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ABSTRACT or a decision-making policy, using various function approximators

Training a multi-agent reinforcement learning (MARL) algorithm is
more challenging than training a single-agent reinforcement learn-
ing algorithm, because the result of a multi-agent task strongly
depends on the complex interactions among agents and their inter-
actions with a stochastic and dynamic environment. We propose
an algorithm that boosts MARL training using the biased action
information of other agents based on a friend-or-foe concept. For a
cooperative and competitive environment, there are generally two
groups of agents: cooperative-agents and competitive-agents. In
the proposed algorithm, each agent updates its value function using
its own action and the biased action information of other agents
in the two groups. The biased joint action of cooperative agents is
computed as the sum of their actual joint action and the imaginary
cooperative joint action, by assuming all the cooperative agents
jointly maximize the target agent’s value function. The biased joint
action of competitive agents can be computed similarly. Each agent
then updates its own value function using the biased action informa-
tion, resulting in a biased value function and corresponding biased
policy. Subsequently, the biased policy of each agent is inevitably
subjected to recommend an action to cooperate and compete with
other agents, thereby introducing more active interactions among
agents and enhancing the MARL policy learning. We empirically
demonstrate that our algorithm outperforms existing algorithms in
various mixed cooperative-competitive environments. Furthermore,
the introduced biases gradually decrease as the training proceeds
and the correction based on the imaginary assumption vanishes.
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1 INTRODUCTION

Reinforcement learning (RL) algorithms solve sequential decision-
making problems using experiences obtained by a single agent (de-
cision maker) dynamically interacting with an environment. The RL
algorithms typically estimate an action-value function (Q-function)
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(e.g., deep neural networks), to model how a particular action (deci-
sion) affects future outcomes. From this model, the optimal action
in the current state for completing a target task can be deduced [17].
The success of RL algorithms for solving various tasks depends on
how effectively they learn such temporal interactions between an
action and a future outcome.

In particular, when the RL algorithm is trained with a sparse or
delayed reward, i.e., a reward signal is infrequently realized after
an agent executes action, it becomes difficult to estimate the Q-
function or policy. This is because it is challenging for the RL agent
to learn the dynamic causal effect of its action on future outcomes,
owing to the sparse and delayed reward signal. A representative
example of such a task with a sparse reward is a goal-oriented task,
in which a binary reward is given only when an agent reaches
a goal. To solve this task, HER [1] has been proposed to learn
the Q-function or policy using the reward signals obtained from
failed tasks (episodes), while considering these reward signals as
being obtained from the successful tasks that are different from the
original task. This strategy of HER transforms the sparse-reward
environment into a dense-reward environment, enabling the RL
agent to easily learn the Q-function or policy. In addition, HPG [13]
extends the concept of HER to efficiently generalize learning about
different goals using information obtained by the current policy for
a specific goal.

Recently, to enhance the performance of multi-agent reinforce-
ment learning (MARL) algorithms, which are extensions of the RL
algorithms to multi-agent settings, various strategies have been
proposed. Some researchers have proposed an intrinsic reward
to induce certain collective behaviors of multiple agents that are
believed to help achieve the objective of a multi-agent task. For
example, intrinsic reward is designed to promote the agents to
execute actions influencing other agents’ state transitions [2, 18]
or visit unexplored state spaces more frequently [6]. However, in
general, designing a good intrinsic reward is difficult because it
requires prior knowledge of the types of interactions that help solve
the multi-agent task. Moreover, designing an effective intrinsic re-
ward often requires an iterative reward-shaping procedure until
satisfactory performance is reached. Consequently, for multi-agent
tasks where a sparse reward is given and prior knowledge is not
available, another effective method for MARL should be developed.

To address these difficulties, we herein propose an algorithm,
called Friend-or-Foe multi-agent Deep Deterministic Policy Gradient
(F2DDPG), which boosts MARL training using the biased action
information of other agents based on a friend-or-foe concept [11].
F2DDPG adopts an actor-critic algorithm in a centralized training
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and decentralized execution (CTDE) framework [12]. For a cooper-
ative and competitive environment, there are generally two groups
of agents: an ally group composed of cooperative agents to a tar-
get agent and an enemy group composed of competitive agents
to a target agent. In the proposed algorithm, each agent updates
its Q-function (critic) using its own action and the biased action
information of other agents in the two groups. The biased joint
action of cooperative agents is computed as the sum of their actual
joint action and the imaginary cooperative joint action obtained
by assuming that all the cooperative agents jointly maximize the
target agent’s critic. The biased joint action of competitive agents
can be computed similarly. Each agent then updates its own critic
using biased action information, resulting in a biased critic and
corresponding biased policy. Thereafter, the biased policy of each
agent is inevitably subjected to recommend an action to cooper-
ate and compete with other agents, which introduces more active
interactions among agents, and thus, enhances the MARL policy
learning.

