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ABSTRACT
Team formation is the problem of deploying the least expensive

team of agents while covering a set of skills. Once a team has been

formed, some of the agents considered at start may be finally defec-

tive and some skills may become uncovered. Two solution concepts

have been recently introduced to deal with this issue in a proactive

manner: one may form a team which is robust to changes so that
after some agent losses, all skills remain covered; or one may opt

for a recoverable team, i.e., it can be “repaired” in the worst case

by hiring new agents while keeping the overall deployment cost

minimal. In this paper, we introduce the problem of partially robust
team formation (PR-TF). Partial robustness is a weaker form of ro-

bustness which guarantees a certain degree of skill coverage after

some agents are lost. We analyze the computational complexity of

PR-TF, and provide a complete algorithm for it. The performance of

our algorithm is empirically compared with the existing methods

for robust and recoverable team formation, on a number of existing

benchmarks and some newly introduced ones. Partial robustness is

shown to be an interesting trade-off notion between (full) robust-

ness and recoverability in terms of computational efficiency, skill

coverage guarantees after agent losses, and repairability.
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1 INTRODUCTION
Team Formation (TF) consists in forming a team of agents with

minimum cost so as to meet a certain set of requirements. In its

most abstract form, the problem is equivalent to the set covering

and hitting set problems [11]. We are given a set of agents, where

each agent is associated with a set of skills and a deployment/hiring
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cost. The TF problem consists in finding a team T (i.e., a subset

of agents) of minimal overall cost that is efficient, i.e., such that

each skill is possessed by at least one agent from T . This problem
is well-known to be NP-hard [11, 20].

In realistic settings, we may not be certain about the actual

functionality of all agents from a team after computation and de-

ployment: agents get sick or may be unable to do the job for various

reasons. Thus it is important to consider resilience properties in TF,

i.e., seek to form an efficient team that is proactive to changes.

Robustness [20] and recoverability [8] are complementary no-

tions in TF, with both their own advantages and drawbacks. A team

T is k-robust if it remains efficient in any case where at most k
agents are removed from it [20]. Robust TF consists in finding an

optimal k-robust team, i.e., a k-robust team of minimal deployment

cost. It provides a guarantee that the goal is fulfilled in the worst

case given k . Interestingly, computing an optimal robust team is

not harder than computing an optimal efficient team [20]. However,

the deployment cost of a robust team may be prohibitively high, as

it requires to cover every skill at least k + 1 times.

Forming an optimal recoverable team is a cheaper alternative [8]:

a team T is k-recoverable if, whichever k agents from T are lost,

one can “repair” the residual team by hiring available agents while

keeping the overall cost (i.e., the cost of the initial deployment of

T plus the recovery cost in the worst case) minimal. Demirović

et al. [8] empirically showed that the overall deployment cost is

effectively lower than the initial deployment cost of a robust team.

However, the problem of computing a recoverable team is ΣP
3 -hard

[8], making it unapplicable in practice. Moreover, recoverability

does not provide any coverage guarantee during the disaster phase.

As a result, a large amount of skills may become uncovered for a

certain amount of time during which the system loses most of its

functionality. This is a situation we want to avoid.

Let us introduce an example illustrating the problem and notions.

Example 1.1. The organizers of a special exhibition have a budget
of 900 to hire professional translators: the attendees are expected

to be from China (50%), Japan (40%), and France (10%). A number

of translators are available for hire. A type 1 translator possesses

exactly one of the three language skills. It costs 100 to hire a type 1

Chinese or Japanese translator, and 150 for a French translator. Let

us denote by C (resp. J , F ) a type 1 translator having the Chinese
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(resp. Japanese, French) language ability. A type 2 translator has

exactly two of these language skills, denoted respectively by CJ ,
CF , and F J . It costs 180 to hire CJ , 230 for CF or F J . A candidate

must be paid in advance and should be contacted at least one day

ahead of the event, otherwise she can only be on site during the

afternoon and for the same price.

One of the cheapest alternative (plan I) is to hire the team {C, F J }.
Doing so, attendees from China can get help from theC agent, while

attendees from France and Japan can rely on the F J agent. This plan
corresponds to an optimal team for the standard TF problem and

costs 330. In the unfortunate case where both of these agents fall

sick on the day of the event, another pair of translators can be hired

in emergency (additionally pricing 330). However, under the same

circumstances a slightly cheaper solution exists (plan II), which

consists in forming the team {C, F , J }. At an initial cost of 350, in

the worst case where two agents including F are absent on the day

of the exhibition, one can hire for the afternoon a type 2 agent

possessing the two languages skills that have been lost (e.g., if we

lack agents F and J from the hired team, one would ask help from

an F J agent.) Plan II is slightly more costly than plan I (350 vs. 330),

but the recovery price is 230 instead of 330, making this alternative

arguably preferable than the first one. Plan II corresponds to an

optimal 2-recoverable team. However, in both plans I and II, if we

were to lose two agents at the last minute then the whole morning

would lack at least two language abilities (all of them in the case of

plan I). Assuming we would like to be robust to a loss of two agents,
one of the cheapest plan is, e.g., to form the team {C, CJ , CF , JF ,
JF } (plan III): since each language skill is possessed by at least three

agents from the team, losing two agents would not compromise the

goal. Plan III corresponds to an optimal 2-robust team. However,

plan III is quite expensive: it costs 970, so it goes above the budget

of 900 and the organizers cannot afford it.

