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ABSTRACT
This paper presents an intelligent and adaptive agent that employs
deception to recognize a cyber adversary’s intent on a honeypot
host. Unlike previous approaches to cyber deception, which mainly
focus on delaying or confusing the attackers, we focus on engaging
with them to learn their intent. We model cyber deception as a
sequential decision-making problem in a two-agent context. We
introduce factored finitely-nested interactive POMDPs (I-POMDPX )
and use this framework to model the problemwithmultiple attacker
types. Our approach models cyber attacks on a single honeypot
host across multiple phases from the attacker’s initial entry to
reaching its adversarial objective. The defending I-POMDPX-based
agent uses decoys to engage with the attacker at multiple phases to
form increasingly accurate predictions of the attacker’s behavior
and intent. The use of I-POMDPs also enables us to model the
adversary’s mental state and investigate how deception affects
their beliefs. Our experiments in both simulation and with the agent
deployed on a host system show that the I-POMDPX-based agent
performs significantly better at intent recognition than commonly
used deception strategies on honeypots. This emerging application
of autonomous agents offers a new approach that contrasts with the
traditional action-reaction dynamic that has defined interactions
between cyber attackers and defenders for years.
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1 INTRODUCTION
An important augmentation of conventional cyber defense utilizes
deception-based cyber defense strategies [17]. These are typically
based on the use of decoy sandbox systems called honeypots [22],
which are instrumented with extensive monitoring capabilities.
Currently, honeypots tend to be passive systems with the purpose
of consuming the attacker’s CPU cycles and time, and possibly
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logging the attacker’s actions. However, the information inferred
about the attackers’ precise intent and capability is usually minimal.

On the other hand, honeypots equipped with fine-grained log-
ging abilities offer an untapped opportunity to better understand
attackers’ intent and capabilities. We may achieve this by engaging
and manipulating the attacker to perform actions that reveal his or
her true intent. One way of accomplishing this is to employ active
deception. Active strategies entail adaptive deception which seeks
to influence the attackers’ beliefs and manipulates the attackers into
performing desired actions [13]. We investigate how multi-agent
decision making can be used toward automating adaptive deception
strategies to better understand the attacker.

We represent cyber deception on a single host as an interactive
decision-making problem between a defender and an attacker. We
introduce a factored variant of the well-known interactive partially
observable Markov decision process [10], labeled as I-POMDPX , to
computationally model the decision making of the defender while
reasoning about the attacker’s beliefs, capabilities, and preferences
as both agents act and observe. I-POMDPX exploits the factored
structure of the problem, representing the dynamics and observa-
tion function using algebraic decision diagrams, and solving the
model using a method that directly operates on these factored
representations [1]. This brings a new level of tractability to an
otherwise intractable framework, sufficient to adequately solve the
cyber deception domain. I-POMDPX explicitly models the beliefs
of the attacker and the defender throughout the interaction. This
allows for detailed inferences about how specific deceptive actions
affect the attacker’s subjective view of the system.

We evaluate the performance of I-POMDPX in promoting active
deception with multiple attacker types both in simulation and with
the agent deployed on a system host. The attacker types are realistic
implementing the techniques in MITRE’s ATT&CK matrix [23] as
attacker actions using Metasploit [16], which is a well-known tool
for exploiting known vulnerabilities and penetration testing. Our
results show that the I-POMDP-based agent learns the intent of
the attacker much more accurately compared to baselines that do
not engage the attacker or immediately deploy all decoys en masse.
These baselines are similar to commonly-used deception strategies
on existing honeypots.

2 BACKGROUND ON INTERACTIVE POMDPS
Interactive POMDPs (I-POMDPs) are a generalization of POMDPs
to sequential decision-making in multi-agent environments [4, 10].
Formally, an I-POMDP for agent i in an environment with one other
agent j is defined as,
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Table 1: The state of the cyber deception domain is comprised of 11 variables resulting in a total of 4,608 states.

