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ABSTRACT
Prediction markets are powerful tools to elicit and aggregate be-

liefs from strategic agents. However, in current prediction markets,

agents may exhaust the social welfare by competing to be the first

to update the market. We initiate the study of the trade-off between

how quickly information is aggregated by the market, and how

much this information costs. We design markets to aggregate timely

information from strategic agents to maximize social welfare. To

this end, the market must incentivize agents to invest the correct

amount of effort to acquire information: quickly enough to be useful,

but not faster (and more expensively) than necessary. The market

also must ensure that agents report their information truthfully and

on time. We consider two settings: in the first, information is only

valuable before a deadline; in the second, the value of information

decreases as time passes. We use both theorems and simulations to

demonstrate the mechanisms.
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1 INTRODUCTION
Eliciting information about uncertain events is crucial for informed

decision making. Information is often acquired by individual agents.

To achieve collective intelligence, the key problems are to elicit and

aggregate timely and truthful information from dispersed agents.

Prediction markets (PMs) allow agents to bet on the occurrence

of future events: the outcome of a presidential election, the winner

of a football game, etc. Market prices reflect society’s aggregated

estimate of the outcome. However, prediction markets tend to only

pay the first agent bringing information to the market. For example,

in the market of a tennis match, if one player wins a set, likely the

price of the market will shift dramatically. Because sportscasts are

usually delayed by a few seconds, agents with real-time information

(say with a confederate attending the match) reap the rewards by

trading just seconds before others. This provides little to no societal
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value as the price would be updated seconds later anyhow. This

practice is widespread. People, called “courtsiders”, are paid to

attend sports events and send back real-time information [10, 13].

The US Open ejected 20 spectators for courtsiding and banned them

from future events [24]. While this information is useful to those

profiting from it, it is hardly more than a waste of money and time

for our society.

The importance of speed in trading on information is under-

scored by the infamous $300 million, 827 mile fiber optic cable from

New York City to Chicago. The cable reduced the round-trip latency

to 13.1 milliseconds [1] by offering a more direct route, bypassing

Philadelphia, than the previous 1000 mile cable took with round

trip latency 14.5 milliseconds.

We want to design systems that work well for society rather

than promoting speed that is not needed but is merely a byproduct

of the market design. Increasingly, businesses are seen not merely

as profit-maximizing, but as responsible and responsive to their

various stakeholders [25].

Maximizing welfare rather than profit has various economic

motivations as well. To gain market share and maximize long-term

revenue, a company may also want to benefit other companies

that it makes deals with. For example, many sponsored search

auctions maximize welfare instead of revenue [22]. Since profit is a

lower bound of social welfare (when agents’ utility is non-negative),

higher welfare potentially leads to high profit. Welfare-maximizing

auctions and profit-maximizing auctions are shown to be very

close in terms of both welfare and efficiency [2, 7]. In our settings,

though our mechanism maximizes social welfare, its profit is still

high, illustrated in Figure 7.

Apart from social welfare concerns, another potential challenge

with prediction markets is that agents may want to delay reporting

their information to increase their rewards [4, 9, 20]. We show

that in the settings we study, this is still a problem for traditional

prediction markets, and we resolve this problem in our mechanisms.

1.1 Our Contribution
Motivated by the above concerns, we answer the following question:

How to aggregate timely and truthful information to maximize

social welfare?

We formulate the process as a principal-agent problem. The

principal first suggests a contract which maps agents’ reports to

rewards. Then each agent decides his hidden actions (how much

effort and how to report) strategically to maximize his utility. The

principal knows neither agents’ actions nor the relation between

agents’ actions and quality of information. This makes our problem

different from those in standard contract theory. To resolve this,

we design two new markets to maximize social welfare under the

following two settings.
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In the single batch setting, a principal needs to decide by a

particular deadline. To maximize social welfare, the principal needs

to incentivize agents to invest the correct cost. Agents’ costs are

hidden, and they can misreport. For this setting, we propose the

Fair Prediction Market (FPM, Mechanism 1), in which the expected

reward for every truthful agent is the same.

In the sequential setting, the value of information decreases as

time passes. Besides dealing with agents’ hidden costs and misre-

porting behaviors, the principal also needs to encourage timely

reports. We propose the Marginal Value Prediction (MVP) Market

(Mechanism 2), in which every agent is paid by his contribution to

the value of information.

Compared to the traditional prediction market, our mechanisms

have more desirable properties, as shown in Table 1.

Table 1: Comparing the traditional prediction market (PM)
and our mechanisms.

PM FPM MVP Market

Timing sequential single-batch sequential

Truthfulness ✓ ✓ ✓

Timeliness N.A. ✓

Social Optimality ✓ ✓

1.2 Related Works
One line of works studies when agents should report their signals

in prediction markets [4, 9, 15, 20]. They find that whether infor-

mation will be aggregated quickly depends on agents’ information

structure. Agents will delay reporting if their information is “com-

plementary”, and rush to report if it is “substitutional”. Earlier in

the finance literature, [14, 19, 21] analyze how private information

is disseminated into real financial markets using different models.

The market behavior depends on the numbers of insiders, noise

traders, and market makers.

Chakraborty and Das [8] find that when agents are risk-averse,

the market scoring rule acts as an opinion pool. Agents’ risk aver-

sion avoids the issue that agents will always pull the market price

toward their own belief without ever reaching a consensus. We

do not have this issue because, in our model, agents believe that

the signals of each other are useful and are willing to do Bayesian

updates.

For costly information, if the effort level is binary, it’s well-

known that we can scale the reward to compensate for the cost

of effort. This approach encourages agents to invest effort and in-

creases the liquidity of the prediction [23]. In our paper, we consider

a more complicated setting: The effort level is continuous, and the

relation between agents’ actions and the quality of information

is unknown. Azar and Micali [3] uses contract theory to delegate

computation where acquiring data is costly, but assume the prin-

cipal has some ability to verify the data. Moreover, our goal is to

maximize social welfare, not just collect accurate decisions.

Budish et al. [6] investigate the continuous limit order book mar-

ket and the high-frequency trading arms race. They show examples

that such arms races induce rents that harm the liquidity of the

market. They propose a frequent batch market which discretizes

the time to mitigate the necessity to be first, and show that the

above-mentioned example does not hold in their new markets.