The organizers would be happy with an alternative that is more

affordable than plan III, while still being “robust” to potential losses.

Noteworthy, only 10% of the attendees are expected to be from

France, and French translators are more costly than the other ones.

Thus a reasonable alternative is to hire the team {CJ ,CJ ,CJ , F }
(plan IV), costing 690. Losing two agents from it would still guar-

antee Chinese and Japanese language translation services, while

losing F would only result in a coverage loss of 10% among the

attendees. In addition, repairing the team would not cost more than

150 in the worst case (one would need to hire an F agent), so the

overall cost of 840 would still remain under the budget constraints.

Our paper aims to introduce the solution concept illustrated

above in plan IV. A team T is said to be ⟨k, t⟩-partially robust
(t ∈ [0, 1]) if whenever k agents are removed from T , some “pro-

portion” (reflected by t ) of the overall set of skills remains covered.

Partially Robust TF (PR-TF) is the problem to form an optimal ⟨k, t⟩-
partially robust team. Plan IV in the above example corresponds

to an optimal ⟨2, .9⟩-partially robust team. This notion generalizes

(full) robustness: a team is ⟨k, 1⟩-partially robust if and only if it

is k-robust. Computationally speaking, we show that the decision

problem related to PR-TF is ΣP
2 -complete, thus it lies “in-between”

robust TF and recoverable TF. We empirically show that forming an

optimal partially robust team has the advantages of both robustness

and recoverability. Indeed, on the one hand, a partially robust team

can be computed much more efficiently than a recoverable one, and

by definition it provides a skill coverage guarantee in the disaster

phase; on the other hand, the overall cost of a partially robust team

is shown to be much cheaper than the initial deployment cost of a

“fully” robust team.

The proofs of propositions are available online
1
.

2 RELATEDWORK
Robustness and TF, both as separately and in combination, have

attracted attention in a variety of contexts. In the following we

focus on works that are closely related to our setting.

Stochastic optimization [27] is a general term for optimization

methods dealing with models that include randomness. Random-

ness is captured in a given set of possible scenarios along with the

probability of each scenario taking place. The goal is to compute

a solution that minimizes the cost on average across all scenarios.

Our setting could be framed as a scenario-based method, where

there are exponentially many scenarios, each corresponding to a

specific combination of agent loss, and the task is to optimize the

worst case, i.e., minimize the maximum objective value across each

scenario. Our approach avoids exhaustive enumeration through a

cut generation approach, effectively including only the scenarios

that are necessary for computing the optimal solution.

Robustness and recoverability have been studied in system de-

sign: robustness [5] is the ability to withstand adversarial conditions

without negative impact on performance, and recoverability [25] is

the capability to restore the functionality of the system after distur-

bance. Recoverability can be seen as a generalization of robustness.

In combinatorial optimization, a related resilience definition been

studied under the name super solutions [13], where the task is to

compute an (a,b)-solution such that if any a variables lose their

values, a new satisfying assignment may be constructed by select-

ing new values for the a variables and changing at most b other

variable values. Initially, the focus was on (1, 0)-super solutions,

corresponding to robust solutions, and recently a generic approach

for arbitrary values of a and b has been proposed [6] based on

Logic-based Bender Decomposition [14]. This approach is simi-

lar to Counter-Example-Guided Abstraction Refinement (CEGAR)

[7, 15, 16], in the more canonical problem of QBF solving, briefly

discussed in Sec. 4 before introducing our algorithm. The algorithm

for recoverable TF [8] and our method are similar in essence: ini-

tially a simplified problem is considered, and in each iteration of

the algorithm a new solution is computed, based on which a new

cut is generated and added to the problem, and the process restarts

until optimality is proven. An alternative approach is to explicitly

encode each scenario as done in a propositional logic setting [4],

but this becomes infeasible for larger a and b values. While super

solutions are desirable, the high computational complexity may

render them impractical. This is the key issue we address in this

paper, i.e., introduce a notion capturing aspects of resilience while

reducing the computational burden.

Coalition structure generation [24] is a problem related to TF,

where a set of agents is to be partitioned into a number of teams

to maximize utility. Robustness [21] and stochastic [26] notions

have been proposed for this setting. Other variants of TF have been

1
https://nicolas-schwind.github.io/SDIL-AAMAS21-proofs.pdf
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proposed in the literature, but to the best of our knowledge, there

are no other works that bear a tight connection to ours.

3 PRELIMINARIES
This section recalls some preliminaries about basic notions of com-

putational complexity, the Team Formation (TF) problem, and its

extensions to Robust TF [20] and Recoverable TF [8].

3.1 Computational Complexity
We assume that the reader is familiar with the complexity class NP
(see [22] for more details). Higher complexity classes are defined

using oracles. In particular, ΣP
2 = NPNP

(resp. ΣP
3 ) corresponds to

the class of decision problems that are solved in polynomial time

by non-deterministic Turing machines using an oracle for NP (resp.

ΣP
2 ) in polynomial time.

3.2 Team Formation
Let us formalize the (standard) TF problem [20].

Definition 3.1 (TF Problem Description). A TF problem description
is a tuple ⟨A, S, f ,α⟩ where A = {a1, . . . ,an } is a set of agents,

S = {s1, . . . , sm } is a set of skills, f : A 7→ N is a deployment cost

function, and α : A 7→ 2
S
is an agent-to-skill function.