Using biased actions in estimating a critic can be viewed as a
different version of using the biased reward (intrinsic reward) in
the estimation to induce the intended interactions among agents.
However, we do not compare our method with MARL approaches
using the intrinsic reward because they require a certain type of
prior knowledge about the environment (game). Instead, we com-
pare F2DDPG with M3DDPG [8], the latter of which uses mod-
ified (biased) action information of other agents when training
the critic; it modifies the other agents’ actions in an adversarial
manner to induce a robust policy. Empirically, we demonstrate
that our algorithm outperforms existing algorithms in four mixed
cooperative-competitive game scenarios, in which the agents have
cooperative and competitive interactions [12]. Furthermore, we em-
pirically show that the introduced biases gradually decrease as the
training proceeds and that the correction based on the imaginary
assumption vanishes.

2 RELATED WORK

2.1 Friend-or-Foe Q-Learning

In general-sum games, such as mixed cooperative-competitive
games, friend-or-foe Q-learning (FFQ) [11] has been proposed to
provide strong convergence guarantees compared to the existing
Nash-equilibrium-based learning rule [4]. It requires that other
agents be identified as either ‘friend’ (ally) or ‘foe’ (enemy). FFQ
then assumes that agent i’s friends are working together to maxi-
mize agent i’s value, while agent i’s foes are working together to
minimize agent i’s value. Thus, n-player FFQ considers any game
as a two-player zero-sum game with an extended action set, and is
easy to implement for multiple agents.

2.2 Biases in RL and MARL

In RL and MARL, various forms of inductive bias have been used
to improve learning. The most straightforward inductive biases
entail designing network structures for the critic or policy, such as
attention networks [5], graph neural networks [15], and implicit
communication structures [14]. However, biases in game informa-
tion, such as state, reward, and action have also been used in an
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attempt to boost training. We review the biases in the information
in this subsection.

2.2.1 Biases in States. Bias has been reported to help train RL by
injecting a biased belief regarding the state at the initialization
stage of the Q-table [3]. For example, in a goal-oriented task, if the
goal is known in advance, biased information about the state, near
and far from the goal, is injected into the Q-table before training. In
addition, a distributed Q-learning algorithm for a cooperative multi-
agent setting has been proposed based on the optimistic assumption
[7]. Under this assumption, the algorithm biasedly updates the Q-
table only when the new value for Q is greater than the current
value in the current state.

2.2.2  Biases in Rewards. Intrinsic rewards have been proposed
as a bias for multi-agent exploration to induce certain collective
behaviors of agents, based on prior knowledge of the types of inter-
actions that help solve the multi-agent task. The intrinsic rewards
are provided when one agent’s action affects the state transitions of
other agents [2, 18] and when all the agents explore only different
or the same areas for the task of collecting scattered treasures [6].

2.2.3 Biases in Actions. M3DDPG [8] has been proposed to learn
a robust policy using other agents’ action information corrupted
with adversarial noise. In this approach, each agent assumes that
other agents provide the adversarial actions to the target agent,
and updates its critic using such adversarial action information. To
compute the adversarial action (biased action), each agent modifies
the actions of other agents in the direction that minimizes the
target agent’s critic. M3DDPG asserts that the trained policy using
this biased action information outperforms its baseline algorithm,
MADDPG [12]. However, the limitation of this approach is that it
does not consider the relationships among agents. It assumes that all
the agents are adversarial to the target agent, regardless of whether
they are allies or enemies in the cooperative and competitive game;
this assumption is inconsistent with the actual situation.

Notably, M3DDPG is similar to our method as it uses the biased
information of other agents’ actions. However, F2DDPG explic-
itly considers the roles of agents in a cooperative and competitive
environment, in which the cooperative and competitive agents
are known a priori. In addition, our method can be justified by
the well-known FFQ [11]. We mainly compare the performance
of our method with that of M3DDPG, while not addressing other
approaches using different types of information bias. In this study,
we assume that it is possible to identify other agents as being either
cooperative (allies) or competitive (enemies) in mixed cooperative-
competitive environments, to fully implement and compare the
proposed method with the baseline methods.