1.3 Outline.
In Section 2, we provide some basic notations, assumptions, and

definitions; frame the problem we want to solve; and describe how

prediction markets work. In Section 3, we show how prediction

markets may fail to collect timely reports. In Section 4, we pro-

pose Mechanism 1 for the single-batch setting and show that it is

truthful and maximizes the social welfare. In Section 5, we propose

Mechanism 2 for the sequential setting and show that it is truthful,

timely and maximizes social welfare. At last, we present some con-

crete examples to compare our mechanism to prediction markets

in Section 6.

2 PRELIMINARIES
There is a principal and a set of agents N = {1, . . . , 𝑛}.1 Let Y
be the outcome space, 𝑦 ∈ Y be the true outcome, and 𝑌 be the

random variable for the outcome. For each agent 𝑖 ∈ N , let𝑋𝑖 be the

private information of agent 𝑖 , and X𝑖 be the set of possible values
of 𝑋𝑖 where X𝑖 is finite. The principal wants to collect information

from agents to better predict 𝑦, and her utility depends on the value

of information.
2

2.1 Information Structure
We assume agents’ signals 𝑋1, . . . , 𝑋𝑛 are i.i.d. conditioning on the

outcome𝑌 . Every agent knows the joint distribution Pr[𝑋𝑘 , 𝑌 ]. The
principal knows the prior of the outcome Pr[𝑌 ], but she may not

know Pr[𝑋𝑘 |𝑌 ].

Example 2.1. Consider a binary outcome space Y = {0, 1}, and
binary signal spaces X𝑖 = {0, 1} for all 𝑖 ∈ N . The prior of the

outcome is given by Pr[𝑌 = 1] = 𝛼 . There is a noise level 𝛽 ∈
[0, 1/2) such that each signal is an independent noisy observation

of the outcome Pr[𝑋𝑖 = 𝑌 ] = 1 − 𝛽 for all 𝑖 ∈ N and 𝑦 ∈ {0, 1}.
Suppose the principal wants to predict 𝑌 and her utility is 1 (−1) if
correct (incorrect). Let 𝛼 = 1/2. If she only knows the prior of the

outcome, her expected utility is 0. However, if all agents collectively

provide their prediction Pr[𝑌 |𝑋1, . . . , 𝑋𝑛], the principal’s utility
is greater than 0. For example, if 𝑛 = 1, her expected utility is

1 − 2𝛽 > 0.

2.2 The Mechanism Design Problem
Acquiring signals is costly for agents. Hence, agents may not bother

to invest effort and may misreport their information. The principal

needs to incentivize agents to invest some effort to acquire their

signals, without observing how much effort they actually invest.

Formally, the mechanism has three stages:

(1) The principal publishes a contract which maps reports and

the outcome to payments. Agents accept (or refuse).

1
Throughout the paper, we use ‘she’ and ‘he’ for the principal and agents respectively.

2
In reality, it could be other people who value the information in the market, use it

to do something outside the market, and then get utility based on the quality of the

information. Without loss of generality, we simply aggregate all such utility into that

of the principal. [11, 16]
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(2) Each agent chooses a hidden effort level and submits a report

to the principal.

(3) The true outcome (that agents are guessing at) is revealed.

The principal rewards each agent according to the contract.

Each agent’s utility is his reward from the principal minus his

effort level. Agents are rational and maximize their expected utility

based on their beliefs over future events. The principal’s utility is

the value of information minus the rewards given to the agents. The

social welfare is the total utility of all agents and the principal.

We want to design mechanisms whose resulting social welfare

equals that in the centralized setting, where every agent’s action is

controlled by the principal. In particular, we hope that the agents

invest the same amount of effort and report just the same as in the

centralized setting.

Throughout the paper, we are only looking for symmetric equi-

librium. This is reasonable since agents’ signals are i.i.d. and they

have no a priori means to coordinate. However, it is important to

know that a non-symmetric strategy profile can be better than a

symmetric one in terms of social welfare. For instance, as shown

in Figure 1, social welfare may decrease as the number of agents

increases, a phenomenon shared across a wide range of economic

models: the tragedy of commons, the game of chicken, etc. In such

cases, if we break the symmetry and only allow a restricted number

of agents to participate, the social welfare will increase.

At each time during the whole process, for each agent, given the

information he has and the strategies of other agents, he has a belief

over all uncertainty — including the randomness of the world and

other agents’ private information. His immediate strategy should

maximize his expected utility given his current information. If a

strategy profile satisfies the above property, it is called a perfect
Bayesian equilibrium.

3

We say a mechanism is individually rational if every agent

has non-negative expected utility in every Nash equilibrium.

2.3 Prediction Markets with Scoring Rules
Scoring rules have a very long history [5, 12, 16, 17]. Market scoring

rules were introduced by Hanson [18] to study prediction markets.

A scoring rule for an outcome 𝑦 is a function 𝑆 : ΔY × Y → R,4 so
that 𝑆 (𝑝,𝑦) is the score assigned to a prediction 𝑝 when the true

outcome realized is 𝑌 = 𝑦. Formally,

Definition 2.2 (Proper Scoring Rule). 𝑆 : ΔY × Y → R is called a

proper scoring rule if for any 𝑏, 𝑝 ∈ ΔY ,

E
𝑌∼𝑏
[𝑆 (𝑏,𝑌 )] ≥ E

𝑌∼𝑏
[𝑆 (𝑝,𝑌 )] .

A proper scoring rule is strict if the equality holds only if 𝑏 = 𝑝 . In

other words, reporting one’s belief results in a higher score than

reporting other distributions. Such a report is said to be truthful.

3
Here is a more rigorous definition. In an extensive-form game, for each game state ℎ,

let 𝜋𝜎 (ℎ) denote its reach probability according to strategy profile 𝜎 . We simply use

𝜋 (ℎ) if 𝜎 is clear from the context. For each information set 𝐼 , let 𝜋 (𝐼 ) = ∑
ℎ∈𝐼 𝜋 (ℎ) .