A team is a subset of agentsT ⊆ A. One extends the cost function
f to teams T as f (T ) =

∑
ai ∈T f (ai ). Likewise, the agent-to-skill

function α is extended to teams T as α(T ) =
⋃
ai ∈T α(ai ). A stan-

dard expected property in Team Formation is efficiency: a team

T ⊆ A is efficient if all skills from S are covered by T , i.e., when
α(T ) = S . An optimal team for TF is an efficient team minimizing

the cost function. The corresponding decision problem DP-TF asks,

given a TF problem description and a threshold c ∈ N as input,

whether there exists an efficient team T such that f (T ) ≤ c . This
problem is equivalent to the well-known set cover problem [11]:

Proposition 3.2. [20] DP-TF is NP-complete.

3.3 Robust TF
Definition 3.3 (Robust Team [20]). Given a TF problem description

⟨A, S, f ,α⟩ and k ∈ N, a team T is said to be k-robust if for every
set of agentsT ′ ⊆ T such that |T ′ | ≤ k , the teamT \T ′ is efficient.

Robustness generalizes efficiency: a team is 0-robust if and only

if it is efficient. Interestingly, despite this generalization, computing

an optimal k-robust team (for any k ≥ 0) does not lead to a compu-

tational shift. Indeed, the decision problem for robustness (labeled

DP-RobTF) asks, given a TF problem description and c,k in N, if
there exists a k-robust team T ⊆ A such that f (T ) ≤ c . Then:

Proposition 3.4 ([20]). DP-RobTF is NP-complete.

This problem still lies in NP because checking whether a given

team T is k-robust, despite its combinatorial nature, is equivalent

to checking whether each skill from S is possessed by at least k + 1
agents from T ; and this task can be performed in polynomial time.

The goal of robust TF (RobTF) is to find an optimal k-robust team,

i.e., a k-robust team T such that f (T ) is minimal.

3.4 Recoverable TF
Recoverable TF (RecTF) consists in finding a team that can be

repaired after k agents are removed from it. The notion is based on

an extension of a TF problem description (cf. Def. 3.1):

Definition 3.5 (RecTF Problem Description [8]). A RecTF problem
description is a tuple ⟨A, S, f ,α ,h⟩ where ⟨A, S, f ,α⟩ is a TF problem
description and h : A 7→ N ∪ {+∞} is a recovery cost function.

So a RecTF problem description considers in addition a recovery

cost function h that defines the cost of deploying a “rescue” team.

It adds more flexibility to the framework: some agents ai may be

deployed at a higher cost later in an emergency situation (h(ai ) >
f (ai )) or not be available at all (h(ai ) = +∞). Similarly to f , for
any team T one sets h(T ) =

∑
ai ∈T h(ai ). Given a team T ⊆ A and

T ′ ⊆ T , rcS(T ,T ′) is defined as the cost of the cheapest team Tr ec
such that (T \T ′) ∪Tr ec is efficient:

rcS(T ,T ′) = min

Tr ec ⊆A\T ,(T \T ′)∪Tr ec is efficient

h(Tr ec ).

Thek-recovery cost ofT is then defined as the highest value rcS(T ,T ′)
for any set T ′ of size lower or equal to k :

rc(T ,k) = max

T ′⊆T , |T ′ | ≤k
rcS(T ,T ′).

Definition 3.6 (Recoverable Team [8]). Given a RecTF problem

description ⟨A, S, f ,α ,h⟩ and non-negative integers k, r , a team T
is said to be ⟨k, r ⟩-recoverable if T is efficient and rc(T ,k) ≤ r .

Recoverability generalizes robustness: if h(ai ) > 0 for any ai ∈
A, any team T is ⟨k, 0⟩-recoverable if and only if T is k-robust.
The decision problem for recoverability (labeled DP-RecTF) asks,
given a TF problem description and c, r in N, if there exists a ⟨k, r ⟩-
recoverable team T ⊆ A such that f (T ) ≤ c . It turns out that this
problem is much harder than the robustness counterpart:

Proposition 3.7 ([8]). DP-RecTF is ΣP
3 -complete.

The goal of RecTF is to compute an optimal k-recoverable team,

which is defined as a team T that is ⟨k, r ⟩-recoverable which mini-

mizes its overall cost f (T ) + rc(T ,k).

4 PARTIAL ROBUSTNESS IN TF
We introduce a new solution concept for TF called partial robustness.
Intuitively, a team is partially robust if it is efficient, and if after

removing a certain number of agents from it, the residual team

covers a certain proportion of the set of all skills. Thus, it makes

sense to associate each skill with a weight to emphasize its relative

importance:

Definition 4.1 (Weighted TF Problem Description). A weighted TF
problem description is a tuple ⟨A, S, f ,w,α⟩ where ⟨A, S, f ,α⟩ is
a TF problem description and w : 2

S 7→ [0, 1] is a skill weight

function such that w(S) = 1 and w is monotone, i.e., ∀S1, S2 ⊆ S ,
w(S1) ≤ w(S1 ∪ S2).

