Sequential Mechanisms for Multi-type Resource Allocation

Sujoy Sikdar
Department of Computer Science
Binghamton University
ssikdar@binghamton.edu

Xiaoxi Guo
Key Laboratory of High Confidence Software Technologies (MOE)
Department of Computer Science and Technology
Peking University
guoxiaoxi@pku.edu.cn

Haibin Wang
Key Laboratory of High Confidence Software Technologies (MOE)
Department of Computer Science and Technology
Peking University
beach@pku.edu.cn

Lirong Xia
Department of Computer Science
Rensselaer Polytechnic Institute
xial@cs.rpi.edu

Yongzhi Cao
Key Laboratory of High Confidence Software Technologies (MOE)
Department of Computer Science and Technology
Peking University
caoyz@pku.edu.cn

ABSTRACT

Several resource allocation problems involve multiple types of resources, with a different agency being responsible for “locally” allocating the resources of each type, while a central planner wishes to provide a guarantee on the properties of the final allocation given agents’ preferences. We study the relationship between properties of the local mechanisms, each responsible for assigning all of the resources of a designated type, and the properties of a sequential mechanism which is composed of these local mechanisms, one for each type, applied sequentially, under lexicographic preferences, a well studied model of preferences over multiple types of resources in artificial intelligence and economics. We show that when preferences are O-legal, meaning that agents share a common importance order on the types, sequential mechanisms satisfy the desirable properties of anonymity, neutrality, non-bossiness, or Pareto-optimality if and only if every local mechanism also satisfies the same property, and they are applied sequentially according to the order O. Our main results are that under O-legal lexicographic preferences, every mechanism satisfying strategyproofness and a combination of these properties must be a sequential composition of local mechanisms that are also strategyproof, and satisfy the same combinations of properties.

KEYWORDS

Multi-type resource Allocation, Sequential Mechanisms, Computational Social Choice, Mechanism Design

ACM Reference Format:

1 INTRODUCTION

Consider the example of a hospital where patients must be allocated surgeons and nurses with different specialties, medical equipment of different types, and a room [17]. This example illustrates multi-type resource allocation problems (MTRAs), first introduced by Moulin [22], where there are $p \geq 1$ types of indivisible items which are not interchangeable, and a group of agents having heterogeneous preferences over receiving combinations of an item of each type. The goal is to design a mechanism which allocates each agent with a bundle consisting of an item of each type.

Often, a different agency is responsible for the allocation of each type of item in a distributed manner, using possibly different local mechanisms, while a central planner wishes that the mechanism composed of these local mechanisms satisfies certain desirable properties. For example, different departments may be responsible for the allocation of each type of medical resources, while the hospital wishes to deliver a high standard of patient care and satisfaction given the patients’ preferences and medical conditions; in an enterprise, clients have heterogeneous preferences over cloud computing resources like computation and storage [5, 11, 12], possibly provided by different vendors; in a university, students must be assigned to different types of courses handled by different departments; in a seminar class, the research papers and time slots [20] may be assigned separately by the instructor and a teaching assistant respectively, and in rationing [9], different agencies may be responsible for allocating different types of rations such as food and shelter.

Unfortunately, as Svensson [31] shows, even when there is a single type of items and each agent is to be assigned a single item, serial dictatorships are the only strategyproof mechanisms which are non-bossy, meaning that no agent can falsely report her preferences to change the outcome without also affecting her own allocation, and neutral, meaning that the outcome is independent of the names of the items. In a serial dictatorship, agents are assigned their favorite remaining items one after another according to a fixed priority ordering of the agents. Pápai [23] shows a similar result for the multiple assignment problem, where agents may be assigned
more than one item, that the only mechanisms which are strategyproof, non-bossy, and Pareto-optimal are sequential dictatorships, where agents pick a favorite remaining item one at a time according to a hierarchical picking sequence, where the next agent to pick an item depends only on the allocations made in previous steps. Pareto-optimality is the property that there is no other allocation which benefits an agent without making at least one agent worse off. More recently, Hosseini and Larson [16] show that even under lexicographic preferences, the only mechanisms for the multiple assignment problem that are strategyproof, non-bossy, neutral and Pareto-optimal are serial dictatorships with a quota for each agent.

Mackin and Xia [20] study MTRAs in a slightly different setting to ours: a monolithic central planner controls the allocation of all types of items. They characterize serial dictatorships under the unrestricted domain of strict preferences over bundles with strategyproofness, non-bossiness, and type-wise neutrality, a weaker notion of neutrality where the outcome is independent of permutations on the names of items within each type. Perhaps in light of this and other negative results described above, there has been little further work on strategyproof mechanisms for MTRAs. This is the problem we address in this paper.