State Variable Name Values Description

HOST_HAS_DATA
sensitive_data, Type of valuable data
critical_data, none on the system

S_DATA_DECOYS yes, no Presence of sensitive data decoys
C_DATA_DECOYS yes, no Presence of critical data decoys
PRIVS_DECEPTION user, root, none Deceptive reporting of privileges
DATA_ACCESS_PRIVS user, root Privileges required to access or find data
ATTACKER_PRIVS user, root Attacker’s highest privileges
DATA_FOUND yes, no Valuable data found by the attacker
VULN_FOUND yes, no Local privilege escalation (PrivEsc) discovered by attacker
IMPACT_CAUSED yes, no Attack successful
ATTACKER_STATUS active, inactive Presence of attacker on the host
HOST_HAS_VULN yes, no Presence of local PrivEsc vulnerability

I-POMDPi = ⟨ISi ,A,Ti ,Ωi ,Oi ,Ri ,OCi ⟩

• ISi denotes the interactive state space. This includes the physical
states S as well as models of the other agent Mj , which may be
intentional or subintentional [3]. In this paper, we ascribe intentional
models to the other agent as they model the other agent’s beliefs, ca-
pabilities, and preferences as a rational agent.
• A = Ai ×Aj is the set of joint actions of both agents.
• Ti represents the transition function, Ti : S ×A × S −→ [0, 1]. The
transition function is defined over the physical states and excludes
the other agent’s models. This is a consequence of the model non-
manipulability assumption, which states that an agent’s actions do
not directly influence the other agent’s models.
• Ωi is the set of agent i’s observations.
• Oi is the observation function, Oi : S × A × Ω −→ [0, 1]. The ob-
servation function is defined over the physical state space only as
a consequence of the model non-observability assumption, which
states that other’s private model parameters may not be observed
directly.
• Ri defines the reward function for agent i , Ri : Si × A −→ R. The
reward function for I-POMDPs usually assigns preferences over
the physical states and actions only.
•OCi is the subject agent’s optimality criterion, which may be a
finite horizonH or a discounted infinite horizon where the discount
factor γ ∈ (0, 1).

We limit our attention to a finitely nested I-POMDP, in which
the interactive state space ISi ,l at strategy level l is defined bottom
up as,

ISi ,0 = S, Θj ,0 = {⟨bj ,0, θ̂ j ⟩ : bj ,0 ∈ ∆(ISj ,0)}

ISi ,1 = S × Θj ,0, Θj ,1 = {⟨bj ,1, θ̂ j ⟩ : bj ,1 ∈ ∆(ISj ,1)}
...

ISi ,l = S × Θj ,l−1, Θj ,l = {⟨bj ,l , θ̂ j ⟩ : bj ,l ∈ ∆(ISj ,l )}.

Above, θ̂ j denotes agent j’s frame, defined as θ̂ j = ⟨Aj ,Ωj ,Tj ,O j ,

Rj ,OCj ⟩. Here,OCj represents j’s optimality criterion and the other
terms are as defined previously.Θj ,l is the set of agent j’s intentional

models, each of which is defined as θ j ,l = ⟨bj ,l , θ̂ j ⟩. The interactive
state space is typically restricted to a finite set of j’s models, which
are updated after every interaction to account for the belief update
of agent j. The interactive state space for agent i at level l can be
then defined as,

ISi ,l = S ×Reach(Θj ,l−1,H ), Θj ,l = {⟨bj ,l , θ̂ j ⟩ : bj ,l ∈ ∆(ISj ,l )}.

Here, Reach(Θj ,l−1,H ) is the set of level l − 1 models that j could
have inH steps;Reach (Θj ,l−1, 0)= Θj ,l−1.We obtainReach(Θj ,l−1,
H )) by repeatedly updating j’s beliefs in the models in Θj ,l−1.

The value function for I-POMDPs maps agent i’s type Θi ,l → R,
and is piecewise linear and convex. Analogously to POMDPs, we
may decompose the value function into its components:

V t (bi ,l , θ̂i ) =
∑

is ∈I Si ,l

α t (is) × bi ,l (is) (1)

where

α t (is) = max
ai ∈Ai


∑
is

Ri (s,ai ,aj )P(aj |Mj ) + γ
∑

o′i ∈Ωi

∑
is ′

∑
aj

P(aj |Mj )

Ti (s,ai ,aj , s ′) Oi (s
′,ai ,aj ,o

′
i )

∑
o′j ∈Ωj

O j (s
′,ai ,aj ,o

′
j )

×τθ tj
(bj ,l−1,aj ,o

′
j ,b
′
j ,l−1)

]
α t+1(is ′).

Here, τθ tj (bj ,l−1,aj ,o
′
j ,b
′
j ,l−1) denotes the recursive belief update of

j’s beliefs in an intentional model. For small problem domains, we
may compute the α-vectors exactly using dynamic programming
as shown in Gmytrasiewicz and Doshi [10].

