Agent Drone
• What explore an area assigned to me modeled with (TDF)
Goal ExploreArea

• (TDF) Plan RandomSweep implemented by (SARL) Behavior
RandomSweep

Note that the first two traces are related to the mapping of the
System Story 1.1 (Table 1) and the last trace is how a plan in the
TDF design is realised in the SARL implementation.

Tool support. In order to support the process of capturing the
requirements via User and System Stories andmaintaining a process
ledger of traces for traceability, as described in this Section, we have
developed a prototype tool, as tool support is an essential part of
any methodology. A screenshot of the development environment
can be found in Figure 3. At the bottom-left is the view of the
metamodel of our traceability framework, which also encapsulates
the metamodel for User and System Stories. Using this metamodel,
we can generate our SDLC traceability tool. The top right hand view
shows the editor used to define stories with an example (System
Story 1.1 from Table 1). At the top-left is the project instance view
where the SDLCArtifacts used in the project are defined, such as
TDF or SARL. Finally, at the bottom-right is the Process Ledger
editor. In the process ledger, we define the particular instances of
the SDLCArtifacts we are concerned about and then define the

traces as can be seen in the figure. The tool provides features such
type-safety and auto-completion, as illustrated in the figure in the
creation of a trace to track that the What of Story 1.1 is modeled by
the (TDF) Goal ExploreArea.

4 EVALUATION
In this section we evaluate our approach by (i) presenting a feature-
based comparison with the closest related work; and (ii) conducting
a preliminary user study as we detail ahead.

4.1 Feature-based comparison
We are not the first to propose using User Stories in AOSE. Wautelet
et al. [33] define a process fragment that includes User Stories to
gather requirements and creatingmappings from theWho/What/Why
components to agent concepts. They do not consider acceptance
criteria or explicit system-level requirements. They focus on trans-
lating User Stories directly into JADEX code [28] without consider-
ation for design artifacts.

The other relevant work is by Carrera et al. [5]. They discuss
the idea of including Agent Stories to represent the view from the
"agent’s side". They use acceptance criteria (written in the GWT
format) of agent stories to create executable agent behaviour tests.
However, the process to map user to agent stories remains manual
with no guidelines presented. The traceability of these mappings
are also unclear.

In order to compare these related work to our approach, we use
the following criteria:

User Requirements The approach can capture requirements and
functionalities from the user’s perspective. Clearly, a crucial
motivation for User Stories.

System Requirements The approach can capture system-level
requirements. This is important to provide traceability, sup-
porting a path from user/system requirements to code.

Main Track AAMAS 2021, May 3-7, 2021, Online

1069



Criteria USS Wautelet
et al.[33]

Carrera
et al.[5]

User Requirements YES YES YES
System Requirements YES NO NO (1)
Technology Opportunities PARTIAL(2) NO NO
Ethical Considerations PARTIAL(2) NO NO
AOSE Guidelines YES PARTIAL(3) NO (4)
Traceability Framework YES NO NO
Traceability Tool Support PARTIAL(5) NO NO
Testing Guidelines PARTIAL(6) NO YES
Testing Tool Support NO NO YES

(1) No specific artifact to capture system requirements is proposed. User
Stories are translated directly to agent behaviors but lacks details.

(2) We gather options that are traceable concepts in our framework.
(3) User to Agent story is a manual process.
(4) There is a mapping from MAS behaviour to test cases but no explicit

mapping from requirement to other AOSE concepts.
(5) Tool is at a prototype stage.
(6) Acceptance criteria is used for test case definition as in traditional

development, however no AOSE specific techniques are proposed.
Table 5: Feature based comparison of USS and related work

Technology Opportunties The approach gathers various spe-
cialised technological solutions that may need to be con-
sidered in the system development stage to realise these
requirements. (As discussed in §3.2.)

Ethical Considerations The approach offers mechanisms to cap-
ture potential ethical issues when applying technological
solutions (also discussed in §3.2).

AOSE Guidelines The approach provides guidelines to translate
requirements into AOSE concepts (Design and/or Implemen-
tation). Guidelines are important (arguably essential) for
supporting developers using the approach.