3 BACKGROUND
3.1 Partially Observable Markov Game

We consider a partially observable Markov game [10], which is an
extension of the partially observable Markov decision process to a
game with multiple agents. A partially observable Markov game
for N agents is defined as follows: s € S denotes the global state
of the game; 0; € S — O; denotes a local observation that agent i
can acquire correlated with the state; and a; € A; is an action of
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Figure 1: Overview of F2DDPG.

agent i. The reward for agent i is obtained as a function of state
s and joint action aasr; : S X Ay X --- X AN +— R. The state
evolves to the next state according to the state transition function
T :SXAL XX AN +— 8. The initial state is determined by the
initial state distribution p : S +— [0, 1]. Agent i aims to maximize
its discounted return R; = ZtT:O Yiris, wherey € [0,1] is a discount
factor.

3.2 Multi-Agent Deep Deterministic Policy
Gradient (MADDPG)

While the policy can be deterministic, a u(s), or stochastic,
a ~ 7(-|s), deterministic policy gradient (DPG) [16] for RL adopts
a deterministic policy. DPG aims to directly derive the determin-
istic policy, a = p(s;0), that maximizes the expected return or
objective J (0) = Es~pna~pg [R] = Es~pr,a~po [OF (s, a; ¢)], where
QH(s,a;¢) = By [r+yEa~p, [QH(s’, a’; §)]]. Parameter 6 of y(s; 0)
is subsequently optimized by the gradient of 7 (0) as Vo 7 (0) =
Esp[Vou(s;0)VaQH (s, ;)| 4=y (s:0)]- D is an experience replay
buffer that stores (s, a,r,s’) samples obtained from the training
episodes. Deep deterministic policy gradient (DDPG) [9], an actor-
critic algorithm based on DPG, uses deep neural networks to ap-
proximate critic Q¥ (s, a; ¢) and actor y(s; 6) of the agent.

MADDPG is a multi-agent extension of DDPG for deriving de-
centralized policies in the CTDE framework. In MADDPG, each
agent learns an individual policy that maps the observation to its
action to maximize its expected return, which is approximated by
the Q-network. MADDPG comprises individual Q-networks and
policy networks for each agent. MADDPG lets the Q-network (cen-
tralized critic) of agent i be trained by minimizing the loss with the
target Q-value, y;, as follows:

L($i) = Eo,a,r,o’~1) [(Qﬁl(o» a; ;) — yi)z],

R (Y
yi=ri+ )/Ql' (o’,a s¢i)|a;.:p}(o;.;9}),

1

where 0 = (01,...,0y) and a = (ay,...,an) represent the joint
observation and joint action of all agents, respectively. D is an
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experience replay buffer that stores (o, a,r, 0”) samples obtained
from the training episodes. O and y’ are target networks for the
stable learning of Q and policy networks. The policy network (actor),
1i(o0;i; 0;), of agent i is optimized using the gradient computed as

Vo, T (0:) = Boa~p[Vo,1i(0i:0:) Va, 04 (0,2 $i) g (01:61) |-
)

4 METHODS

F2DDPG learns the critic and actor of each agent using the biased
action information of other agents based on a friend-or-foe con-
cept [11]. In F2DDPG, as shown in Figure 1, each agent has two
perceptions on the environment:

o The real environment, where agent i’s true critic can be esti-
mated using its own action and the realized (actual) actions,
((li, ai‘i’ a]::i);

An imaginary environment, where agent i’s imaginary critic
can be estimated using its own action and the imaginary co-
operative and competitive joint actions, (a;, af’?, af}f). These
are computed based on the assumption that all the ally agents
execute the cooperative joint action to agent i, while all the
enemy agents execute the competitive joint action to agent
i

In F2DDPG, each agent learns the decentralized actor (policy) by
applying the following three iterative procedures: (1) computing the
biased actions, 5‘:‘1- and Ef ;» by combining the real joint action and
imaginary cooperative and competitive joint actions; (2) updating
the biased critic using the biased actions; and (3) updating the actor
using the biased critic.