For every sj ∈ S , w({sj }) is simply denoted by w(sj ). A nat-

ural way to define w is to consider a normalized weighted sum
function wΣ, satisfying wΣ(S

′) =
∑
sj ∈S ′ wΣ(sj ) for each S ′ ⊆ S ,

and

∑
sj ∈S wΣ(sj ) = 1. Accordingly, it satisfies the conditions from

Def. 4.1 and we used it in all benchmarks presented in Sec. 6.
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The coverage of a team T , denoted by cov(T ) is defined as:

cov(T ) = w(α(T )).

The k-partial coverage of a team, denoted by pc(T ,k), is defined as:

pc(T ,k) = min

T ′⊆T , |T ′ | ≤k
cov(T \T ′).

We are ready to define formally the notion of partially robust team:

Definition 4.2 (Partially Robust Team). Given a weighted TF

problem description ⟨A, S, f ,w,α⟩, k ∈ N and a rational number

t ∈ [0, 1], a teamT is said to be ⟨k, t⟩-partially robust ifT is efficient

and pc(T ,k) ≥ t .

So a team is ⟨k, t⟩-partially robust if whenever k agents are re-

moved from it, the coverage of the residual team is not lower than

t . For instance, if one wants to guarantee that 95% of the weighted

sum of all skills is covered after a loss of k agents, one simply

considers a normalized weighted sum function w = wΣ and sets

t = 0.95. Whereas k-robustness only essentially reports a binary

value (either the team is k-robust or it is not), partial robustness
provides in a sense more information regarding the team’s robust-

ness. Noteworthy, partial robustness generalizes robustness since a

team is k-robust if and only if it is ⟨k, 1⟩-partially robust.

The decision problem for partial robustness (labeled

DP-PR-TF) asks, given a TF problem description, non-negative

integers c , k , and rational number t ∈ [0, 1], if there exists a ⟨k, t⟩-
partially robust team T ⊆ A such that f (T ) ≤ c . We show below

that the computational complexity of this problem lies “in-between”

the robustness and recoverability counterparts:

Proposition 4.3. DP-PR-TF is ΣP
2 -complete.

Optimality is defined similarly to the standard and robust TF

cases: T is an optimal ⟨k, t⟩-partially robust team if T is ⟨k, t⟩-
partially robust and f (T ) is minimal.

Example 4.4 (continued). Table 1 summarizes the deployment

cost, recovery cost, overall cost and coverage of the teamsT1, . . . ,T4,
which respectively correspond to plans I, . . . , IV described in the

introductive example
2
. The team T1 is an optimal efficient team: it

has the lowest deployment cost f (T1) among all possible efficient

teams. Likewise, the team T3 is an optimal 2-robust team and T4 is
an optimal ⟨2, .9⟩-partially robust team. The team T2 is an optimal

2-recoverable team: it has the lowest overall cost f (T2) + rc(T2, 2)
(note again that the criterion of optimality in RecTF slightly differs

from the other notions since it also considers the recovery cost.)

The optimal ⟨2, .9⟩-partially robust team T4 has the following
interesting features compared to the other teams: (i) by definition

it provides a 2-partial coverage of 0.9, which is much higher than

T1 and T2; (ii) while covering 90% of the weighted sum of skills

if 2 agents are lost in the worst case, its deployment cost is only

690/970 = 71% of the one of the optimal 2-robust team T3; and (iii)

its overall cost f (T4) + rc(T4, 2) remains cheaper than the deploy-

ment cost of T3 (f (T3)).

2
The precise formalization in terms of weighted TF problem description is rather

straightforward, it is not provided here to avoid the introduction of heavy notations.

T1 (plan I) T2 (plan II) T3 (plan III) T4 (plan IV)

{C, F J } {C, F , J } {C, C J , CF , J F , J F } {C J , C J , C J , F }
f (Ti ) 330 350 970 690

rc(Ti , 2) 330 230 0 150

f (Ti ) + rc(Ti , 2) 660 580 970 840

pc(Ti , 2) 0 0.1 1 0.9

Table 1: Comparison in terms of deployment cost, recovery
cost, overall cost and coverage of the teams T1, . . . ,T4 corre-
sponding to plans I, . . . , IV in the introductive example.

5 ALGORITHM
This section provides a procedure to compute an optimal ⟨k, t⟩-
partially robust team, given a weighted TF problem description

⟨A, S, f ,w,α⟩, a non-negative integer k and a rational number

t ∈ [0, 1]. Our approach is similar to Counter-Example-Guided

Abstraction Refinement (CEGAR) [7, 15, 16], one of the most suc-

cessful approaches for QBF (Quantified Boolean Formulae) solving.

Indeed, DP-PR-TF is in ΣP
2 (cf. Prop. 4.3), and so it is similar in

structure to a 2QBF problem ∃X∀Yφ, where Var (φ) = X ∪ Y [18].

Such problems have a natural interpretation as a two person game

between an “existential” player and a “universal” player [12]: the

existential player assigns values to the variables in X and the uni-

versal player assigns values to the variables in Y . The goal of the
existential player is to find out a valuation of X that cannot be

refuted by the universal player. More precisely, the 2QBF is valid

if and only if there is a valuation ωX of X (existential player) and

there is no valuation ωY of Y (universal player) such that ωX ∪ωY
makesφ false. In a CEGAR-based algorithm, computing a solution is

done by iteratively searching for a solution of an “abstracted”, sim-

plified problem. If such an “abstract” solution is found, one needs

to check whether it is an actual solution of the original problem by

searching for a counter-example. If no counter-example is found to

the abstract solution, then it is a solution to the original problem.