3 A NOVEL CYBER DECEPTION DOMAIN
Engaging and deceiving human attackers into intruding controlled
systems and accessing obfuscated data offers a proactive approach
to computer and information security. It wastes attacker resources
and potentially misleads the attacker. Importantly, it offers an un-
tapped opportunity to understand the attackers’ beliefs, capabilities,
and preferences and how they evolve by sifting the detailed activity
logs. Identifying these mental and physical states not only informs
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Table 2: The nine actions available to the attacker.

Action name States affected Description

FILE_RECON_SDATA DATA_FOUND Search for sensitive data for theft
FILE_RECON_CDATA DATA_FOUND Search for critical data for manipulation
VULN_RECON VULN_FOUND Search for local PrivEsc vulnerability
PRIV_ESC ATTACKER_PRIVS Exploit local PrivEsc vulnerability
CHECK_ROOT none Check availability of root privileges
START_EXFIL IMPACT_CAUSED Download data from target
PERSIST IMPACT_CAUSED Establish a permanent presence in the system
MANIPULATE_DATA IMPACT_CAUSED Manipulate stored data
EXIT ATTACKER_STATUS Terminate the attack

the defender about the attacker’s intent, but also guides new ways
of deceiving the attacker. In this section, we introduce the domain
of cyber deception and subsequently discuss how it can be modeled
in a factored I-POMDP in the next section.

The cyber deception domain models the interactions between
the attacker and the defender on a single honeypot host system.
In our domain, we capture specific aspects of a host which are
likely to be affected by an attacker’s actions. To this end, we use
techniques listed in the MITRE ATT&CK matrix [23] as our ref-
erence. A state of the interaction is modeled using 11 state vari-
ables defining a total of 4,608 states. Table 1 briefly summarizes
the state space. The HOST_HAS_DATA variable represents the true
type of valuable data on the system. We assume that a system
cannot have two different types of valuable data simultaneously.
This is a reasonable assumption because usually different hosts
on enterprise networks possess different assets. We differentiate
between sensitive_data and critical_data as distinct targets.
Sensitive data, for example, includes private data of employees,
high ranking officials, or any data that the attacker would profit
from stealing. Also, in practical scenarios, honeypots never contain
any real valuable data. Consequently, in the cyber deception do-
main, the value of HOST_HAS_DATA is typically none. However, the
attacker is unaware that the host is a honeypot or in the presence
of data decoys and hence forms a belief over this state variable.
Thus, the HOST_HAS_DATA variable gives a subjective view of the
attacker being deceived. The S_DATA_DECOYS and C_DATA_DECOYS
state variables represent the presence of sensitive-data decoys and
critical-data decoys. These decoys, identical to real data, are com-
monly used and make it challenging for the attacker to differentiate
them from real data [24].

We include three different types of attackers; the data exfil at-
tacker, data manipulator, and persistent threat. The data exfil at-
tacker represents a threat that aims to steal valuable private data
from the host. The data manipulator attacker represents a threat
that seeks to manipulate data that is critical for the operation of a
business or a physical target. Thus, the data exfil attacker targets
sensitive_data in the system and the data manipulator attacker
targets critical_data. The persistent threat attacker wants to es-
tablish a strong presence in the system at a high privilege level.

There are 5 observation variables for the attacker which make
a total of 48 unique observations. The attacker in the interac-
tion can perform one of 9 actions to gather information about

the system, manipulate the system, or take action on objectives.
Table 2 briefly summarizes the actions available to the attacker.
The FILE_RECON_SDATA and FILE_RECON_CDATA actions cause the
DATA_FOUND variable to transition to yes with high probabilities
that depend on the type of data (finding critical data is more likely
than sensitive data). The FILE_RECON_SDATA action is slightlyworse
at finding data than the FILE_RECON_CDATA. This reflects the fact
that private sensitive information is slightly difficult to find because
it is often stored in user directories in arbitrary locations. On the
other hand, critical data, like service configuration or database files,
are stored in well-known locations on the system. The attacker gets
information about the DATA_FOUND transition through the DATA
observation variable. It simulates the data discovery phase of an at-
tack. VULN_RECON is another action that works similarly and causes
the VULN_FOUND to transition to yes. This transition depicts the at-
tacker looking for vulnerabilities to raise privileges. Depending on
the type of the attacker, the START_EXFIL, MANIPULATE_DATA, or
PERSIST actions can be performed to achieve the attacker’s main ob-
jectives. As the attacker is unable to discern between decoy data and
real data, hence, is unable to determine which variable influences
the DATA_FOUND state transition during file discovery. The attacker,
however, can distinguish between different types of valuable data.
So, if the system contains data that is different from what the at-
tacker expects, the attacker can observe this from the DISCREPANCY
observation variable. As DATA and DISCREPANCY are separate ob-
servation variables, the attacker can observe a discrepancy even
when data has been found. When this occurs, the attacker may
start believing in the presence of decoys and develops a belief over
the decoy data states as the host may not contain real data. This
realistically models a situation in which the attacker encounters
multiple decoys of different types and suspects deception.