Thus, the updated policy with biased cooperative-competitive
joint actions is more likely to recommend such cooperative and
competitive actions to other agents, which introduces meaningful
interactions among agents and enhances policy learning. Therefore,
using the biased actions, F2DDPG can learn the level of cooperation
and competition among agents in a sample-efficient manner. The
biased actions become increasingly closer to the actually executed
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actions as the training proceeds, implying that the biases in the
actors vanish.

Figure 1 illustrates how agent i (predator) updates its critic in
F2DDPG, while playing the 3 vs. 3 predator-prey game. In this
game, the three predators (red circles) attempt to capture the three
prey (green squares) together. Because the prey are faster than the
predators, the predators (ally group) must cooperate strategically
to capture the prey (enemy group). In the early stages of learn-
ing, however, it is difficult for the predators to achieve a reward.
Whenever the reward is realized, whether by chance or strategic
moves, predator i computes imaginary actions by assuming that
the reward is realized when the other two predators choose the
optimal cooperative joint action for predator i, while the other
three prey execute the competitive joint action to predator i. Agent
i updates its critic using its own action and the one-step biased
joint cooperative-competitive actions of other agents.

4.1 Computing Biased
Cooperative-Competitive Actions

Considering relationships to agent i, in the mixed cooperative-
competitive environment, we categorize all agents, except i, as
cooperative and competitive to agent i as follows:

o A(i): set of agents cooperative to agent i (ally group);
o E(i): set of agents competitive to agent i (enemy group);
. a‘fl.: joint action of agents in A(i);
. a}_zi: joint action of agents in E(i).
If one assumes that the agents in A(i) and E(i) jointly maximize
and minimize the critic of agent i, respectively, then agent i can
estimate its critic as follows:

Qf(o, aj; i) = max mén QIH(O, ai, afl-, afl-;gbi). 3)
a; A

This estimated critic is biased because each agent in A(i) or E(i)
executes its action to only maximize its own individual critic similar

to the process in MADDPG.
The two optimal joint actions (a’i‘?, a’f ) that achieve the maxmin
value in Equation 4 are called a saddle-point equilibrium strategy,
which is equivalent to the Nash equilibrium strategy, which satisfies

*A

a; = - a5

argmax Qf(o, a;,at a*E b,
A
a .

—i
4)
ai‘? = argmin Qf(o, a;, ai‘?, a]_Ei;¢,-).
E

a
We refer to these two actions in Equation 4 as the imaginary co-
operative and competitive joint actions because these two joint
actions rarely occur in the real environment.

The estimated critic of agent i using Equation 4 can be used
in a decentralized training setting, where each agent cannot ob-
serve other agents’ actions during training, and thus, has to infer
them. However, the current study focuses on developing an efficient
MARL algorithm in the CTDE framework that allows each agent
to observe other agents’ actions during training. To help stabilize
training without introducing any bias, other agents’ actions are
explicitly used when learning the critic and associated actor.

In this study, we propose to combine these two different learning
paradigms to: (1) achieve reliable and stable learning using the true
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action information in the CTDE framework and (2) infuse the de-
sirable behaviors (information biases) into agents using imaginary
joint cooperative-competitive actions (biased action information)
computed in the decentralized learning framework. To achieve both
objectives, the proposed method computes the biased actions by
combining the actual and imaginary actions as follows:
Efi = a’:\i + 5AVaA_Qf(o, ai, a‘fi, a‘_Ei;g’)i),
- 5
E‘Ei = aﬂ - 5EVaEiQi.l(o, aj, afi, ai.;gzﬁi). 2
In Equation 5, we compute the one-step-biased cooperative-competitive
joint actions, which approximate the imaginary cooperative-competitive
joint actions in Equation 4, using the partial gradient of critic Qf .
In addition, 54 and 8% are the step sizes for the biased cooperative
and competitive joint actions, respectively.

Note that computing E‘fi and af ; is computationally tractable
because it only requires computing the partial gradient of the Q-
network with respect to the joint action variables. In addition, 54
and &F adjust the level of biases (injected cooperative and competi-
tive biases). The optimal §4 and 6% can be empirically determined
during training; however, these values do not significantly affect
the learning performance because the partial gradient eventually

becomes small, making the amount of action modification negligi-
ble.