Otherwise, the abstract solution is blocked by taking advantage of

the counter-example to refine the abstacted problem. Observe that

an abstract solution is in fact a “candidate” solution to the origi-

nal problem (existential player), and checking that it is an actual

solution to the original problem is made by the universal player.

Our method for finding an optimal ⟨k, t⟩-partially robust team

is similar in essence. It iterates over the set of efficient teams (the

“abstract”, candidate solutions chosen by an existential player) in

an increasing deployment cost order. For each such candidate team,

one tries to “break” it by removing k agents from it so that the

coverage of the residual team is strictly lower than t . Instead of

exploring one by one the set of efficient teams, we also propose

a refinement process (“improved cut”) that exploits the counter-

example to filter a set of spurious teams at once. The process is

iterated until a candidate team that cannot be broken is found.

5.1 Main Procedure
The outline of our algorithm is given in Algorithm 1. Let us first

explain the core of the procedure (the details of the procedures

initConstraints in line 2 and дenerateConstraint in line 8 will be

explained later in this section.) Initially, one computes an efficient

team Tcur of minimal cost, i.e., an optimal efficient team (cf. proce-

dure solveTF in line 3). In line 5, the procedurebreakTeam searches
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for a setT ′ ⊆ Tcur such that |T ′ | ≤ k and cov(Tcur \T
′) < t , that is,

it seeks to remove k agents from Tcur so that the coverage degree

of the residual team is less than the input threshold t . If such a set

T ′ does not exist, it means thatTcur is an optimal ⟨k, t⟩-partially ro-
bust team and the algorithm returns it (line 7). Otherwise,T ′ serves
as a certificate thatTcur is not ⟨k, t⟩-partially robust. In line 8, a cut

is generated so thatTcur is removed from the list of candidate teams

to be returned. The procedure then searches for another efficient

team of minimal cost while excluding the previously computed

team Tcur . The same process is iterated until one of the following

conditions occurs: the procedure breakTeam returns null , which
means that the team Tcur computed at the corresponding iteration

is proven to be ⟨k, t⟩-partially robust and returned in line 7; or the

procedure solveTF in line 9 returns null , which means that there

is no ⟨k, t⟩-partially robust team, and null is returned in line 10.

Algorithm 1: Computing an Optimal Partially Robust Team

input: A weighted TF problem description ⟨A, S, f ,w,α⟩,
a non-negative integer k , a rational number t

ouput: An optimal ⟨k, t⟩-partially robust team

1 begin
2 C ←− initConstraints(⟨A, S, f ,w,α⟩,k, t)

3 Tcur ←− solveTF (C)

4 while Tcur , null do
// Search T ′ ⊆ Tcur s.t. |T

′ | ≤ k , cov(Tcur \T
′) < t

5 T ′ ←− breakTeam(Tcur ,k, t)

6 if T ′ = null then
// Tcur is an optimal ⟨k, t⟩-partially robust team

7 return Tcur
// Tcur is not ⟨k, t⟩-partially robust

8 C ←− C ∪ дenerateConstraint(Tcur )

9 Tcur ←− solveTF (C)

// There is no ⟨k, t⟩-partially robust team

10 return null

Let us now explain inmore details the procedures initConstraints ,
solveTF , breakTeam, and дenerateConstraint involved in the algo-

rithm. Our model considers a set X of n binary variables X =
x1, . . . ,xn , n being the total number of agents in A. An assignment

of values to the variables from X corresponds to a team T where

ai ∈ T if and only if xi = 1.

initConstraints(⟨A, S, f ,w,α⟩,k, t). This procedure initializes a
set of linear contraints C on X characterized by:

∀sj ∈ S
∑

xi ∈X ,sj ∈α (ai )

xi ≥ 1 (1)

This set of constraints precisely encodes the conditions of team

efficiency, i.e., an assignment of X satisfies the set C if and only if

it corresponds to an efficient team.

solveTF (C). This procedure is called in lines 3 and 9 and simply

searches for an assignment of X that minimizes the cost of the

corresponding team under the set of constraints C:

minimize
∑
xi ∈X

f (ai ) · xi (2)

breakTeam(Tcur ,k, t). This procedure searches for a set T ′ ⊆
Tcur , |T

′ | ≤ k , such that cov(Tcur \ T
′) < t . This is done by

generating a new model on a set X ′ of |Tcur | binary variables

X ′ = {x ′i | ai ∈ Tcur }, so that an assignment of values to the

variables from X ′ represents a subset of agents T ′ ⊆ Tcur to be

removed from Tcur , i.e., ai ∈ T ′ if and only if x ′i = 1. The pro-

cedure finds an assignment of X ′ satisfying a set of constraints

characterized by the following pair of equations:∑
x ′i ∈X

′

x ′i ≤ k (3) w(
⋃

x ′i ∈X
′,x ′i=0

α(ai )) < t (4)

Equation 3 requires that |T ′ | ≤ k , and Equation 4 requires that

cov(Tcur \ T
′) < t . So accordingly, breakTeam(Tcur ,k, t) returns

such a subset T ′ if it exists, otherwise it returns null .