Traceability Framework The approach provide guidelines on
how to trace back artifacts of other SDLC phases to their
originating requirements. This is important for maintenance.

Traceability Tool Support The approach includes tooling to sup-
port or assist the traceability framework.

Testing Guidelines The approach includes guidelines on how to
generate test cases for the AOSE implementation models.

Testing Tool Support The approach includes testing tooling or
infrastructure tailored for AOSE concepts.

Table 5 shows our assessment of our approach (User & System
Story (USS)), alongside two recent approaches for using User Stories
in AOSE, by Wautelet et al. [33] and by Carrera et al. [5]. This com-
parison highlights that our approach is richer than the other two
approaches in that it provides: (i) System Stories; (ii) (some) support
for identifying relevant techniques, and associated ethical issues
(iii) detailed guidelines, and (some) support for traceability, includ-
ing preliminary tool support. On the other hand, the approach of
Carrera et al. has better support for testing, including tool support.

4.2 Empirical evaluation
Our approach aims to provide an easy-to-use method for agile
AOSE, specifically enabling iterative software development. A key
feature is the use of System Stories to enhance traceability, which is
a difference to prior work. We have shown (§3.3) that our approach

provides a mapping to agent design concepts, and argued that our
approach supports traceability.

However, providing features to support traceability does not
necessarily mean that software developers will find these features
effective. More broadly, we also have hypothesised (§1) that our
approach is easy to understand, and makes maintenance easier. We
therefore conducted a preliminary human participant evaluation
with the goal of validating the usefulness of System Stories, and
the usability of our overall approach. Our focus was on getting
rich qualitative data, that could be analysed to understand what
participants were doing, in order to provide insight.

Participants. The scope of our evaluation was limited (hence “pre-
liminary”). We recruited 4 participants, by direct contact. Partici-
pants were involved (in varying capacities) in a broader industry
project that also had involvement from some of the authors of
this paper. The participants were diverse in terms of their relevant
background. Participants P1 and P4 work for a government agency,
whereas P2 and P3 work for a university in a research support capac-
ity. Although all participants had software engineering experience,
only P2 and P3 had expertise in agent-oriented design. Specifically,
they both have expertise in TDF, which P1 and P4 did not have.
However, only P2 and P4 had experience with agent-oriented pro-
gramming, and none of the participants had experience or expertise
in SARL. Overall, we would characterise P1 and P3 as being novices
and P2 and P4 as being experts in developing agent systems.

Participants were briefed verbally, and given a brief explanation
of our approach. They were then provided4 with a one paragraph
description of the search and rescue scenario, and then were asked
to complete three tasks.

Tasks. The first task (T1) asked participants to consider the func-
tionality of the system relating to searching an area in order to find
victims who needed assistance. Participants were asked to examine a
TDF design and indicate which design entities related to this feature
(T1.1), and then to examine SARL code, and indicate which code
entities related to this feature (T1.2). Finally, participants were pro-
vided with three short videos5, and were asked to indicate which
behaviour(s), visible in the video, related to this feature, and to give
a brief description of the behaviour, and why it is related to this
feature (T1.3). Participants P3 and P4 were given both user and
System Stories for this task, whereas P1 and P2 were just given
User Stories (see Table 6).

The second task (T2) asked participants to do the same three
things (identify related parts in a TDF design T2.1, in SARL code
T2.2, and in observed behaviour in videos T2.3) for the feature of
guiding a first responder to a victim who requires assistance. Partici-
pants P1 and P2 were given both user and System Stories for this
task, whereas P3 and P4 were just given User Stories. T1 and T2
aimed to assess the effect of providing System Stories in addition
to User Stories.

By contrast, the third task (T3) assessed the usability of our
approach. Participants were provided with a one paragraph de-
scription of a new feature: being able to deliver supplies to a first

4Materials at https://github.com/srodriguez/aamas2021-searchrescue-simulation
5Video 1 showed a systematic (plow) exploration of a high priority area; Video 2
showed a random walk (low priority area); and Video 3 showed a drone signalling a
victim’s location to a first responder by hovering and moving up and down.