4.2 Learning the Biased Critic Using Biased
Actions

The biased actions in Equation 5 are then used to update the Q-
network as:
L($) = Eopro~n[(QF (0,2:6:) — i),

, (6)
R H 1 1 =1tA =tE. 7/
yi =ri+yQ; (o' a5, a5 ¢ =1 (o0 |

where 5’_‘? and 5'_El- are, respectively, the biased actions computed us-

ing Equation 5 with the target Q-network, Q‘lfl " The target network
is designed to stabilize the learning of the Q-network by slowly
changing the parameters ¢’ of the target Q-network [12].

4.3 Learning the Actor from the Biased Critic

The biased critic Qf is used to update the decentralized actor as a
deterministic policy. The deterministic policy network y; is updated
using the gradient computed as

Vo, J(0:) =
Eo,a~ D[V, i(0i: 0:) Va; O (0, ai, 3%, 355 i)l sy (000 1

where 5‘:\1- and af ; are the biased joint actions of the ally and energy
agents, respectively, each of which is computed using Equation 5
with the Q-network, Q‘;l . We estimate the gradient reliably with the
biased actions computed using the sampled joint actions (executed
true actions) from the experience reply buffer.

Each agent then updates the parameters of its own policy net-
work using the computed policy gradient in Equation 7. Owing
to the biased action information, the trained policy is also biased
such that it is inevitably subjected to recommend an action to co-
operate and compete with other agents. Consequently, the biased
policy introduces more active interactions among agents, and thus,
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Algorithm 1 Friend-or-Foe Multi-Agent Deep Deterministic Policy Gradient Algorithm for N agents

1: Initialize actor networks y, critic networks Q, target networks p” and Q’, experience replay buffer D

2: for episode = 1 to M do

3: Initialize a random process N for action exploration
4 Receive initial observation o
5 fort=1toT do
6 For each agent i, select action a; = p;(0;s;0;) + N;
7: Execute actions a and receive reward r = (rq,...,rn) and new observation o’
8 Store (0, a,r,0’) in experience replay buffer D
9 0o«—o
10: for agenti =1to N do
11: Sample a random minibatch of 8 samples (ob,a?,1b, 0’) from D
s b —1A —/E
12: Setyl —r +yQ; (0", al, a9, =1, (:0))°
/A A A 74 A
13: at=a+ 54V A Q] (o’b Laatign) i (00,)
=/E E H b A
14: a’i=a’ -5V /EQ (o’,a}, a2’k ¢])| _H (0:0,)
15: Update critic by minimizing the loss: L(¢i) = Zb(QéI(ob, ab; i) — yl.b)2
16: Update actor using the sampled policy gradient: Vg, J (6;) ~ % b V@i,ui(of.’; Gi)VaiQf(oh, ai,iéi,il_si; ¢i)|a-:p-(ol."9-)’
T = abd 54 (ob ab. abA abE l
17: al; = + & Vb Q; (o, a;,a’?,aZl; i),
=E bE E H b bA bE
18: a’;=a 5VbEQ (ob, a;,a’,a?l; ¢i)
19: end for
20: Update target network parameters for each agent i: ¢/ < r¢; + (1 — 7)¢; and 8] « 70; + (1 - 1)0]
21: end for
22: end for

enhances the MARL policy learning. In addition, if the critic’s gra-
dient (bias) in the biased action and actual action from the learned
policy gradually become similar, the introduced bias then naturally
decreases, and the training eventually becomes unbiased, as the
biased and actual actions become the same. For completeness, we
provide the F2DDPG algorithm in Algorithm 1.

In some cases of training F2DDPG, the critic’s gradient (bias)
dominates the actual action in the biased action in learning the Q-
network and policy network. Thus, the magnitude of the gradient
is made equal to the magnitude of the actual action to prevent the
biased action from being extremely biased and destabilizing the
training, as follows:

9=Va,0 (0.2 ¢i)
a_j=a—jx6|lallz—=—

®)
llg ||

The trick of Equation 8 is utilized in Equation 5.

5 EXPERIMENTS

Figure 2 shows the environments (games) used to evaluate the per-
formances of the proposed and baseline algorithms. The environ-
ments are those used in previous studies [8, 12] and those designed
to make MARL training more difficult. We assume that the agents
in the environments observe the relative positions and velocities of
all agents. In Figure 2, games (a) and (b) correspond to cooperative
environments with only agents in a cooperative relationship, and
games (c) and (d) correspond to mixed cooperative-competitive
environments with both cooperative and competitive agents. In
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games (b) and (d), the agents need to communicate with other
agents depending on the purpose of the games.