Let 𝑢𝜎 (ℎ) denote ℎ’s expected utility according to 𝜎 . For each information set 𝐼

with 𝜋 (𝐼 ) > 0, let 𝑢 (𝐼 ) = Eℎ∈𝐼 [𝑢 (ℎ) ] =
∑

ℎ∈𝐼 𝑢 (ℎ)𝜋 (ℎ)/𝜋 (𝐼 ) . For a strategy

profile 𝜎 , let 𝜎𝐼→𝑠 denote the same strategy profile except the strategy at information

set 𝐼 is changed to 𝑠 . A strategy profile 𝜎 = (𝜎1, . . . , 𝜎𝑛) is a perfect Bayesian
equilibrium if for every information set 𝐼 with 𝜋 (𝐼 ) > 0, for every strategy 𝑠 at 𝐼 ,

𝑢𝜎 (𝐼 ) ≥ 𝑢𝜎𝐼→𝑠 (𝐼 ) .
4ΔY is the set of all probability distributions over Y.

Prediction markets with a scoring rule proceed as follows: A

public belief 𝑝 ∈ ΔY is maintained in the market. Initially, 𝑝 = 𝑝0.

Agents can change the market belief arbitrarily, resulting in a belief

sequence 𝑝0, 𝑝1, 𝑝2, . . . . After the outcome is revealed, for every

𝑘 ≥ 1, the agent who changes 𝑝𝑘−1 to 𝑝𝑘 is rewarded (or charged,

if negative) by

𝑆 (𝑝𝑘 , 𝑦) − 𝑆 (𝑝𝑘−1, 𝑦),
where 𝑆 is a proper scoring rule.

In prediction markets, if each agent is only allowed to report

once (and they believe other agents are rational), then the reports

will be truthful. In particular, each agent will report his posterior

distribution using the market information as the prior and his

private information as the evidence.

Proposition 2.3. If signals are independent conditioned on the
outcome, then agents can perform a Bayesian update knowing only
the current market belief (and the likelihood of their own signals). In
particular, they need not know the history of updates.

3 LIMITATIONS OF PREDICTION MARKETS
In this section, we show by examples how the original form of pre-

diction markets may perform undesirably: agents may 1) invest too

much effort, which decreases the social welfare, and 2) intentionally

delay their reports.

3.1 Inflated Effort and Poor Welfare
Current theories of predictionmarkets do not consider agents’ effort

to discover signals: How much effort should an agent invest? For

some easy, accurate information, it would be a waste of resources

if everyone invests a lot.

We model the cost of information by an access function 𝐹 :

R≥0 → [0, 1] that maps from an effort level (the cost that an agent

spends) to the probability of getting signals. Each agent 𝑖 decides

his effort level 𝑐𝑖 and then obtains his signal 𝑋𝑖 with probability

𝐹 (𝑐𝑖 ). We assume the access function is the same for every agent

as common knowledge but unknown to the principal.

Suppose agents’ signals are structured as in Example 2.1 with

𝛼 = 1/2 and 𝛽 = 0, i.e., all 𝑋𝑖 ’s are identical to the outcome and

are exact substitutes to each other. Also, only the first agent who

changes the belief will get one unit of reward, and others will get

zero. In this case, every agent wants to be the first. If multiple agents

get signals, we assume each of them receives the reward with equal

probability since they are symmetric.

Suppose the principal’s value of information is described by a

proper scoring rule 𝑆 . She needs to choose a proper scoring rule 𝑆

for the prediction market. Unfortunately, she is unable to maximize

the social welfare because she doesn’t know the access function

𝐹 and the information structure Pr[𝑋 |𝑌 ] (characterized by 𝛽 in

this case). We will see in this section that, if she chooses 𝑆 = 𝑆

for prediction markets, the social welfare could be very poor. This

is in stark contrast to the mechanisms we propose later in this

paper, where the social welfare is maximized when 𝑆 = 𝑆 , without

the need to know anything about 𝐹 or Pr[𝑋 |𝑌 ]. Our results are
summarized in Figure 1.

We consider two examples of access functions and compute

the social welfare of the market as the number of agents increases.

When every agent’s effort is 𝑐 , social welfare is the total value minus
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Figure 1: Red solid: Optimal (Centralized). Blue dashed: Pre-
diction markets. Top: Linear access function 𝐹 (𝑐) = 3𝑐 with
𝑐 ∈ [0, 1/3]. Bottom: Exponential access function 𝐹 (𝑐) =

1−𝑒−3𝑐 with 𝑐 ≥ 0. In both (linear and exponential) cases, the
total costs (right column) are high in the strategic setting. In
the linear case, agents spend all potential social value and
have zero social welfare. In the exponential case, the total
cost increases as the number of agents increases.

cost. The value is 1 when at least one agent derives his signal, and

the total cost is 𝑐𝑛, so in expectation,

𝑊 (𝑛) (𝑐) =
(
1 − (1 − 𝐹 (𝑐))𝑛

)
− 𝑐𝑛. (1)

Proposition 3.1 (Linear Access). Given 𝑛 ≥ 2, 𝜆 > 1 and a
linear access function is 𝐹 (𝑐) = 𝜆𝑐 for 𝑐 ∈ [0, 1/𝜆], the optimal
social welfare with 𝑛 agents is𝑊 (𝑛) (𝑐opt) = 1−𝜆−𝑛/(𝑛−1) −𝑛

(
𝜆−1 −

𝜆−𝑛/(𝑛−1)
)
> 0 in the centralized setting, but the social welfare

𝑊 (𝑛) (𝑐
self
) is zero in the strategic setting.

Proposition 3.2 (Exponential Access). Given 𝑛 ≥ 2, 𝜆 > 1

and an exponential access function 𝐹 (𝑐) = 1 − 𝑒−𝜆𝑐 for 𝑐 ≥ 0. As
𝑛 → ∞, the optimal social welfare with 𝑛 agents is𝑊 (𝑛) (𝑐opt) =
1 − (1 + ln 𝜆)/𝜆 > 0, but the social welfare in the strategic setting is
𝑊 (𝑛) (𝑐

self
) = 𝑂 (1/𝑛).

3.2 Delayed Report
Unfortunately, prediction markets do not guarantee timely reports,

i.e., one may wait for others to report. This is undesirable when

the value of information decays quickly. Suppose agents’ signals

are structured as in Example 2.1 with 𝛼 = 0.02, 𝛽 = 0.2. Consider

the quadratic scoring rule, where we let𝐺 (𝑝) = ∥𝑝 ∥2
2
and 𝑆 (𝑝,𝑦) =

𝐺 (𝑝) +
〈
∇𝐺 (𝑝), 𝛿𝑦 − 𝑝

〉
= 2𝑝 (𝑦) − ∥𝑝 ∥2

2
. Contrary to the intuition,

the marginal value of a report does not monotonically decrease. As

shown in Figure 2, the largest increase in the scoring rule is due

to the third report, not the first or the second. Thus, an agent who

believes he is likely to be the first will wait before reporting.