The defender in the interaction starts with complete informa-
tion about the system. The defender’s actions mostly govern the
deployment and removal of different types of decoys. These actions
influence the S_DATA_DECOYS and C_DATA_DECOYS states. Addition-
ally, the defender can influence the attacker’s observations about
his or her privileges through the PRIVS_DECEPTION state. The de-
fender gets perfect observations whenever the attacker interacts
with a decoy. Additionally, the defender gets stochastic observations
about the attacker’s actions through the LOG_INFERENCE observa-
tion variable, which represents low-level log analysis. The attacker
is rewarded for exiting the system after causing an impact. For
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the data exfil and data manipulator attacker types, this is achieved 
by performing the START_EXFIL and MANIPULATE_DATA actions re-
spectively. The persistent threat attacker is rewarded for getting 
root level persistence in the system.

4 FACTORED I-POMDP FOR MODELING
CYBER DECEPTION

Factored POMDPs have been effective toward solving structured
problems with large state and observation spaces [7, 18]. Moti-
vated by this observation, we extend the finitely-nested I-POMDP
reviewed in Section 2 to its factored representation, I-POMDPX .
Formally, this extension is defined as:

I-POMDPX = ⟨ISi ,A,Ti ,Yi ,Oi ,Ri ,OCi ⟩

• ISi is the factored interactive state space consisting of physi-
cal state factors X and agent j’s models Mj . In a finitely-nested
I-POMDPX the set Mj is bounded similarly to finitely-nested I-
POMDPs.
• Action set A is defined exactly as before in Section 2. We use
algebraic decision diagrams (ADDs) [1] to represent the factors for
agent i’s transition, observation, and reward functions compactly.
• Ti defines the transition function represented using ADDs as
Pai (X′ |X,Aj ) for all ai ∈ Ai .
• Yi is the set of observation variables which make up the observa-
tion space.
•Oi is the observation function represented as ADDs, Pai (Y ′i |X

′,Aj ).
• Ri defines the reward function for agent i . The reward function
is also represented as an ADD, Rai (X,Aj ).
• Optimality criterion OCi is as defined previously in Section 2.

Figure 1: Dynamics compactly represented as a two time-
slice DBN for select joint actions and observation variables
in I-POMDPX .

We illustrate I-POMDPX by modeling the cyber deception do-
main of Section 3 in the framework. Figure 1 shows the DBN
for select state and observation variables given that the attacker
engages in reconnaissance actions. The two slices in the DBN
represent the sets of pre- and post-action state variables, X =
{X1, ...,Xn } and X′ = {X ′1, ...,X

′
n } where Xn represents a single

state variable. Similarly, Y ′i = {Y
′
i1 , ...,Y

′
in } and Y

′
j = {Y

′
j1 , ...,Y

′
jn }

denote the sets of observation variables for agents i and j, re-
spectively. The ADD Pai (X′ |X,Aj ) = Pai (X ′1 |X

′
2, . . . ,X

′
n,X,Aj ) ×

Pai (X ′2 |X
′
3, . . . ,X

′
n,X,Aj )× ...×P

ai (X ′n |X,Aj ) represents the com-
plete transition function for action Ai = ai . This is analogous
to the complete action diagram defined by Hoey et al. [14] for
MDPs. Similarly, the observation function is represented using
the ADD, Pai (Y ′i |X

′,Aj ) = Pai (Y ′i1 |X
′,Aj )×P

ai (Y ′i2 |X
′,Aj )× ...×

Pai (Y ′in |X
′,Aj ) which is analogous to the complete observation dia-

gram [7]. We illustrate example ADDs that are a part of the transi-
tion and observation function for Ai = NOOP in Fig. 2. In total, the
transition function is composed of 792 ADDs whereas 216 ADDs
constitute the observation function.

(a) An ADD representing the transition function
P NOP(VULN_FOUND’ |X, Aj = VULN_RECON).