For the experiments in these games, we compare the performance
of F2DDPG to the following baseline algorithms:

e MADDPG [12] is the algorithm that learns the critics and
actors using only the actual action information in the CTDE
framework.

e M3DDPG [8] is the algorithm based on MADDPG. Instead
of using the actual action information, this algorithm uses
the noisy actions of other agents to update the critics and
actors. In particular, this algorithm computes the adversarial
noise for other agents’ actions such that the noisy actions
collectively minimize the target agent’s critic. Owing to the
use of adversarial noise, this algorithm is referred to as ro-
bust MARL. In the view of F2DDPG, this algorithm can be
interpreted as one in which the competitive roles are infused,
as an information bias, to all the agents, regardless of their
roles (cooperative or competitive) with respect to the target
agent.

o All Plus is the algorithm with only cooperative biases em-
ployed in the actions of other agents; other agents are as-
sumed to maximize the target agent’s critic, regardless of
their roles.

e Random Sign is the algorithm with random biases em-
ployed in the actions of other agents. Other randomly se-
lected agents are assumed to maximize the target agent’s
critic, while the remaining agents are assumed to minimize
the target agent’s critic, regardless of their roles.
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Figure 2: Illustrations of the experimental environments.

-12 140+
20
-20
-134
s 100+ 154
— 4 kel
x-14 2 .25 B 2
e 2 S 2104
© 9] 2 [ .
2 -15 o < g0 o« —— MADDPG
o —— MADDPG
o —— MADDPG 304 —— MADDPG M3DDPG M3DDPG
161 M3DDPG - M3DDPG AP 5] — AllPlus
B —— Random Sign —— Random Sign —— Random Sign —— Random Sign
—— F2DDPG —— F2DDPG 204 — F20DPG 4 F2DDPG
=17+ T T T u T T - . T T T T T T T T T T T T T £ T T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120

#Episodes(x1000) #Episodes(x1000)

a) Cooperative Navigation

b) Cooperative Communication

#Episodes(x1000) #Episodes(x1000)

c) Predator-Prey d) Covert Communication

Figure 3: Rewards of the red agents in the experimental environments.

We can differentiate the proposed F2DDPG and other baseline al-
gorithms depending on the type of information bias infused into
other agents’ actions. While the baseline algorithms either do not
use any information bias (MADDPG) or use a certain information
bias, regardless of the relationships among agents, F2DDPG is the
only algorithm that aligns the information bias with the actual roles
of agents. Note that we exclude the All Plus algorithm from the
baseline algorithms in cooperative environments, such as games (a)
and (b), because it has the same cooperative biases as F2DDPG for
all the cooperative agents. In this study, all the performances are
obtained by the trained policies with four different random seeds.

5.1 Cooperative Navigation

Cooperative navigation is a cooperative environment, as shown in
Figure 2 (a), in which three cooperative agents (red circles) must
reach three landmarks (blue crosses) without colliding with each
other, while covering all of the landmarks. Every episode starts
with randomly initialized positions for the agents and landmarks.
The agents are collectively rewarded based on the distance of the
nearest agent to each landmark and penalized for collisions with
other agents during navigation. Thus, each agent must cooperate
to occupy a distinct landmark without colliding with other agents.

As shown in Figure 3 (a), F2DDPG outperforms other baseline al-
gorithms with faster training speed and higher converged rewards.
We consider that the performance improvement of F2DDPG is a
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result of the optimal use of information bias corresponding to the
agents’ roles. F2DDPG constantly updates the critic and actor of
each agent using biased joint actions, which induces agents’ poli-
cies to recommend more coherently exploratory actions, especially
toward cooperation. We believe that such coherent exploration
helps the MARL policy learning more than random exploration.

In contrast, M3DDPG exhibits slow training in inducing coop-
eration among the three agents by learning only the adversarial
action information of other agents, although the agents are in a
cooperative relationship. Training with adversarial action informa-
tion may enable robust policy learning; however, it is believed to be
unhelpful in inducing cooperation among the agents. The Random
Sign algorithm randomly injects cooperative or competitive biases
for biased actions at every step of training, which leads to ran-
dom noise in training. This random noise allows the algorithm to
train faster than MADDPG and M3DDPG; however, the algorithm
exhibits slower training than F2DDPG.