2 4 6 8 10

0.97

0.98

0.99

𝑘

Score

2 4 6 8 10

2

4

6

·10−3

𝑘

Reward

Figure 2: Left: The expected score after 𝑘 reports. Right: The
expected reward for the 𝑘-th report, which is the difference
between two consecutive values in the left plot. Note that it’s
not decreasing!

4 SINGLE BATCH MODEL
We want to design new mechanisms to deal with the above issues.

In particular, we assume the market belief is used by someone

whose utility is the “quality” of the market belief minus the rewards

she gives to the agents. Then, we maximize social welfare and

encourage truthful and timely reports. We first ignore the time

factor and consider a simple case, where each agent 𝑖:

(1) chooses to invest 𝑐𝑖 ∈ R much effort,

(2) gets a signal 𝑋𝑖 with probability 𝐹 (𝑐𝑖 ), and reports 𝑏𝑖 to the

mechanism,

(3) receives some reward 𝑟𝑖 from the mechanism.

We want to design a reward function (contract) from agents’ re-

ports to rewards in order to maximize the social welfare. If 𝑝 is the

aggregated belief from agents’ reports, the value of information is

represented as a (strictly) proper scoring rule 𝑆 (𝑝,𝑦), where 𝑦 is

the outcome. The principal’s utility𝑈 , each agent 𝑖’s utility 𝑢𝑖 , and

the social welfare𝑊 , are given by:𝑈 = E[𝑆 (𝑝,𝑌 )] −∑
𝑖 E[𝑟𝑖 ], 𝑢𝑖 =

E[𝑟𝑖 ]−𝑐𝑖 , 𝑊 = E[𝑆 (𝑝,𝑌 )]−∑𝑖 𝑐𝑖 . Here the expectation is taken over

all randomness (ex-ante), i.e., agents compute it based on the infor-

mation in Stage 1. Note that given the information valuation 𝑆 and

the information structure, assuming agents are truthful, the ex-ante

social welfare only depends on the agents’ effort 𝒄 = (𝑐1, . . . , 𝑐𝑛).
We call 𝒄∗ an optimal effort profile if

𝒄∗ ∈ argmax

𝒄

(
E
𝑝,𝑌
[𝑆 (𝑝,𝑌 )] −

∑
𝑖

𝑐𝑖

)
, (2)

where 𝑝 is the Bayesian posterior of the outcome given all signals.

4.1 Mechanism and Theorem
To incentivize agents to invest the optimal effort, we want to design

a mechanism that, given agents’ reports, outputs an aggregated

belief 𝑝 ∈ ΔY and a reward for each agent. This task is challenging

for two reasons:

• The agents’ efforts 𝑐1, . . . , 𝑐𝑛 and reports 𝑏1, . . . , 𝑏𝑛 are de-

cided by each agent individually.

• The joint distribution Pr[𝑋𝑘 , 𝑌 ] and the effort function 𝐹 (𝑐)
are not known to the principal, and thus naïvely eliciting

agents’ signals 𝑋𝑘 does not work.

Our mechanism is shown in Mechanism 1. Each agent 𝑘 is

asked to report 𝑏𝑘,𝑦 = Pr[𝑋𝑘 |𝑌 = 𝑦] for each 𝑦 ∈ Y (one of
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them can be omitted). If the mechanism knows
Pr[𝑌=𝑦 |𝑋1,...,𝑋𝑘−1 ]
Pr[𝑌≠𝑦 |𝑋1,...,𝑋𝑘−1 ] ,

then it is easy to updated it to
Pr[𝑌=𝑦 |𝑋1,...,𝑋𝑘 ]
Pr[𝑌≠𝑦 |𝑋1,...,𝑋𝑘 ] given 𝑏𝑘,𝑦 be-

cause
Pr[𝑌=𝑦 |𝑋1,...,𝑋𝑘 ]
Pr[𝑌≠𝑦 |𝑋1,...,𝑋𝑘 ] =

Pr[𝑌=𝑦 |𝑋1,...,𝑋𝑘−1 ]
Pr[𝑌≠𝑦 |𝑋1,...,𝑋𝑘−1 ]

𝑏𝑘,𝑦

1−𝑏𝑘,𝑦 , which follows

by applying Bayes to both the numerator and denominator of

the first two fractions, and then using the fact that 𝑋𝑘 is con-

ditionally independent of 𝑋1, . . . , 𝑋𝑘−1. As a result, we can up-

date Pr[𝑌 = 𝑦 |𝑋1, . . . , 𝑋𝑘−1] to Pr[𝑌 = 𝑦 |𝑋1, . . . , 𝑋𝑘 ] because we
can first compute

Pr[𝑌=𝑦 |𝑋1,...,𝑋𝑘−1 ]
Pr[𝑌≠𝑦 |𝑋1,...,𝑋𝑘−1 ] , use this and 𝑏𝑘,𝑦 to compute

Pr[𝑌=𝑦 |𝑋1,...,𝑋𝑘 ]
Pr[𝑌≠𝑦 |𝑋1,...,𝑋𝑘 ] , and then transform this back to Pr[𝑌 = 𝑦 |𝑋1, . . . , 𝑋𝑘 ].
We succinctly denote the above process as 𝑝𝑘,𝑦 = Update(𝑝𝑘−1,𝑦, 𝑏𝑘,𝑦)
where

Update(𝑝𝑘,𝑦, 𝑏𝑘,𝑦) =
𝑝𝑘,𝑦𝑏𝑘,𝑦

(1 − 𝑝𝑘,𝑦) (1 − 𝑏𝑘,𝑦) + 𝑝𝑘,𝑦𝑏𝑘,𝑦
(3)

and 𝑝𝑘,𝑦 = Pr[𝑌 = 𝑦 |𝑋1, . . . , 𝑋𝑘 ].

Mechanism 1: Fair Prediction Market

Input: a report profile (𝑏1, . . . , 𝑏𝑛) where
𝑏𝑘 = (𝑏𝑘,1, . . . , 𝑏𝑘,𝑑−1) is the information provided

by agent 𝑘 , describing what the agent 𝑘’s (claimed)

values of Pr[𝑋𝑘 |𝑌 = 𝑦] for each 𝑦. For those who do
not obtain a signal, we assume their 𝑏𝑘,𝑦 = 1/2 for
𝑦 = 1, . . . , 𝑑 − 1, where 𝑑 = |Y|.