дenerateConstraint(Tcur ). This procedure simply forbids the

previously computed team Tcur to be selected again at the next

search iteration. It generates the following constraint which states

that a candidate team must contain at least one agent that does not

belong to Tcur : ∑
xi ∈X ,ai ∈A\Tcur

xi ≥ 1 (5)

To summarize, Algorithm 1 explores all efficient teams by increas-

ing deployment cost order, checking for each one of them whether

it is ⟨k, t⟩-partially robust, and returns it as soon as one such team

is found. Accordingly, it returns an optimal ⟨k, t⟩-partially robust

team, if it exists.

5.2 Cut Generation
We now present a cut, i.e., an improvement of the procedure

дenerateConstraint(Tcur ) to prune from the search space a set of

assignments corresponding to teams that are guaranteed not to be

⟨k, t⟩-partially robust. Before presenting the cut, let us introduce a

useful preliminary result:

Proposition 5.1. Given a weighted TF problem description ⟨A,
S, f , w, α⟩, k ∈ N and a rational number t , a team T ⊆ A is ⟨k, t⟩-
partially robust if and only it is efficient and for each S ′ ⊆ S such
thatw(S \ S ′) < t , we have that |{ai ∈ T | α(ai ) ∩ S ′ , ∅}| ≥ k + 1.

Prop. 5.1 above states that a necessary and sufficient condition

for any team T to be ⟨k, t⟩-partially robust team is that for any

subset of skills S ′ such that the weight of S \ S ′ is strictly below

t , T must contain at least k + 1 agents who possess at least one

of the skills from S ′. Our improved cut consists in generating a

constraint that excludes teams which do not satisfy this condition.

To this end, one replaces the procedure дenerateConstraint(Tcur )
(cf. Equation 5) in line 8 of the algorithm by a new procedure

дenerateConstraint(T ′,k, t) which generates a constraint charac-

terized by the following equation:∑
xi ∈X ,α (ai )∩α (T ′),∅

xi ≥ k + 1 (6)

Doing so, Algorithm 1 prunes a number of teams that are not

⟨k, t⟩-partially robust (which also includes the team Tcur last com-

puted), and returns an optimal ⟨k, t⟩-partially robust team accord-

ingly, if it exists. The idea is similar to the cut considered in [8]

to compute a recoverable team, which consists in excluding those
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that do not include at least one agent from a certain set of skills

without which the team cannot be recovered (or otherwise would

be suboptimal).

In the next section, this improved cut will be shown to signifi-

cantly reduce the runtime of the whole procedure.

6 EMPIRICAL STUDY
Our algorithm to find an optimal partially robust team was im-

plemented, tested and compared with the other solution concepts,

namely efficiency, robustness and recoverability, on various sets

of instances. The existing solution concepts were implemented

following the same encodings and algorithms as described in [8].

To evaluate the impact of the parameter t on the computed ⟨k, t⟩-
partially robust teams, we set t ∈ {0.99, 0.95, 0.90}.

6.1 Benchmarks
First, we have tested all sets of instances (40 instances in total) that

have been considered in [8]: (i) one set of ten small instances (30

agents / 11 skills) which correspond to the robust TF instances given

in [20]; (ii) two sets of ten medium instances (100 agents / 20 skills

and 150 agents / 30 skills) which are set covering instances used in

[3, 28]; (iii) one set of ten large instances (1000 agents / 200 skills)

which are classical instances found in the OR Library [2] under the

scp4x package, used in set covering works (e.g., [10, 17, 19]). For

all these instances, we set w(sj ) = 1/|S | for each skill, and used a

normalized weighted sum functionw = wΣ (cf. 4), i.e., every S ′ ⊆ S ,
w(S ′) =

∑
sj ∈S ′ w(sj ).

In addition, we have artificially generated a set of 100 instances

modeling facility deployment problem instances. This problem

consists in deploying a set of facilities (e.g., health centers, antennas,

schools, shelters) on a populated map so as to maximize a certain

population coverage while minimizing the overall deployment cost

[1]. The problem is of particular importance, e.g., for mobile phone

operators which aim to deploy a set of cell towers in an urban

environment. Finding an optimal efficient team allows one to find

a facility deployment of minimal cost while providing a service

coverage over the whole population. In such an application context,

facilities correspond to agents and the population to be covered in

a certain area corresponds to a weighted skill (the weight depends

on the density of the population at that specific location).

Each weighted TF problem instance was synthesized following

three steps.

First, one generates an elevation map made of water parts, lands

and mountains. A 16x16 grid of numbers is created using Perlin

noise [23], a procedural texture primitive commonly used by visual

effects artists to increase the appearance of realism in computer

graphics. The grid is then converted into a hexagonal grid for which

each cell is associated with a “type” depending on the range of its

value in the grid. A low (resp., mid, high) value is interpreted as a

water cell (resp., a land cell, a mountain cell).

Second, the map is populated by iteratively adding an individual

on the grid. Initially, three individuals are added in three different

land cells randomly chosen, provided that the cell is next to a water.

Then, a new individual is added at random following a probability

distribution. The closer to an already populated cell, the higher its

probability to welcome a new individual. The water cells and the

cells that already host 10 individuals cannot host a new individual.