(b) An ADD representing the observation function
P NOP(S_DATA_DECOY_INTR’ |X′, Aj ).

Figure 2: Example ADDs in the I-POMDPX representation
of the cyber deception domain.

Additionally, in an I-POMDPX , agent i also recursively updates
the beliefs of agent j. The attacker types are modeled as frames
in Mj . Let Mj = {mj1 : ⟨bj1 , θ̂ j1 ⟩, ...,mjn : ⟨bjq , θ̂ jr ⟩} be the
set of all models in Reach(Θj ,l−1,H ). Because neither aj nor oj
are directly accessible to agent i , they are represented as ADDs
P(Aj |Mj ) and Pai (Y ′j |X

′,Aj ). The distribution over M ′j is then
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Figure 3: The true states of the system is shown on the left
while the attacker’s belief progression is shown on the right.
The attacker starts with a low prior belief on the existence
of decoys. If decoys are indistinguishable from real data, the
attacker attributes his observation to the existence of real
data even when the host has none.

Pai (M ′j |Mj ,Y
′
j ,Aj ,X

′) = Pai (M ′j |Mj ,Aj ,Y
′
j )×P

aj (Y ′j |X
′,Ai ). Us-

ing these factors, we can now define the distribution overX′ andM ′j
given action ai and observation oi as a single ADD using existential
abstraction:

Pai ,oi (X′,M ′j |X,Mj ) =
∑

Aj ,Y
′
j
Pai ,oi (Y ′j ,M

′
j ,X
′,Aj |Mj ,X)

=
∑
Aj

P(Aj |Mj ) P
ai (X′ |X,Aj )

∑
Y′j

Pai (Y ′i |X
′,Aj )

× Pai (M ′j |Mj ,Y
′
j ,X

′,Aj ).

(2)
Here, the ADD Pai (X′ |X,Aj ) compactly represents Ti (s,ai , aj , s ′),
Pai (Y ′i |X

′,Aj ) represents the probabilitiesOi (s,ai ,aj ,o
′
i ), P(Aj |Mj )

represents P(aj |θ tj ), and P
ai (M ′j |Mj ,Y

′
j ,X

′,Aj ) represents the re-
cursive belief update transition τθ tj

(bj ,aj ,o
′
j ,b
′
j ) × O j (s,ai ,aj ,o

′
j )

of the original I-POMDP. Thus, the constructed ADD Pai ,oi (X′,M ′j |

X,Mj ) contains the transition probabilities for all interactive state
variables given action ai and observation oi . The I-POMDPX belief
update can then be computed as:

bai ,oii (X′,M ′j ) =
∑
X,Mj

b(X,Mj ) × P
ai ,oi (X′,M ′j |X,Mj ) (3)

where the ADD Pai ,oi (X′,M ′j |X,Mj ) is obtained as in Eq. 2.
Symbolic Perseus [18] offers a relatively scalable point-based

approximation technique that exploits the ADD structure of fac-
tored POMDPs. Toward generalizing this technique for I-POMDPX ,
we are aided by the existence of point-based value iteration for
I-POMDPs [5], which approximates the complete belief space with
a set of belief points for optimization. Subsequently, we may gener-
alize the α-vectors and its backup from the latter to the factored

representation of I-POMDPX :

Γai ,∗ ←− αai ,∗(X,Mj ) =
∑
Aj

Rai (X,Aj )P(Aj |Mj )

Γai ,oi
∪
←− αai ,oi (X,Mj ) = γ

∑
X′,M ′j

Pai ,oi (X′,M ′j |X,Mj )α
t+1(X′,M ′j ),

∀α t+1 ∈ Vt+1

Γai ←− Γai ,∗ ⊕oi argmax
Γai ,oi

(αai ,oi · bi ),

Vt ←− argmax
α t ∈

⋃
ai Γ

ai
(α t · bi ), ∀bi ∈ Bi .

(4)
Here,Vt+1 is the set of α-vectors from the next time step and bi is
a belief point from the set of considered beliefs Bi . A popular way
of building Bi is to project an initial set of beliefs points forwards
for H time steps using the belief update of Eq. 3.

5 EXPERIMENTS AND ANALYSIS
We modeled the cyber deception domain described in Section 3
from the perspective of a level-1 defender using I-POMDPX . We
implemented the generalized Symbolic Perseus using the point-
based updates of the α-vectors and the belief set projection as given
in Section 4, to solve the I-POMDPX . The code for the I-POMDPX
solver and the supplementary material is available at https://github.
com/dityas/Protos. The solver has several enhancements such as
cached ADD computations and approximations for speed up.