Main Track AAMAS 2021, May 3-7, 2021, Online

1070

https://github.com/srodriguez/aamas2021-searchrescue-simulation


P1 (novice) & P2 (expert) P3 (novice) & P4 (expert)
T1 User Stories only User & System Stories
T2 User & System Stories User Stories only
T3 Not applicable - participants wrote stories

Table 6: Summary of Tasks

responder after they have reached a victim. They were then asked to:
T3.1 identify User Stories for the new feature, T3.2 derive System
Stories for this feature, T3.3 indicate what they would add/modify
in the TDF design to add this feature; and T3.4 indicate what they
would add/modify in the SARL code to add the feature.

Finally, after completing the three tasks, participant completed
a short survey that included questions such as “To what extent did
you find the requirements for Task 1 comprehensible?” (response
scale: 1(very) to 5(incomprehensible)). The survey (see supplemen-
tary material) also included a request for any other comments.

At various points along the way participants were asked to note
the current time, so we could analyse how long different tasks took
to perform. Participants were also instructed to note when they
took a break (indicating the start and end time of the break).

Measurements. We analysed what the participants did, i.e. their
responses (including, for T3, their User Stories, System Stories, and
outline of design and implementation). This included assessing the
extent to which participants were able to correctly identify relevant
parts of the design, code, and behaviour (T1 & T2) and how long
they took to do so; the extent to which participants were able to
identify appropriate parts of the design and code to change when
adding a new feature (T3) and how long they took to do so; and the
participants’ responses to the survey, both ordinal and free text.

Results: System Stories. We begin by considering the extent to
which it helped to have System Stories provided as well as User
Stories. There are a few places where there was clear benefit demon-
strated. Firstly, for task T1.3, participant P1 (who only had a User
Story) incorrectly described the behaviour seen in the second video.
The video shows (random walk) exploration, but P1 indicated it
was “related to Assit [sic] Victim plan - I think this is where the
drone is guiding the first responders because it seems to head back
to the same area. But it isn’t clear”. Participants P3 and P4, who
had System Stories as well as User Stories, identified the relevant
behaviours (Videos 1 & 2) correctly. P2 also identified the videos
correctly: we believe that they made use of the TDF diagram to
help them (given their expertise in TDF). Secondly, for task T2.3,
we see again that having the System Stories helped: the behaviour
in Video 3 was correctly described by P1 and P2 (who had Sys-
tem Stories). However, P3 incorrectly indicated it was unrelated,
and P4 was correct but uncertain (“V3 could be drone physically
indicating location of victim”, also noting in their survey response
“Only guessing drone behaviour”). Finally, the survey: P2 indicated
that they found T1 (where they did not have System Stories) not
really comprehensible (option 4 on the 5 point Likert scale), and
that they found identifying relevant parts of the SARL code not
really easy to do (also option 4). However, P2 found T2 (where they
did have System Stories provided) easy, answering option 2 on the
equivalent questions. Similarly, P4 indicated that for T2 (where they
did not have System Stories) it was not really easy to identify SARL

code, and that identifying the video behaviour for this task was
also not really easy (both options 4). By contrast, P4 indicated that
for the equivalent questions for T1, it was easier (option 3, neutral).
In other words, both P2 and P4, who are experts, found tasks (T1
for P4, and T2 for P2) easier when System Stories were provided.

Results: Usability. Assessed by T3. We observe that all the par-
ticipants were broadly able to follow the approach, defining User
Stories, System Stories, and then going on to outline reasonable
changes to the TDF design, and to the code. The usability of our
approach was also supported by the survey, where P1, P2 and P3
all indicated that they found the steps somewhat easy to perform
(option 2 on a 5-point Likert scale), although P4 was less positive
(option 3, neutral). One interesting observation is that the best col-
lection of User Stories was developed by P1, who was a novice in
agent-based development (but experienced in non-agent software
engineering). This suggests that our approach is able to be used by
developers who are not experts in agent-based development.

The analysis of how long participants took did not reveal any
useful information: there was too little variance. The longest time
taken to perform a single sub-task was 14 minutes (P2 T1.2), but for
8 of the 10 sub-tasks the time taken was less than 10 minutes each.