Output: the reward 𝑟𝑘 for each agent 𝑘 , and the aggregated

belief 𝑝𝑛
1 for 𝑘 = 1 to 𝑛 do
2 Let (𝜋1, . . . , 𝜋𝑛) be a random permutation with 𝜋𝑛 = 𝑘

3 𝑝0 ← Pr[𝑌 ]
4 for 𝑗 = 1 to 𝑛 do
5 for 𝑦 = 1 to 𝑑 − 1 do // This loop goes through

every 𝑦 ∈ Y and update the corresponding
entry of 𝑝 according to the information
provided by agent 𝜋 𝑗.

6 𝑝 𝑗,𝑦 ← Update(𝑝 𝑗−1,𝑦, 𝑏𝜋 𝑗 ,𝑦) as defined in (3)

7 𝑝 𝑗,𝑑 ← 1 −∑𝑑−1
𝑦=1 𝑝 𝑗,𝑦

8 𝑟𝑘 ← 𝑆 (𝑝𝑛, 𝑦∗) − 𝑆 (𝑝𝑛−1, 𝑦∗) // 𝑦∗ is the true

outcome

A report is said to be truthful if it results in a Bayesian update on

the market belief, where the prior is the previous market belief, the

posterior is the newmarket belief, and the evidence is the reporter’s

signal. We pay each agent by his improvement on the market belief

as if he were the last one to update. This mechanism is “fair” in the

sense that if everyone is truthful then everyone receives the same

expected reward.

Proposition 4.1. Agent 𝑘 makes a correct Bayesian update iff
𝑏𝑘,𝑦 =

Pr[𝑋𝑘 |𝑌=𝑦 ]
Pr[𝑋𝑘 |𝑌≠𝑦 ] for all 𝑦 ∈ Y.

Note that if 𝑝𝑘,𝑦 is known for |Y| − 1 different 𝑦’s, then the last

one follows directly since their sum is 1, so each agent needs to

report only |Y| − 1 values, the same number as in the original pre-

diction market, where each agent reports a probability distribution.

Theorem 4.2. Assume d
2𝐹 (𝑐)
d𝑐2

< 0.5 Mechanism 1 is individually
rational, and there exists a strict perfect Bayesian equilibrium 𝝈 in
which the expected social welfare is maximized (over all symmetric
strategy profiles), and 𝝈 satisfies the following properties:

Effort Optimality The effort profile 𝒄 is optimal (as in (2)).
Truthfulness Each agent makes a Bayesian update on the mar-

ket belief.

4.2 Proof Sketch
In order to proof Theorem 4.2, we first show some lemmas.

Lemma 4.3 (Truthfulness). Every report 𝑏𝑘 will be truthful,
assuming other reports are truthful. Any deviation will result in a
strictly worse expected reward.

Lemma 4.4 (Effort Optimality). Assume d
2𝐹 (𝑐)
d𝑐2

< 0. Agents are
incentivized to invest the “right” amount of effort (2) that maximizes
the expected social welfare, assuming all reports are truthful.

Lemma 4.5. The expected score E[𝑆 (𝑝,𝑌 )] of distribution 𝑝 only
depends on the number of previous updates but not who have made
updates, assuming all reports are truthful.

Proof of Theorem 4.2. Each agent 𝑖 makes two decisions, and

his strategy can be written as 𝜎𝑖 = (𝑐𝑖 , 𝑏𝑖 ), where 𝑐𝑖 is the effort he
invests at the beginning and 𝑏𝑖 is his report. By Lemma 4.4, he will

not deviate from 𝑐𝑖 . By Lemma 4.3, he will not deviate from 𝑏𝑖 .

The proof for individual rationality is simple: If in a Nash equi-

librium, agent 𝑖 gets negative expected utility, then he can deviate

to 𝑐𝑖 = 0 and get zero utility. This means he is not in a Nash equilib-

rium. Thus in every Nash equilibrium, every agent has non-negative

expected utility. □

Below is the proofs of the lemmas. Lemma 4.4 is perhaps the

most interesting among the three.

Proof of Lemma 4.3. Assuming other reports are truthful, for

avery agent 𝑘 , we have 𝑝𝑛−1 = Pr[𝑌 | all signals except agent 𝑘’s].
By the property of strictly proper scoring rule, his best strategy is to

make 𝑝𝑛 = Pr[𝑌 | all signals] for every possible 𝑝𝑛−1. Any deviation
will lower his reward. This is achievable due to Proposition 2.3. □

Proof of Lemma 4.4. Since agents are symmetric to each other,

we look for a symmetric equilibrium, where every agent 𝑖 invests

the same amount of effort 𝑐𝑖 = 𝑐 . Let 𝑣𝑘 = E[𝑆 (𝑝𝑘 , 𝑌 ) − 𝑆 (𝑝0, 𝑌 )],
the expected increase of the score after 𝑘 updates.

The expected social welfare is given by:

𝑊 = E[𝑆 (𝑝𝑘 , 𝑌 )] − 𝑛𝑐 = E[𝑣𝑘 ] + E[𝑆 (𝑝0, 𝑌 )] − 𝑛𝑐.
Setting the derivative to be zero, we have

0 =
d𝑊

d𝑐
=

d

d𝑐
E[𝑣𝑘 ] − 𝑛

=
d𝐹 (𝑐)
d𝑐

d

d𝐹 (𝑐)

𝑛∑
𝑘=0

(
𝑛

𝑘

)
𝐹 (𝑐)𝑘 (1 − 𝐹 (𝑐))𝑛−𝑘𝑣𝑘 − 𝑛

=
d𝐹 (𝑐)
d𝑐

𝑛∑
𝑘=0

(
𝑛

𝑘

) (
𝑘𝐹 (𝑐)𝑘−1 (1 − 𝐹 (𝑐))𝑛−𝑘

5
decreasing marginal benefit, a very common assumption in economics.
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− (𝑛 − 𝑘)𝐹 (𝑐)𝑘 (1 − 𝐹 (𝑐))𝑛−𝑘−1
)
𝑣𝑘 − 𝑛