The process is repeated 600 times which at last corresponds to the

total population in the map. Fig. 1(a) represents a populated map

generated using this method: blue (resp. brown, white) cells are of

water type (resp. land, mountain type). Different scales of brown

correspond to different elevation degrees of land, only used to tune

the probability of adding an individual to a land cell. The gray

scales represent the number of individuals in a cell. The darker a

cell, the more densely populated, so a pitch black cell contains 10

individuals.

Third, a populated map is translated into a weighted TF problem

description ⟨A, S, f ,wΣ,α⟩ as follows. We consider four types of

agents type1, . . . , type4. Each type typei of agent corresponds to a

facility that has a deployment cost equal to i and a cover range equal
to i − 1. For instance, a cell tower of type type3 has a deployment

cost equal to 3, and when it is deployed in a certain cell C on the

grid, it provides the required service to anyone that is in a cell C ′

such that the distance between C and C ′ is at most 2; the distance

between two cells on the grid corresponds to the length of the

shortest path between C and C ′. So for each type of facility typei
and each grid cell j that is not of water type, one considers an agent

a
j
i of cost f (a

j
i ) = i which corresponds to a facility of type typei to

be potentially deployed in the cell j . This defines the setA of agents

and the cost function f . The set of skills S and the skill weight

functionwΣ (note that we considered a normalized weighted sum

function) are simply defined as follows. One associates with each

populated grid cell p (i.e., a cell that hosts at least one individual) a

skill sp ; and the weight of each skillwΣ(sp ) is defined as the number

of individuals in the grid cell p. Lastly, the agent-to-skill mapping

α is defined as follows. An agent a
j
i has the skill sp if the grid cell

p is within the reach of the facility a
j
i , i.e., if the distance between

the grid cells j and p is less than or equal to i − 1. The generated
instances were formed of 500 to 700 agents and 50 to 150 skills.

Given such an instance ⟨A, S, f ,wΣ,α⟩, a team T corresponds to

a set of facilities to be deployed on the corresponding map. Fig. 1

depicts for a given map instance the optimal team computed in our

experiments, that is respectively efficient (Fig. 1(b)), 1-robust (Fig.

1(c)), ⟨1, .99⟩-partially robust (Fig. 1(d)), ⟨1, .95⟩-partially robust (Fig.

1(e)), and ⟨1, .90⟩-partially robust (Fig. 1(f)). For instance, the opti-

mal efficient team (Fig. 1(b)) is formed of eight agents corresponding

to four facilities of type type4 and four facilities of type type1. Each
such facility is represented by a label on the corresponding grid

cell ranging from 1 to 4, corresponding to its type / deployment

cost. The circle drawn around each deployed facility represents the

populated area that is covered by it, i.e., the set of skills possessed

by the corresponding agent.

6.2 Empirical Results
Let us start with a short analysis of the results in the map instance

example provided in Fig. 1. Similarly to our introductive example,

one can see on these figures the advantages of forming partially

robust teams instead of efficient or (fully) robust teams. For instance,

the optimal ⟨1, .99⟩-robust team has only a deployment cost of 30

and a recovery cost of 4, whereas a 1-robust team has a deployment

cost of 41: thus allowing 1% of coverage loss in the worst case during

a disaster phase of the same scale (i.e., k = 1 in both cases) leads the
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(a) A populated map generated by our procedure. (b) An optimal efficient team T1 (f (T1) = 20,

rc(T1, 1) = 13, pc(T1, 1) = .20).
(c) An optimal 1-robust team T2 (f (T2) = 41,

rc(T2, 1) = 0, pc(T2, 1) = 1).

(d) An optimal ⟨1, .99⟩-partially robust team T3
(f (T3) = 30, rc(T3, 1) = 4, pc(T3, 1) = .99).

(e) An optimal ⟨1, .95⟩-partially robust team T4
(f (T4) = 24, rc(T4, 1) = 10, pc(T4, 1) = .95).

(f) An optimal ⟨1, .90⟩-partially robust team T5
(f (T5) = 23, rc(T5, 1) = 8, pc(T5, 1) = .90).

Figure 1: Optimal teams for different solution concepts (efficiency, robustness and partial robustness).

Figure 2: Time results on all instances for k ∈ {1, 2, 3, 4}.
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Figure 3: Deployment and overall cost in average for the generated facility location instances (maps). The percentage above
each TF bar corresponds to the k-partial coverage value pc(T ) in average.

Main Track AAMAS 2021, May 3-7, 2021, Online

1160



Type #total k
#solved

TF RobTF RecTF

PR-TF (w/o-w/ improved cut)

t = .90 t = .95 t = .99

small 10

1

2 8-⋆ 2-⋆ 2-⋆
3 4-⋆ 0-⋆ 0-⋆
4 0-⋆ 0-⋆ 0-⋆

medium 20

1 ⋆ 19-⋆ 0-⋆ 0-⋆
2 0-⋆ 0-⋆ 0-⋆
3 4 0-⋆ 0-⋆ 0-⋆
4 0 0-⋆ 0-⋆ 0-⋆

large 10

1 ⋆ ⋆-⋆ ⋆-⋆ 0-⋆
2 2 ⋆-⋆ ⋆-⋆ 0-0

3 0 0-0 0-9 0-0

4 0 0-0 0-0 0-0

maps 100

1 0 0-⋆ 0-98 0-97

2 0 0-65 0-57 0-83

3 0 0-29 0-30 0-72

4 0 0-13 0-18 0-75

Table 2: Number of solved instances with a time out of 3600
seconds, for each set of instances and each solution concept.
The symbol ⋆ means that all instances were solved. When
two values p-q are given, p denotes the results without the
improved cut (Sec 5.2), and q with the improved cut.