Finally, P4 commented in the survey that task 2 (specifically iden-
tifying relevant SARL code) “Would had [sic] very difficult without
seeing TDF diagram first”. This comment highlights the value of
having appropriate design models. Although agile is sometimes
thought of as eschewing design models in favour of code, in fact the
Agile Manifesto[2] “[values] working software over comprehensive
documentation . . . That is, while there is value in the items on the
right, we value the items on the left more”. In other words, there can
be value in having appropriate design artifacts.

5 CONCLUSION
The popularity of agile software methodologies have inspired a
number of efforts to bring agile frameworks into AOSE. We can
classify these into two categories: those that attempt to modify
AOSE to adapt agile concepts (e.g. [7, 14, 22, 31]); and those that
adopt agile concepts complementing AOSE (e.g [5, 33]). The ap-
proachwe present is in the latter category - given an existing system,
say implemented in SARL with TDF design artifacts, our approach
could be used to elicitate, implement and trace requirements in an
iterative agile manner.

Our approach uses User Stories, and introduces the novel concept
of System Stories as a “bridge” between User Stories and agent-
oriented design artifacts. The approach also supports traceability
of requirements. Our preliminary user evaluation has shown that it
is usable, and that System Stories do provide benefit. Our approach
is richer than prior work not just in the inclusion of System Stories,
but also in providing guidelines and support for traceability (includ-
ing tool support). While richer, our approach is still light-weight,
providing a simple and rapid path from requirements to code.

There are a few areas for future work. Our approach includes
identifying relevant technologies, and assessing associated ethical
issues. However, this aspect of the approach has not been developed
in detail, nor evaluated. There is also scope for improving our
support for deriving tests, including looking at tool support. Finally,
future work could include a larger scale evaluation.

Main Track AAMAS 2021, May 3-7, 2021, Online

1071



REFERENCES
[1] Kent Beck and Cynthia Andres. 2005. Extreme Programming Explained: Embrace

Change (2nd ed ed.). Addison-Wesley, Boston, MA.
[2] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,

J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, Jon Kern, Brian Marick, Robert C.
Martin, Steve Mallor, Ken Shwaber, and Jeff Sutherland. 2001. The Agile Manifesto.
Technical Report. The Agile Alliance.

[3] R. H. Bordini, J. F. Hubner, and M. Wooldridge. 2007. Programming Multi-Agent
Systems in AgentSpeak Using Jason. John Wiley and Sons.

[4] Paolo Bresciani, Paolo Giorgini, Fausto Giunchiglia, John Mylopoulos, and Anna
Perini. 2004. TROPOS: An Agent-Oriented Software Development Methodology.
Journal of Autonomous Agents and Multi-Agent Systems 8 (May 2004), 203–236.

[5] Álvaro Carrera, Carlos A. Iglesias, andMercedes Garijo. 2014. Beast Methodology:
An Agile Testing Methodology for Multi-Agent Systems Based on Behaviour
Driven Development. Information Systems Frontiers 16, 2 (April 2014), 169–182.
https://doi.org/10.1007/s10796-013-9438-5

[6] Antonio Chella, Massimo Cossentino, and Luca Sabatucci. 2004. Tools and
patterns in designing multi-agent systems with PASSI. WSEAS Transactions on
Communications 3, 1 (2004), 352–358.

[7] Antonio Chella, Massimo Cossentino, Luca Sabatucci, and Valeria Seidita. 2006.
Agile PASSI: An Agile Process for Designing Agents. Comput. Syst. Sci. Eng.
(2006).

[8] Mike Cohn. 2004. User Stories Applied: For Agile Software Development. Addison-
Wesley, Boston.

[9] Mike Cohn. 2010. Succeeding with Agile: Software Development Using Scrum.
Addison-Wesley, Upper Saddle River, NJ.

[10] Massimo Cossentino, Vincent Hilaire, Nicolas Gaud, Stéphane Galland, and
Abderrafiaa Koukam. 2014. The ASPECS Process. In Handbook on Agent-Oriented
Design Processes, Massimo Cossentino, Vincent Hilaire, Andrea Molesini, and
Valeria Seidita (Eds.). Springer, 65–114.