5.1 Example Attacker-Defender Interactions
Figure 3 illustrates a scenario taken from an actual simulation run
with the data manipulator attacker. Initially, the attacker has a non-
zero belief over the existence of data. However, the true state of the
system on the left shows that it does not actually contain any data.
In the absence of the defender or any static data decoys, the attacker
will eventually update his beliefs to accurately reflect the reality
by performing the FILE_RECON_CDATA action and observing the
result. To avoid this belief state, the defender deploys data decoys
when the attacker acts. The attacker’s inability to tell the difference
between decoy data and real data and his prior belief about the
absence of decoys leads him to attribute his observations to the
existence of real data leading to the attacker being deceived.

Figure 4 shows a similar scenario, but with the data exfil attacker.
This particular trace highlights the adaptive nature of the defender’s
policy. Initially, the defender believes the attacker to be of the data
manipulator type. Hence, the defender deploys critical_data
decoys. On receiving subsequent observations, it realizes this initial
belief to be inconsistent with the observations. The defender takes
corrective action by removing previously deployed decoys and
deploying sensitive_data decoys instead.

5.2 Performance Evaluation
We evaluate the deception policy generated by I-POMDPX in simu-
lations and on an actual system consisting of a standalone attacker
programmed via Metasploit [16] and a defender workstation. We
simulate each attacker type on Metasploit using the optimal policy
computed by the level-0 attacker POMDP. We show these policies
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Figure 4: The defender takes corrective actions if the attacker is incorrectly predicted in the initial steps. In this case, on
observing file discovery actions, the defender deploys critical data decoys. Later, the defender forms a better belief over the
attacker’s frame from the observations and replaces the decoys before the attacker discovers the discrepancy.

for each type of attacker in the supplementary material. For the
simulations, we randomly sample the frame and the starting privi-
leges of the attacker to simulate a threat with unknown intentions
and privileges. The defender begins knowing about the existence
of decoys on the system. The attacker, on the other hand, does not
have prior knowledge about any vulnerabilities or data on the sys-
tem. The defender engages with the attacker by deploying decoys,
facilitating deceptive observations, or adding known vulnerabilities
to the system. In the simulations, the state transitions and obser-
vations for both agents are generated by sampling from the joint
transition functions and individual observation functions.

5.2.1 Simulations. In the simulations, the state transitions and ob-
servations for both agents are generated by sampling from the joint
transition functions and individual observation functions. We com-
pare the I-POMDPX policy against other baselines: one that does
not engage and passively observes the attacker, and another which
uses deception indiscriminately having deployed both sensitive and
critical data decoys and all vulnerabilities in the honeypot at the
beginning. We label the first baseline as NO-OP(no decoy) and the
second baseline as NO-OP(all decoys). These baselines represent
approaches commonly in use on current honeypots.

We perform the simulations for 30 trials with an attacker type
randomly picked in each trial. During each trial, the defender be-
gins not knowing the type of the attacker and believes that the
state is that the attacker’s privileges are not known. We set H in
Reach(Θj ,l−1,H ) to 5. We start with 100 opponent models and set
the discount factor γ = 0.95. As the interaction progresses, the
beliefs of the other agent are updated recursively and the number
of opponent models grows accordingly. The generalized Symbolic
Perseus is then run on 200 projected belief points until convergence
to obtain the policy, which prescribes the subsequent actions for the

defender until the end of the trial. It converges in about 6 minutes
with a mean time per backup of 37 secs on an Ubuntu 18 PC with
Intel i7 and 64 GB RAM.

Figure 5: Cross entropy (KLdivergence) of the beliefs of the I-
POMDPX agent and other baselines in simulations. Cross en-
tropies near zero signify good intent recognition. When en-
gaging a defender-unaware attacker, I-POMDPX-based de-
fender outperforms existing honeypot strategies in engag-
ing the attackers and recognizing their intent.