deployed solution to be 1−30/41 = 27% cheaper in the initial phase,

and 1 − 34/41 = 17% cheaper overall (in the initial and recovery

phases). On the other hand, the 1-partial coverage of the optimal

efficient team (Fig. 1(b)) is only 20%, since a single, large facility is

deployed to provide the necessary service for a densely populated

area; its overall cost is, however, comparable to the overall cost of

all three depicted partially robust teams.

In our experiments, the version of CPLEX used was IBM(R)

ILOG(R) CPLEX(R) Interactive Optimizer 12.10 with the option set

parallel 1. All experimentations have been conducted on Intel Xeon

E52643 (3.30GHz) processors with 64Gb memory on Linux CentOS.

Time-out was set to 3600 seconds for each run of the algorithm and

for each instance; memory-out was set to 32 Gb for each such run.

Table 2 shows the number of instances solved within the time

limit of 3600 seconds, for each method. It can be seen that comput-

ing an optimal ⟨k, t⟩-partially robust team is proved to be much

more efficient than computing an optimal k-recoverable team: for

example, no optimal k-recoverable team could be computed over all

instances corresponding to our facility location problems (maps),

whereas an optimal partially robust team could be found for a

reasonable proportion of these instances. Table 2 also shows the

comparison between two implementations of our algorithm: one

with and one without the improved cut presented in the previous

section. This shows that our improved cut plays a crucial role in

the efficiency of the algorithm, as almost no instance was solved

without exploiting it.

We also measured the time in seconds required for each notion

(efficiency, robustness, recoverability and partial robustness) to

compute optimal teams. Fig. 2 shows four cactus plots for differ-

ent values of k in {1, 2, 3, 4}. Each plot gives for each notion
3
the

number of instances solved in a given amount of time. As to ⟨k, t⟩-
partial robustness, we see a slight change of behavior depending on

the value of k . For higher values of k , the amount of skill coverage

3
tf, k-rob, k-rec and <k,t>-p-rob respectively stand for the notions of efficiency, ro-

bustness, recoverability and partial robustness in the figure.

loss has a greater impact on the performance of our improved cut:

the closer t is to 1, the more teams the improved cut prunes. Indeed,

when the cost of an optimal ⟨k, t⟩-partially robust team is close

to the cost of an optimal efficient team, then our algorithm only

performs a smaller number of iterations. It is actually easy to see

that if t = 1, one only needs two iterations to reach optimality: the

constraints added by Equation 6 ensure that each skill is covered

by at least k + 1 agents, i.e., that the team is 1-robust.

Lastly, Fig. 3 shows the deployment and overall cost in average

for the generated facility location instances (maps). The percentage

above each TF bar corresponds to the k-partial coverage value

pc(T ,k) in average. It shows that the comparative behavior between

optimal efficient teams, robust teams and partially robust teams

described previously in Fig. 1 extends to the set of all facility location

instances in average. On the one hand, the overall costs of ⟨k, t⟩-
partially robust teams remain below the deployment of k-robust
teams, even for high values of t . On the other hand, these costs

remain arguably reasonable in comparaison with optimal efficient

teams, while efficiency can only guarantee a very low k-partial
coverage, e.g., below 10% in average for k ≥ 3.

7 CONCLUSION
Our contribution is manifold: (i) we introduced the notion of par-

tially robust team formation (PR-TF); (ii) we analyzed the computa-

tional complexity of PR-TF. The corresponding decision problem

was shown to be ΣP
2 -complete, which turns out to be “in-between”

the robustness and recoverability counterparts in the polynomial

hierarchy; (iii) we provided a complete algorithm for PR-TF à la CE-
GAR [7, 15, 16]; (iv) we implemented our algorithm and compared

its performance with the existing complete algorithms for robust

and recoverable TF on a number of existing and new benchmarks.s

Our findings were that in practice, PR-TF is shown to be an inter-

esting trade-off notion between (full) robustness and recoverability

in terms of initial deployment cost, skill coverage in the disaster

phase of a resilience scenario, and recovery cost in the third phase.

In addition, PR-TF is much more efficient than recoverable TF, and

thus more suited to be used for reasonably sized instances.

A first perspective is to seek for more efficient algorithms for PR-

TF. One way would be to consider an anytime algorithm, computing

sub-optimal teams and iteratively searching for cheaper ones while

still guaranteeing their ⟨k, t⟩-partial robustness.
The facility location benchmarks we introduced in this paper

can also be seen as a contribution by itself. Such benchmarks can

be used to compare different SAT solvers for standard and robust

TF, both NP-complete problems. In perspective, we plan to develop

a software publicly available allowing for the generation of bench-

marks of larger size. This can be done by tuning parameters related

to the generation of the initial matrix based on Perlin noise [23], and

by refining the granularity of the maps to be generated. Another

perspective for benchmark generation will be to take advantage

of real-world populated maps [9] and translate them into facility

location problem TF instances.
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