=
d𝐹 (𝑐)
d𝑐

𝑛

(
𝑛∑

𝑘=1

(
𝑛 − 1
𝑘 − 1

)
𝐹 (𝑐)𝑘−1 (1 − 𝐹 (𝑐))𝑛−𝑘𝑣𝑘︸                                         ︷︷                                         ︸

substitute 𝑘 by 𝑘 + 1

−
𝑛−1∑
𝑘=0

(
𝑛 − 1
𝑘

)
𝐹 (𝑐)𝑘 (1 − 𝐹 (𝑐))𝑛−𝑘−1𝑣𝑘

)
− 𝑛

= 𝑛
d𝐹 (𝑐)
d𝑐

𝑛−1∑
𝑘=0

(
𝑛 − 1
𝑘

)
𝐹 (𝑐)𝑘 (1 − 𝐹 (𝑐))𝑛−𝑘−1 (𝑣𝑘+1 − 𝑣𝑘 ) − 𝑛. (4)

On the other hand, the expected utility of agent 𝑖 is

𝑢𝑖 = Pr[get signal] E[reward | agent 𝑖 reports] − cost
= 𝐹 (𝑐𝑖 ) E

𝑘,𝑋1,...,𝑋𝑘 ,𝑌
[𝑆 (𝑝𝑘 , 𝑌 ) − 𝑆 (𝑝𝑘−1, 𝑌 ) | agent 𝑖 reports] − 𝑐𝑖

= 𝐹 (𝑐𝑖 ) E
𝑘
[𝑣𝑘 − 𝑣𝑘−1 | agent 𝑖 reports] − 𝑐𝑖

= 𝐹 (𝑐𝑖 )
𝑛−1∑
𝑘=0

(
𝑛 − 1
𝑘

)
𝐹 (𝑐)𝑘 (1 − 𝐹 (𝑐))𝑛−𝑘−1 (𝑣𝑘+1 − 𝑣𝑘 ) − 𝑐𝑖 ,

where 𝑐 is the amount of effort invested by other agents. Because

𝐹 (𝑐𝑖 ) is concave in 𝑐𝑖 , 𝑢𝑖 is also concave in 𝑐𝑖 . We also know that

𝐹 (𝑐𝑖 ) is upper bounded (by 1), so lim𝑐𝑖→∞ d𝐹 (𝑐𝑖 )/d𝑐𝑖 = 0 and

thus lim𝑐𝑖→∞ d𝑢𝑖/d𝑐𝑖 = −1. Therefore, there is a unique 𝑐𝑖 that

maximizes the utility, which is either (a) 𝑐𝑖 = 0 or (b) the point with

zero derivative. In case (b), we have

0 =
d𝑢𝑖

d𝑐𝑖
=

d𝐹 (𝑐𝑖 )
d𝑐𝑖

𝑛−1∑
𝑘=0

(
𝑛 − 1
𝑘

)
𝐹 (𝑐)𝑘 (1− 𝐹 (𝑐))𝑛−𝑘−1 (𝑣𝑘+1 − 𝑣𝑘 ) − 1.

(5)

Equation (5) describes how an agent’s decision 𝑐𝑖 should best re-

sponse to those of others 𝑐 . In a symmetric equilibrium, 𝑐𝑖 = 𝑐 .

Then, surprisingly, Equation (5) becomes equivalent to Equation (4).

In case (a), both individually optimal and socially optimal solutions

are 𝑐𝑖 = 0. In other words, the distributed maximization of each

agent’s utility can result in the maximization of social welfare. □

Proof of Lemma 4.5. Since signals are identically distributed

and the effort function is the same for every agent, an agent is

indistinguishable from another. The lemma simply follows. □

5 SEQUENTIAL MODEL
In this section, we consider a setting that involves time. Its difference

from the setting of the previous section is that signals are not

received by agents immediately but will be eventually. Formally,

before receiving signal 𝑋𝑖 , each agent 𝑖 suffers from a latency 𝑇𝑖 ,

which is a random variable with c.d.f. 𝐹𝑐 (𝑡). For instance, 𝐹𝑐 (𝑡) =
1 − 𝑒−𝜆𝑐𝑡 means 𝑇𝑖 ∼ Exp(𝜆𝑐𝑖 ). Here, 𝐹𝑐 (𝑡) — a generalization of

the access function 𝐹 (𝑐) used in the previous section — depends on

time. In summary, each agent 𝑖 ∈ N :

(1) chooses to invest 𝑐𝑖 ∈ R effort,

(2) obtains a signal 𝑋𝑖 at time 𝑇𝑖 ≥ 0 generated from c.d.f 𝐹𝑐𝑖 (·),
decides a time 𝑠𝑖 ≥ 0 and a report𝑏𝑖 to send to themechanism

at time 𝑠𝑖 ,

(3) receives some reward 𝑟𝑖 from the mechanism.

We assume that as long as the agents invest non-zero effort, they

always obtain their signals before the true outcome being revealed

because this is far in the future. The value of the information (mar-

ket belief) evolves over time. Let 𝑝 (𝑡) ∈ ΔY denote the market

belief at time 𝑡 . The value of a belief history {𝑝 (𝑡)}𝑡>0 is defined
as:𝑉 =

∫
𝑡>0

𝑆 (𝑝 (𝑡), 𝑦)ℎ(𝑡)d𝑡 , where 𝑦 is the outcome, 𝑆 is a strictly

proper scoring rule characterizing the quality of the market be-

lief, and time value function ℎ is a function characterizing how

the value of information diminishes through time. For instance,

ℎ(𝑡) = 𝜂𝑒−𝜂𝑡 means that the value of information decays exponen-

tially. This would be appropriate if the principal needs to make

decision at a random time 𝜏 ≥ 0 generated from an exponential

distribution with parameter 𝜂.