The NO-OP(no decoy) and NO-OP(all decoy) yielded a mean (±
std dev.) of 4.42 ± 0.78 and 2.93 ± 1.11 steps of engagement with
the attacker, respectively. The longest engagement among these
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Figure 6: System architecture of the testbed used to deploy
the agents. The defender manipulates the system through
decoys and commonly used coreutils binaries to give deviant
observations.

consisted of 7 and 6 steps, respectively. With NO-OP(no decoy), the
attacker spends time searching for data and attempting to escalate
his privileges but without much success, finally exiting the system.
With NO-OP(all decoys), the attacker either quickly exploits the
vulnerabilities or encounters the data decoys but quickly exits often
due to the encountered data not being as expected. However, the
I-POMDPX agent engaged with the attacker for a mean duration
of 5.81 ± 1.7 with the longest interaction happening for 9 steps.
It leverages the information gained by the first few observations
to avoid using decoys that the attacker would find suspicious. For
example, the defender first manipulates the attacker’s observations
about her own privileges. This increases the defender’s chances
of observing file enumeration or vulnerability discovery activity,
forming a belief over the frames. Subsequently, the defender baits
the attacker using decoys and observes the interaction to solidify
his belief. This minimizes the risk of the attacker encountering
unexpected decoys or noticing discrepancies.

These simulations are predicated on the level-1 defender believ-
ing that none of the level-0 attacker types are aware of the deception,
which is the typical case. However, if the defender’s strategy level
is 2 and it believes that the attacker believes that there is a small
chance at 0.1 of decoys being used, we observed that the attacker
often quickly exited the system as one would expect.

Do the extended engagements facilitated by the I-POMDPX agent
help in intent recognition? Figure 5 shows the cross-entropy between
the defender’s belief of the attacker’s frame and the attacker’s true
type, as it varies across the steps of the interaction. The defender’s I-
POMDPX policy eventually yields the lowest cross-entropy values
compared to the baselines, often reaching zero in 6 steps. We show
the cross-entropy for more steps because the attacker remains in
the system performing a few more actions. The sharp decrease in
cross-entropy in the first three steps is because the attacker’s decoy
interactions (if the attacker is of type data exfil or manipulator)
are perfectly observed by the defender (some other interactions

generate noisy observations). Multiple consecutive data reconnais-
sance steps filter out the persistence attacker type, and the final
step of either exfiltrating the data or manipulating it allows the
defender to distinguish between the remaining two attacker types.
But, for the NO-OP(no decoy) with no deception, the only source of
information about the attacker is his general actions, which is noisy.
Hence, such a defender is unable to form accurate beliefs before
the attacker leaves the interaction. For the NO-OP(all decoy) agent
that indiscriminately uses deception, observations from decoy in-
teractions are perfect, but the risk of the attacker encountering
contradicting decoys and suspecting deception is also high leading
to early exits.

5.2.2 Host deployment. In our next phase of experimentation, we
evaluated the real-world feasibility of deploying an operational
I-POMDPX on a host system and testing its efficacy. The testbed
consists of 3 separate hosts: the attacker, the adaptive honeypot
and the defender. Figure 6 shows the overall architecture of our
testbed. The attacker system runs a Kali Linux distribution which is
well known for the variety of offensive and defensive cybersecurity
tools that are preinstalled on it. The adaptive honeypot on which
the interaction takes place runs a Metasploitable 3 Linux distribu-
tion. This distribution has a wide range of builtin vulnerabilities
and is commonly used to simulate victim workstations in cyber
attack simulations. The adaptive honeypot also contains an attacker
agent that executes the attacks and communicates with the attacker.
The attacker agent implements the actions given by the attacker’s
optimal plan located on the attacker host using realistic techniques
commonly used by real attackers. We implement real exploits to
facilitate privilege escalation on the host. The adaptive honeypot also
has a defender agent that implements the defender’s actions and
gets observations.

The defender AI located on the defender workstation solves
the I-POMDPX and computes the optimal action. For implement-
ing the observation function, the I-POMDPX agent monitors and
analyzes the system logs to get information about the attacker’s
actions (i.e., observations). To enable this, we use GrAALF [20], a
graphical framework for processing and querying system call logs.
GrAALF analyzes system call logs in real-time and provides the
stochastic LOG_INFERENCE observation variable values (pertaining
to file and vulnerability searches) as well as the perfectly observed
DATA_DECOY_INTERACTION variable values to the defender.

Our results in Fig. 7 show the adaptive deception strategy em-
ployed by the I-POMDPX agent is better at engaging adversaries
on a honeypot as compared to the deception strategies that are
commonly used. While the cross entropy does not reach zero due to
the challenge of accurately inferring the attacker’s actions from the
logs (leading to noisier observations), it gets close to zero, which
indicates accurate intent recognition.

In addition to these experiments, we also evaluate our I-POMDPX
based defender against human attackers. We provide more details
on these experiments in the supplementary material.