[11] Scott A. DeLoach and Juan C. García-Ojeda. 2010. O-MaSE: a customisable
approach to designing and building complex, adaptive multi-agent systems. Int.
J. Agent Oriented Softw. Eng. 4, 3 (2010), 244–280. https://doi.org/10.1504/IJAOSE.
2010.036984

[12] Scott A. DeLoach, Lin Padgham, Anna Perini, Angelo Susi, and John Thangarajah.
2009. Using three AOSE toolkits to develop a sample design. International Journal
of Agent-Oriented Software Engineering 3, 4 (2009), 416–476.

[13] Virginia Dignum. 2019. Responsible Artificial Intelligence - How to Develop and Use
AI in a Responsible Way. Springer. https://doi.org/10.1007/978-3-030-30371-6

[14] Jaschar Domann, Sindy Hartmann, Michael Burkhardt, Alexander Barge, and
Sahin Albayrak. 2014. An Agile Method for Multiagent Software Engineering.
Procedia Computer Science 32 (Jan. 2014), 928–934. https://doi.org/10.1016/j.procs.
2014.05.513

[15] Rick Evertsz and John Thangarajah. 2020. A Framework for Engineering Hu-
man/Agent Teaming Systems. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12,
2020. AAAI Press, 2477–2484.

[16] Rick Evertsz, John Thangarajah, and Thanh Ly. 2019. Practical Modelling of
Dynamic Decision Making. Springer. https://doi.org/10.1007/978-3-319-95195-9

[17] Rick Evertsz, John Thangarajah, Thanh Ly, and Nitin Yadav. 2015. Agent Oriented
Modelling of Tactical Decision Making. In Proceedings of the 14th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS-2015). Istan-
bul, Turkey, 1051–1060.

[18] Rick Evertsz, John Thangarajah, and Michael Papasimeon. 2017. The Conceptual
Modelling of Dynamic Teams for Autonomous Systems. In Conceptual Modeling

- 36th International Conference, ER 2017, Valencia, Spain, November 6-9, 2017,
Proceedings. 311–324.

[19] M. Fowler. 2003. Who Needs an Architect? IEEE Software 20, 5 (Sept. 2003), 11–13.
https://doi.org/10.1109/MS.2003.1231144

[20] Martin Fowler. 2007. Design Stamina Hypothesis.
https://martinfowler.com/bliki/DesignStaminaHypothesis.html.

[21] Alma María Gómez-Rodríguez and Juan Carlos González Moreno. 2010. Compar-
ing Agile Processes for Agent Oriented Software Engineering. In Product-Focused
Software Process Improvement, 11th International Conference, PROFES 2010, Limer-
ick, Ireland, June 21-23, 2010. Proceedings (Lecture Notes in Business Information
Processing), Muhammad Ali Babar, Matias Vierimaa, and Markku Oivo (Eds.),
Vol. 6156. Springer, 206–219. https://doi.org/10.1007/978-3-642-13792-1_17

[22] Juan C. González-Moreno, Alma Gómez-Rodríguez, Rubén Fuentes-Fernández,
and David Ramos-Valcárcel. 2014. INGENIAS-Scrum. In Handbook on Agent-
Oriented Design Processes, Massimo Cossentino, Vincent Hilaire, Ambra Molesini,
and Valeria Seidita (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 219–251.
https://doi.org/10.1007/978-3-642-39975-6_8

[23] Orlena Gotel, Jane Cleland-Huang, Jane Huffman Hayes, Andrea Zisman, Alexan-
der Egyed, Paul Grünbacher, Alex Dekhtyar, Giuliano Antoniol, Jonathan Maletic,
and Patrick Mäder. 2012. Traceability Fundamentals. In Software and Sys-
tems Traceability, Jane Cleland-Huang, Orlena Gotel, and Andrea Zisman (Eds.).
Springer, London, 3–22. https://doi.org/10.1007/978-1-4471-2239-5_1