We study the design of strategyproof sequential mechanisms for MTRAs with \(p \geq 2 \) types, which are composed of \(p \) local mechanisms, one for each type, applied sequentially one after the other, to allocate all of the items of the type, under the assumption that agents’ preferences are lexicographic and \(O \)-legal.

For MTRAs, lexicographic preferences are a natural, and well-studied assumption for reasoning about ordering alternatives based on multiple criteria in social science [14]. In artificial intelligence, lexicographic preferences have been studied extensively, for MTRAs [15, 27, 28, 30, 32], multiple assignment problems [10, 16], voting over multiple issues [18, 34], and committee selection [25], since lexicographic preferences allow reasoning about and representing preferences in a structured and compact manner. In MTRAs, lexicographic preferences are defined by an importance order over the types of items, and local preferences over items of each type. The preference relation over any pair of bundles is decided in favor of the bundle that has the more preferred item of the most important type at which the pair of bundles differ, and this decision depends only on the items of more important types.

In several problems, it is natural to assume that every agent shares a common importance order. For example, when rationing [9], it may be natural to assume that every agent thinks food is more important than shelter, and in a hospital [17], all patients may consider their allocation of surgeons and nurses to be more important than the medical equipment and room. \(O \)-legal lexicographic preference profiles, where every agent has a common importance order \(O \) over the types, have been studied recently by [18, 34] for the multi-issue voting problem. When agents’ preferences are \(O \)-legal and lexicographic, it is natural to ask the following questions about sequential mechanisms that decide the allocation of each type sequentially using a possibly different local mechanism according to \(O \), which we address in this paper: (1) if every local mechanism satisfies property \(X \), does the sequential mechanism composed of these local mechanisms also satisfy \(X \)?, and (2) what properties must every local mechanism satisfy so that their sequential composition satisfies property \(X \)?

1.1 Contributions

For \(O \)-legal preferences, a property \(X \in \{ \text{anonymity, type-wise neutrality, non-bossiness, monotonicity, Pareto-optimality} \} \), and any sequential mechanism \(f_0 = (f_1, \ldots, f_p) \) which applies each local mechanism \(f_i \) one at a time according to the importance order \(O \), we show in Theorem 1 and Theorem 2 that \(f_0 \) satisfies \(X \) if and only if every local mechanism it is composed of satisfies \(X \).

However, sequential compositions of locally strategyproof mechanisms are not guaranteed to be strategyproof, which raises the question: under what conditions are sequential mechanisms strategyproof? We begin by showing in Proposition 1, that when agents preferences are lexicographic, but agents have different importance orders, sequential mechanisms composed of locally strategyproof mechanisms are, unfortunately, not guaranteed to be strategyproof. In contrast, we show in Proposition 2 that sequential composition of strategyproof mechanisms are indeed strategyproof when either: (1) agents’ preferences are separable and lexicographic, even when different agents may have different importance orders, or (2) agents’ preferences are lexicographic and \(O \)-legal and all of the local mechanisms are also non-bossy.

Our main results characterize the class of mechanisms that satisfy strategyproofness, along with different combinations of non-bossiness, neutrality, and Pareto-optimality under \(O \)-legal preferences as \(O \)-legal sequential mechanisms. We show:

- In Theorem 3, that under \(O \)-legal lexicographic preferences, the class of mechanisms satisfying strategyproofness and non-bossiness is exactly the class of mechanisms that can be decomposed into multiple locally strategyproof and non-bossy mechanisms, one for each combination of type and allocated items of more important types. This class of mechanisms is exactly the class of \(O \)-legal conditional rule nets (CR-nets) [18];
- In Theorem 4, that a mechanism is strategyproof, non-bossy, and type-wise neutral if and only if it is an \(O \)-legal sequential composition of serial dictatorships;
- In Theorem 5, that a mechanism is strategyproof, non-bossy, and Pareto-optimal if and only if it is an \(O \)-legal CR-net composed of serial dictatorships.

Finally, we show that despite the negative result in Proposition 1 that when agents’ preferences do not share a common importance order on the types, sequential compositions of locally strategyproof mechanisms may not satisfy strategyproofness, we show in Theorem 6, that computing beneficial manipulations w.r.t. a sequential mechanism is NP-complete.

2 RELATED WORK AND DISCUSSION

The MTRA problem was introduced by Moulin [22]. More recently, it was studied by Mackin and Xia [20], who characterize the class of strategyproof and non-bossy mechanisms under the unrestricted domain of strict preferences over bundles as the class of serial dictatorships. However, as they note, it may be unreasonable to expect agents to express preferences as complete rankings over all possible bundles, besides the obvious communication and complexity issues arising from agents’ preferences being represented by complete rankings.