5.2 Cooperative Communication

Cooperative communication is a cooperative environment, as shown
in Figure 2 (b), with two cooperative agents, a speaker and listener
(red circles), and three landmarks of differing colors. The listener
must navigate to a landmark of a particular color. However, the
listener does not know the landmark to which it must navigate,
while observing the relative position and color of the landmarks. In
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Figure 5: Actual actions (red arrows) and biases (black arrows) for the centered predator as training proceeds.

contrast, the speaker observes the correct color of the landmark to
which the listener must navigate, and broadcasts a message (commu-
nication vector) at each time step, which is observed by the listener.
For each episode, the positions of the listener and landmarks are
randomly initialized. The listener and speaker are rewarded based
on listener’s distance to the correct landmark. Thus, the speaker
must learn to generate a message that optimally guides the listener
to reach the correct landmark, and simultaneously, the listener must
learn to decipher the message that is transmitted from the speaker
and navigate to the correct landmark.

As shown in Figure 3 (b), F2DDPG outperforms other baseline
algorithms with faster training speed and higher rewards. Addi-
tionally, M3DDPG exhibits better performance than MADDPG.
Moreover, the Random Sign algorithm learns faster than MADDPG,
possibly because of the enhanced exploration with random noises
added to the observed actions.

5.3 Predator-Prey

Predator-prey is a mixed cooperative-competitive environment,
as shown in Figure 2 (c), in which the five predator agents (red
circles) seek to capture the three prey agents (blue squares and
green diamond), which is called 5 vs. 3 predator-prey. If there are m
predators and n prey, it is denoted as m vs. n predator-prey. Because
prey can move at a higher speed and have greater acceleration
than predators, predators must cooperate to capture the prey. In
particular, the green prey (green diamond) can move faster with
greater acceleration than the blue prey (blue squares); the green
and blue prey are factors of 3 and 1.3 faster than the predators,
respectively. The positions of the predators and prey are randomly
initialized for every episode.

Each time the predators collide with (i.e., capture) the prey, the
predators are collectively rewarded, while the prey are penalized.
When the predators capture green prey, they are rewarded with a
factor of 10 more than when they capture blue prey. The predators
can capture prey multiple times during an episode. In the predator-
prey game, the prey are trained with MADDPG, while the predators
are trained with F2DDPG and other baseline algorithms.

As shown in Figure 3 (c), F2DDPG outperforms other baseline
algorithms with higher rewards. The reason why F2DDPG achieves
higher rewards is hypothesized by investigating the reward lost
by the green prey shown in Figure 4 (a). This figure compares the
reward achieved by the green prey (trained with MADDPG) when
playing against the predators trained with F2DDPG and baseline
algorithms; when the reward of the prey is lower, it is more likely to
be captured by the predators. As shown in the figure, the reward of
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Figure 4: Results in 5 vs. 3 predator-prey.

the green prey captured by the predators trained with F2DDPG is
lower than that of the prey captured by the predators trained with
other baseline algorithms. This indicates that the high rewards of
the predators trained with F2DDPG (shown in Figure 3 (c)) are the
results of capturing the green prey more frequently. Thus, it can be
concluded that the predators trained with F2DDPG are more capable
of cooperating strategically to capture the most rewardable, but
fast, prey than the predators trained with other baseline algorithms.

We also verify that the infused bias induces desirable behaviors
from the agents. Figure 4 (b) shows how the cosine similarity be-
tween the actual action a‘fi and bias VaA>Q§l in the biased action in
Equation 5 varies as the F2DDPG traininé proceeds. The cosine sim-

(a®,V 4 Q1)
v o foF
laZi 211V g Qi ll2
all agents in A(i), where (-, -) represents the inner product operator.
The similarity is used to judge the similarity of directions of the
actual and biased actions. The similarity ranges from -1, indicating
exactly opposite, to 1, indicating exactly the same, and 0 indicating
orthogonality or decorrelation. As shown in Figure 4 (b), the similar-
ity increases from 0 to close to 1 as the training proceeds, indicating
that the actual and biased actions (desirable actions designed by the
biases) become more similar as the training proceeds. Therefore,
the agents eventually execute the actions designed by the biases,
and accordingly, the biases between the actual and biased actions
vanish.

To consider a particular fixed state where a centered predator cap-
tures the prey, we investigate how the centered predator’s trained
policy induces other agents’ (predators’) actions. In Figure 5, the

ilarity between a’:‘i and V at Q‘;’ is calculated as
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Table 1: Fraction between the number of successful episodes and the total number of testing episodes in predator-prey games.