We want to design a mechanism that takes agents’ online reports

as inputs, maintains a real-time market belief, and finally outputs

the reward given to each agent. We also want this mechanism

to be truthful, timely, and social-welfare-maximizing. We say a

mechanism is timely if every agent reports immediately after he

gets a signal. The principal’s utility𝑈 , each agent 𝑖’s utility 𝑢𝑖 , and

the social welfare𝑊 , are given by: 𝑈 = E[𝑉 ] − ∑
𝑖 E[𝑟𝑖 ], 𝑢𝑖 =

E[𝑟𝑖 ] − 𝑐𝑖 , 𝑊 = E[𝑉 ] − ∑
𝑖 𝑐𝑖 . Given proper scoring rule 𝑆 and

the information structure, assuming the agents aggregate their

information in a truthful and timely manner, the expected social

welfare only depends on the agents’ effort 𝒄 = (𝑐1, . . . , 𝑐𝑛). In this

section, we call 𝒄∗ an optimal effort profile if

𝒄∗ ∈ argmax

𝒄

(
E
𝑝,𝑌
[𝑉 ] −

∑
𝑖

𝑐𝑖

)
. (6)

5.1 Mechanism and Theorem
Besides the challenges involved in Section 4 — including the hidden

effort, the unknown information structure and effort function, and

the potential manipulation of agents’ reports — we also need to

deal with another complexity: An agent can choose any time to

report, not necessarily just at the time he receives his signal, and

even before it (i.e., 𝑠𝑖 < 𝑡𝑖 ). We restrict our focus to mechanisms

where each agent can report only once. Note that this assumption

exists in the previous literature, e.g., in the traditional prediction

market, there would be no truthfulness guarantee without this

assumption. For this sequential setting, we propose Mechanism 2,

which updates a market belief using agents’ reports one by one.

Agents report their information in the same structure as in Section 4.

The mechanism also computes counterfactual market beliefs with

one of the reports skipped. In particular, the counterfactual belief

for agent 𝑖’s absence is what the market belief would be if agent

𝑖 does not report. The reward for each agent depends on both the

actual and counterfactual market beliefs.

Theorem 5.1. Assume ℎ(𝑡) > 0 for all 𝑡 > 0,
∫
𝑡>0

ℎ(𝑡)d𝑡 < ∞,
d
2𝐹𝑐 (𝑡 )
d𝑐2

< 0,6 and 𝐹𝑐 (𝑡) is the c.d.f. of a non-negative random variable
for 𝑐 ≥ 0. Mechanism 2 is individually rational, and there exists a
strict perfect Bayesian equilibrium that is socially optimal (over all
symmetric strategy profiles) and satisfies the following properties:

Effort Optimality Every agent invests the “right” amount of
effort as (6).

6
decreasing marginal benefit
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Mechanism 2: Marginal Value Prediction (MVP) Market

Input: online report𝑏 𝑗 = (𝑏 𝑗,1, . . . , 𝑏 𝑗,𝑑−1) from each agent 𝑗

Output: real-time market belief 𝑝𝑘 , and the reward 𝑟𝑖 for

each agent 𝑖

1 𝑝0 ← Pr[𝑌 ]
2 for 𝑖 = 1 to 𝑛 do
3 𝑝𝑖

0
← Pr[𝑌 ] // 𝑝𝑖 is the counterfactual market

belief for agent 𝑖’s absence

4 for 𝑘 = 1 to 𝑛 do
5 wait until receive a report from an agent 𝑗 and denote it

by 𝑏 𝑗

6 𝑡 𝑗 ← current time

7 for 𝑦 = 1 to 𝑑 − 1 do // Update the market belief

with agent 𝑗’s report
8 𝑝𝑘,𝑦 ← Update(𝑝𝑘−1,𝑦, 𝑏 𝑗,𝑦) as defined in (3)

9 𝑝𝑘,𝑑 ← 1 −∑𝑑−1
𝑦=1 𝑝𝑘,𝑦

10 for 𝑖 = 1 to 𝑛 do
11 if 𝑖 = 𝑗 then
12 𝑝𝑖

𝑘
← 𝑝𝑖

𝑘−1
13 else // Update the counterfactual belief

for 𝑖’s absence with 𝑗’s report
14 for 𝑦 = 1 to 𝑑 − 1 do
15 𝑝𝑖

𝑘,𝑦
← Update(𝑝𝑖

𝑘−1,𝑦, 𝑏 𝑗,𝑦) as defined in (3)

16 𝑝𝑖
𝑘,𝑑
← 1 −∑𝑑−1

𝑦=1 𝑝
𝑖
𝑘,𝑦

// After the true outcome 𝑦∗ reveals

17 Let 𝑘 (𝑡) = ∑𝑛
𝑗=1 I

[
𝑡 𝑗 < 𝑡

]
, 𝑝 (𝑡) = 𝑝𝑘 (𝑡 ) , and 𝑝

𝑖 (𝑡) = 𝑝𝑖
𝑘 (𝑡 ) .

18 for 𝑖 = 1 to 𝑛 do
19 𝑟𝑖 ←

∫
𝑡>0
(𝑆 (𝑝 (𝑡), 𝑦∗) − 𝑆 (𝑝𝑖 (𝑡), 𝑦∗))ℎ(𝑡)d𝑡

Truthfulness Each agent makes a Bayesian update on the mar-
ket belief.

Timeliness For all 𝑖 ∈ N , 𝑠𝑖 = 𝑡𝑖 .

5.2 Intuition and Proof Sketch
Our core idea is to pay each agent by the actual value of information

minus the counterfactual value of information as if he had not

updated the market belief. Let 𝑉̃ 𝑖
be the counterfactual value w.r.t.

agent 𝑖 . The reward (in Line 19 of Mechanism 2) is given by

𝑉 − 𝑉̃ 𝑖 =

∫
𝑡>0
(𝑆 (𝑝 (𝑡), 𝑦) − 𝑆 (𝑝𝑖 (𝑡), 𝑦))ℎ(𝑡)d𝑡,

where 𝑝𝑖 (𝑡) is what the market belief would be at time 𝑡 if agent 𝑖

had not changed anything in the market. Figure 3 gives an intuition

for E
[
𝑉 − 𝑉̃ 𝑖

]
. Note that we are not talking about a counterfactual

value for the case as if an agent had not participated the game. The
number of agents is still 𝑛, and other agents do the same.

Lemma 5.2 (Effort Optimality). Agents are incentivized to in-
vest the “right” amount of effort that maximizes the expected social
welfare, assuming all updates are timely and truthful.

Lemma 5.3 (Truthfulness). Nomatter what time an agent makes
his update, a truthful update is better than a non-truthful one, assum-
ing all other updates are truthful.

r e
w
a

r
d

𝑡∗
𝑡

𝑣𝑘 (𝑡 )

c.f. value

actual value

Figure 3: Ex-ante total reward received by an agent (taken ex-
pectation over all agents’ signals) for a fixed time sequence
of signal discovery. 𝑣𝑘 = E[𝑆 (𝑝𝑘 , 𝑦) − 𝑆 (𝑝0, 𝑦)] is the expected
increase of score due to the first 𝑘 reports, 𝑘 (𝑡) is the num-
ber of report up to time 𝑡 , and 𝑡∗ is the time of report. A late
report (larger 𝑡∗) reduces the reward. A non-truthful report
shifts the actual curve downward, also reducing reward.