[24] Dan North. 2006. Introducing BDD. https://dannorth.net/introducing-bdd/.
[25] Lin Padgham and Michael Winikoff. 2004. Developing Intelligent Agent Systems:

A Practical Guide. John Wiley and Sons.
[26] Juan Pavón, Jorge J Gómez-Sanz, and Rubén Fuentes. 2005. The INGENIAS

methodology and tools. Agent-oriented methodologies 9 (2005), 236–276.
[27] PMI. 2017. Pulse of the Profession 2017. Technical Report. Project Management

Institute.
[28] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. 2005. Jadex: A BDI

Reasoning Engine. In Multi-Agent Programming. Springer, 149–174.
[29] Sebastian Rodriguez, Nicolas Gaud, and Stéphane Galland. 2014. SARL: A General-

Purpose Agent-Oriented Programming Language. In 2014 IEEE/WIC/ACM Interna-
tional Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies
(IAT), Warsaw, Poland, August 11-14, 2014 - Volume III. IEEE Computer Society,
103–110. https://doi.org/10.1109/WI-IAT.2014.156

[30] Ken Schwaber and Jeff Sutherland. 2017. The Scrum Guide. Technical Report. 20
pages.

[31] Jan-Philipp Steghöfer, Hella Seebach, Benedikt Eberhardinger, Michael Hueb-
schmann, and Wolfgang Reif. 2015. Combining PosoMAS Method Content with
Scrum: Agile Software Engineering for Open Self-Organising Systems. Scalable
Comput. Pract. Exp. 16, 4 (2015), 333–354. http://www.scpe.org/index.php/scpe/
article/view/1127

[32] The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems.
2017. Ethically Aligned Design: A Vision for Prioritizing Human Well-being
with Autonomous and Intelligent Systems, Version 2. http://standards.ieee.org/
develop/indconn/ec/autonomous_systems.html.

[33] Yves Wautelet, Samedi Heng, Soreangsey Kiv, and Manuel Kolp. 2017. User-Story
Driven Development of Multi-Agent Systems: A Process Fragment for Agile
Methods. Computer Languages, Systems & Structures 50 (Dec. 2017), 159–176.
https://doi.org/10.1016/j.cl.2017.06.007

[34] MichaelWinikoff. 2005. JACK Intelligent Agents: An Industrial Strength Platform.
In Multi-Agent Programming. Springer, New York, NY, 175–193.

[35] Michael Wooldridge, Nicholas R Jennings, and David Kinny. 2000. The Gaia
methodology for agent-oriented analysis and design. Autonomous Agents and
multi-agent systems 3, 3 (2000), 285–312.

Main Track AAMAS 2021, May 3-7, 2021, Online

1072

https://doi.org/10.1007/s10796-013-9438-5
https://doi.org/10.1504/IJAOSE.2010.036984
https://doi.org/10.1504/IJAOSE.2010.036984
https://doi.org/10.1007/978-3-030-30371-6
https://doi.org/10.1016/j.procs.2014.05.513
https://doi.org/10.1016/j.procs.2014.05.513
https://doi.org/10.1007/978-3-319-95195-9
https://doi.org/10.1109/MS.2003.1231144
https://doi.org/10.1007/978-3-642-13792-1_17
https://doi.org/10.1007/978-3-642-39975-6_8
https://doi.org/10.1007/978-1-4471-2239-5_1
https://doi.org/10.1109/WI-IAT.2014.156
http://www.scpe.org/index.php/scpe/article/view/1127
http://www.scpe.org/index.php/scpe/article/view/1127
http://standards.ieee.org/develop/indconn/ec/autonomous_systems.html
http://standards.ieee.org/develop/indconn/ec/autonomous_systems.html
https://doi.org/10.1016/j.cl.2017.06.007

	Abstract
	1 introduction
	2 Background
	2.1 Agile & User Stories
	2.2 TDF & SARL

	3 Approach
	3.1 Identifying User Stories
	3.2 Extracting System Stories
	3.3 System Story Mappings and Traceability

	4 Evaluation
	4.1 Feature-based comparison
	4.2 Empirical evaluation

	5 Conclusion
	References