6 RELATEDWORK
Agent methods are beginning to be explored for use in cyber decep-
tion. An area of significant recent interest has been game-theoretic
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Figure 7: On the actual host deployment, the I-POMDPX-
based agent uses implemented deception techniques and au-
dit log analysis for observations, to engage with the attacker
for longer duration than other agents and form more infor-
mative beliefs.

multi-agent modeling of cyber deception, which contrasts with the
decision-theoretic modeling adopted in this paper.

Schlenker et al. [19] introduced cyber deception games based on
Stackelberg games [21]. These model deception during the network
reconnaissance phase when the attacker is deceived into intruding
a honeypot. Another similar approach [6] allocates honeypots in a
network using a Stackelberg game. The game uses attack graphs
to model the attacker and creates an optimal honeypot allocation
strategy to lure attackers. Jajodia et al. [12] develop probabilistic
logic to model deception during network scanning. While these
efforts focus on static deployment of deception strategies at the
network level, we seek active deception at the host level – once the
attacker has entered the honeypot. Further, we model individual
phases of the attack in greater detail. This leads to realistic deception
techniques at each phase. Also, as opposed to the above approaches,
our framework performs opponent modeling explicitly.

At the host level, Carroll et al. [2] models deception as a sig-
naling game while Horak et al. [11] creates a model for active
deception using partially observable stochastic games. However,
both of these take a high-level view modeling defender actions
rather abstractly. In contrast, our defender actions are realistic and
can be implemented on honeypots as demonstrated in Section 5.
Ferguson-Walter et al. [8] model possible differences between the
attacker’s and defender’s perceptions toward the interaction by
modeling cyber deception as a hypergame [15]. Hypergames model
different views of the game being played from the perspective of
the players. While this approach, similar to ours, represents the at-
tacker’s perspective of the game, we explicitly model the adversary
using a subjective decision-theoretic approach and do not solve for
equilibrium.

7 CONCLUDING REMARKS
Our approach of utilizing automated decision making for deception
to recognize attacker intent is a novel application of autonomous
agents and, specifically decision making in cyber security. It ele-
vates the extant security methods from anomaly and threat detec-
tion to intent recognition. We introduced a factored variant of the
well-known I-POMDP framework, which exploits the environment
structure and utilized it to model the new cyber deception domain.
Our experiments revealed that the I-POMDPX-based agent suc-
ceeds in engaging various types of attackers for a longer duration
than current honeypot strategies, which facilities intent recognition.
Importantly, the agent is practical on a real system with logging
capabilities paving the way for its deployment in actual honeypots.

On a broader scale, the I-POMDPX framework that we introduce
makes I-POMDPs tractable to be applied to larger problems. This
has a multitude of applications such as in negotiations, studying
human behavior, cognition, and security. Another area that we hope
to motivate through our research is a model of deception in human
interactions. Modeling other agents explicitly will help understand
how deceptive or real information influences an individual’s beliefs.
This research can eventually motivate further research in areas
such as counter deception and deception resilience in agents.

At an application level, our work aims to motivate the use of
autonomous agents and decision making to create informed cyber
defense strategies. It provides a new perspective different from the
traditional action-reaction dynamic that has defined interactions
between cyber attackers and defenders for years. The recent re-
lease of MITRE’s SHIELD matrix [9], a knowledge base on active
defense, signifies a change in the approach towards cyber defense.
Coincidentally, our I-POMDPX-based policy is tactically grounded
in the SHIELD matrix. Specifically, the I-POMDPX-based policy
uses deception to detect the adversary through decoy interactions,
facilitate the adversary’s progress to observe their actions, legit-
imize the deception through use of selective decoys, and finally
test the adversary to determine their intent. The I-POMDPX-based
defender strategically employs these tactics during different phases
of the interaction. In addition, our framework models the oppo-
nent’s mental states and preferences. This will aid security teams
in understanding threats at a deeper level. The framework will
potentially motivate the development of adaptive and intelligent
deceptive solutions that can study and predict attackers at a deeper
level. Understanding attackers’ mental models, inherent biases, and
preferences will go a long way in forming flexible cyber defense
strategies that can adapt to different threats.

While Section 5.2.2 demonstrated that the deployment of the
active deception agent is feasible, we are currently engaged in
assessing the viability of such a deployment. Toward this, we intend
to move the host with the deployment to outside our institutional
firewall, further enhance its logging capabilities, while safeguarding
it against common bot attacks.
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