Lemma 5.4 (Timeliness). Every agent is incentivized to update
the market belief as soon as he gets his signal, assuming all updates
are truthful.

Proof of Theorem 5.1. Each agent 𝑖 decides how much effort

to make at the beginning. By Lemma 5.2, he will not deviate at this

decision. Then, at each time, he decides whether to report and if so,

what to report. By Lemma 5.4, he will report if he has a signal. By

Lemma 5.3, he will report truthfully. □

The proofs of the lemmas are similar to those in Section 4 and

are postponed to the supplementary materials.

5.3 Connection to VCG
There are both similarities and differences between our mechanisms

and the VCG mechanism. They are similar because both of them

have a payoff function that can be interpreted as an actual term

minus a counterfactual term. Also, in our mechanisms, the utility

function of an agent is — to some extent — aligned with the social

welfare as a function of his action, as in VCG.

However, a straightforward application of VCG fails. In VCG, we

need to compute the utility of each agent, which is impossible here,

because the amount of effort each agent invests is never revealed.

In our mechanisms, the alignment of the agent’s utility and social

welfare is achieved implicitly without the principal computing

them. In addition, VCG deals with a single-stage game, while our

mechanisms deal with multi-stage games. This is to say that the

signals must be discovered before they can be (truthfully) revealed.

Finally, VCG guarantees the DSIC (dominant-strategy incentive-

compatible) property, which is not the case in our setting, where

agents respond to others when choosing the effort level.

6 SIMULATIONS
The equilibrium depends on a variety of parameters. In this section,

we analyze how it is affected by ease, noise, and substitutability

of the information. We compare our socially optimal mechanism
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𝑐 , effort pred. market

MVP market

Figure 4: How ease affects agent’s effort.

0.1 0.2 0.3

0.2

0.4

0.6

0.8

𝛽 , noise

𝑐 , effort pred. market

MVP, 𝜆 = 0.5

MVP, 𝜆 = 1

MVP, 𝜆 = 3

MVP, 𝜆 = 12

Figure 5: How noise affects agent’s ef-
fort.
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0.1

0.2

𝑣1

𝑐 , effort

pred. market

MVP, 𝜆 = 1

MVP, 𝜆 = 2

MVP, 𝜆 = 4

MVP, 𝜆 = 8

Figure 6: How substitutability 𝑣1/𝑣2 (pro-
portional to 𝑣1 since 𝑣2 is fixed) affects
agent’s effort.

(Mechanism 2) with the traditional prediction market.
7
We assume

the value of information decays exponentially: ℎ(𝑡) = 𝜂𝑒−𝜂𝑡 with
parameter 𝜂 = 1. The latency of signal discovery is also exponen-

tially distributed: 𝐹𝑐 (𝑡) = 1−𝑒−𝜆𝑐𝑡 . Here, 𝜆 can be viewed as the ease
of collecting the information, as the larger 𝜆 is, the shorter latency

the agent suffers. There are 𝑛 = 2 agents unless otherwise stated.

To simplify the calculation, we let 𝑣𝑘 = E[𝑆 (𝑝𝑘 , 𝑦) − 𝑆 (𝑝0, 𝑦)]. It is
an intermediate variable that depends on the information structure

Pr[𝑋 |𝑌 ] (or 𝛽).

6.1 Ease
Let 𝑣1 = 2 and 𝑣2 = 3, defined above. In our mechanism, the

amount of effort in equilibrium automatically adapts to the ease

of collecting information, even though the mechanism does not

know anything about the parameters! Figure 4 is a visualization. In

prediction markets, agents invest too much for very easy (𝜆 →∞)
information, thus making the updates unnecessarily quick. For

information that takes a long time to discover, agents still invest

equally much effort in prediction markets, while in our mechanism,

they do not invest anything because we have the 𝜂𝑒−𝜂𝑡 term in the

value of information — the information value decays so quickly

that the gain in information value is overwhelmed by the amount

of effort invested.

6.2 Noise
Consider the scenario described in Section 3.2, with 𝛼 = 0.1. Recall

that 𝛽 = Pr[𝑋 ≠ 𝑌 ] is the probability each signal differs from the

true outcome. It can also be regarded as the noise of information. It

turns out that in prediction markets, agents invest too much not

only for very easy information but also for very accurate (𝛽 →
0) information, as shown in Figure 5. When the signals become

weak enough, agents no longer invest anything in either prediction

markets (because a late reporting is encouraged) or our mechanism

(because the gain in value is too little).

6.3 Substitutability
Recall that 𝑣𝑘 is the expected increase of the score due to the first

𝑘 updates. We fix 𝑣2 = 2, and see what happens when 𝑣1 changes.

Here, 𝑣1/𝑣2 can be considered as the substitutability of information.

7
Following Section 3.1, we study the case where 𝑆 = 𝑆 .

Figure 7: A comparison of the social welfare of theMVPmar-
ket, the principal’s utility ofMVPmarket, and the social wel-
fare of the traditional predictions markets. When there are
many agents (𝑛 is large) and the signals do not take much
time to obtain (𝜆 is large), the MVP market has both high
social welfare and high utility for the principal.

As shown in Figure 6, in prediction markets, when value is more

concentrated in the first report (higher substitutability), agents

invest more effort to get a signal quickly. Surprisingly, this is not

always the case in our mechanism. When signals are very easy

(quick to obtain), agents tend to invest less when value is more

concentrated in the first signal. This is because even though the

first report brings high value, after the second report, the marginal

value of the first report (against other signals) becomes much less.

Moreover, the easier to obtain a signal, the stronger this effect.

6.4 Social Welfare and Principal’s Utility
Aswe argue that agents invest too much effort for easy and accurate

information in the traditional prediction market, one may wonder

how bad the effect of such behavior could be on social welfare.

We find that the social welfare approaches to 0 as the number of

agents grows large, while in our proposed mechanism, both social

welfare and the principal’s utility are high, as shown in Figure 7.

In this example, we assume 𝑣0 = 0 and 𝑣𝑘 = 1 for each 𝑘 ≥ 1 (or

equivalently, 𝛽 = 0). This is similar to what we show in Section 3.1.
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