3vs. 1 5vs.3 7vs.3
Ne>1 N: >3 N >1 N. >3 Ne>1 N, >3
MADDPG 2.75+085 0.25+043 14.50x150  1.25+109 56.25+646  17.00+6.09
M3DDPG 3.75+043 0.25+043 14.25+043  1.25+08  55.75+617  13.25+363
All Plus 3.75+109 0.25+043 15.75+228 1.00x100 62.75+730 14.24+414
Random Sign  1.50t050 0.00t000  18.75:698  1.75x083 62.50x1171  19.25:637
F2DDPG 3.25+043 0.25+043 32.50:+1139 4.50+220 71.75:752 28.75+6.17
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Figure 6: Actual actions (red arrows) and biases (black ar-
rows) for the predator capturing the green prey after the
policies are learned with F2DDPG.

figures on the left show the other agents’ biased joint action (black)
induced at an early training stage, and those on the right show
how the other agents’ actual joint action (red) concurrently and
coherently alter as the training proceeds. Noticeable observations
are that (1) the other agents are jointly heading toward the prey,
which is a strategic movement to capture the prey, and (2) the actual
(red) and biased (black) actions become extremely similar, which
demonstrates that the biases vanish as the training proceeds, and
the agents actually behave as intended by the biases.

In addition, we execute the policies trained with F2DDPG in
the predator-prey game with a random state. Figure 6 shows four
snapshots of the predator-prey game with a random state after the
policies are trained with F2DDPG. In the figure, the predators tend
to gather toward the predator capturing the green prey and attempt
to capture it together. The differences between the actual (red) and
biased (black) actions are negligible, meaning that the converged
policies no longer carry the biases.

Table 1 compares the fraction between the number of successful
episodes and the total number of testing episodes (100 episodes).
We define two types of success: Ne > 1 is the case in which the
predators capture the green prey at least once and N > 3 is the
case in which the predators capture the green prey at least three
times. To validate the scalability of the proposed algorithm, we
compare these performance measures for F2DDPG and other base-
line algorithms for different sizes of predator-prey games. In 3 vs.
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1, the performances are not significantly differentiated because the
number of predators is insufficient to capture the faster green prey,
even if the three predators cooperate. However, as the number of
predators increases, the predators capture the green prey through
cooperation, and F2DDPG outperforms other baseline algorithms
in 5 vs. 3, as shown in the table. In addition, F2DDPG outperforms
other baseline algorithms in 7 vs. 3. Thus, it can be concluded that
the proposed method improves the MARL training, even in cases
with many agents, by utilizing biased action information.

5.4 Covert Communication

Covert communication is a mixed cooperative-competitive envi-
ronment, as shown in Figure 2 (d), with two cooperative agents, a
speaker and listener (red circles), and an adversary (green circle).
The speaker must encode a message as a communication vector us-
ing a randomly generated key to output the communication vector.
The listener must reconstruct the communication vector into the
message using the key. However, the adversary also observes the
communication vector and attempts to reconstruct the communica-
tion vector without the key. The speaker and listener are rewarded
based on the listener’s reconstruction and penalized based on the
adversary’s reconstruction. The adversary is rewarded based on its
reconstruction. Therefore, the speaker must encrypt the message as
the communication vector such that the adversary cannot decrypt
the communication vector, and the listener must decrypt the com-
munication vector as the message. In the covert communication,
the adversary is trained with MADDPG for comparison, while the
speaker and listener are trained with F2DDPG and other baseline
algorithms.

As shown in Figure 3 (d), F2DDPG outperforms other baseline
algorithms with higher rewards. At the early stage of training,
M3DDPG, Random Sign, and F2DDPG outperform MADDPG and
All Plus. However, as the training proceeds and the adversary be-
comes intelligent, the rewards of M3DDPG and Random Sign de-
crease, while F2DDPG still maintains high rewards.

6 CONCLUSIONS

We proposed F2DDPG, an algorithm that boosts MARL training

using biased action information of other agents based on a friend-
or-foe concept. Empirically, we demonstrated that F2DDPG outper-
forms existing algorithms in several mixed cooperative-competitive

environments. We also demonstrated that F2DDPG learns the agents’
policies such that their actions become similar to the biased actions

and that the biases decrease as the learning proceeds.
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