The literature on characterizations of strategyproof mechanisms [16, 23, 31] for resource allocation problems belong to the
line of research initiated by the famous Gibbard-Satterthwaite Theorem [13, 24] which showed that dictatorships are the only strategy-proof voting rules which satisfy non-imposition, which means that every alternative is selected under some preference profile. Several following works have focused on circumventing these negative results by identifying reasonable and natural restrictions on the domain of preferences. For voting, [21] provide non-dictatorial rules satisfying strategy-proofness and non-imposition under single-peak [6] preferences. Our work follows in this vein and is closely related to the works by Le Breton and Sen [19], who assume that agents’ preferences are separable, and more recently, Lang and Xia [18] who consider the multi-issue voting problem under the restriction of O-legal lexicographic preferences, allowing for conditional preferences given by CP-nets similar to our work. Xia and Conitzer [33] consider a weaker and more expressive domain of lexicographic preferences allowing for conditional preferences. Here, agents have a common importance order on the issues, and the agents’ preferences over any issue is conditioned only on the outcome of more important issues. They characterize the class of voting rules satisfying strategy-proofness and non-imposition as being exactly the class of all CR-nets. CR-nets define a hierarchy of voting rules, where the voting rule for the most important issue is fixed, and the voting rule for every subsequent issue depends only on the outcome of the previous issues. Similar results were shown earlier by [2–4].

In a similar vein, Sikdar et al. [27, 28] consider the multi-type variant of the classic housing market [26], first proposed by Moulin [22], and Fujita et al. [10] consider the variant where agents can receive multiple items. These works circumvent previous negative results on the existence of strategyproof and core-selecting mechanisms under the assumption of lexicographic extensions of CP-nets, and lexicographic preferences over bundles consisting of multiple items of a single type respectively. Guo et al. [15], Wang et al. [32] study MTRAs with divisible and indivisible items, and multiple items of a single type respectively. Guo et al. [15], Wang et al. [32] provide mechanisms that are fair and efficient under the notion of lexicographic extensions of CP-net. In Figure 1(a) is the CP-net [8] over \mathcal{D} is defined by (i) a directed graph $G = (T, E)$ called the dependency graph, and (ii) for each type $i \leq p$, a conditional preference table $\text{CPT}(D_i)$ that contains a linear order \succ_i^* over D_i for each $x \in \mathcal{D}_{Pa}(D_i)$, where $\text{Pa}(D_i)$ is the set of types corresponding to the parents of D_i in G. A CP-net \mathcal{N} represents a partial order over \mathcal{D} which is the transitive closure of the preference relations represented by all of the CPT entries which are $((a_i, u, z) \succ (b_i, u, z))$: $i \leq p, a_i, b_i \in D_i, u \in \mathcal{D}_{Pa}(D_i), z \in \mathcal{D}_{Pa}(D_i) \setminus \{D_i\}$.

Let $O = \{D_1 \succ \cdots \succ D_p\}$ be a linear order over the types. A CP-net is O-legal if there is no edge (D_i, D_j) with $i > j$ in its dependency graph. A lexicographic extension of an O-legal CP-net \mathcal{N} is a linear order \succ over \mathcal{D} such that for any $i \leq p$, any $x \in \mathcal{D}_{D_i}$, any $a_i, b_i \in D_i$, and any $y, z \in \mathcal{D}_{D_j}$, if $a_i \succ b_i$ in \mathcal{N}, then, $(x, a_i, y) \succ (x, b_i, z)$. The linear order O over types is called an importance order, and D_1 is the most important type, D_2 is the second most important type, etc. Let O to denote the set of all possible importance orders over types.

Given an important order O, we use \mathcal{L}_O to denote the set of all possible linear orders that can be induced by lexicographic extensions of O-legal CP-nets as defined above. A preference relation $\succ \in \mathcal{L}_O$ is said to be an O-legal lexicographic preference relation, and a profile $P \in \mathcal{L}^\mathcal{O}$ is an O-legal lexicographic profile. An O-legal preference relation is separable, if the dependency graph of the underlying CP-net has no edges. We will assume that all preferences are O-legal lexicographic preferences throughout this paper unless specified otherwise.

Example 3.1. Here we show how to compare bundles under an O-legal lexicographic preference with CP-net. In Figure 1(a) is a dependency graph which shows that D_2 depends on D_1. Figure 1(b) is the CPT for both types, which implies $\langle 1_1, 1_2 \rangle$ and $\langle 2_1, 2_2 \rangle$ and $\langle 2_1, 2_2 \rangle$. A preference relation $\succ \in \mathcal{L}_O$ is said to be an O-legal lexicographic preference relation, and a profile $P \in \mathcal{L}^\mathcal{O}$ is an O-legal lexicographic profile. An O-legal preference relation is separable, if the dependency graph of the underlying CP-net has no edges. We will assume that all preferences are O-legal lexicographic preferences throughout this paper unless specified otherwise.
(1, 2z), (2, 2z) > (21, 1z). Figure 1(c) gives the importance order O = [D1 > D2]. With O we can compare some bundles directly. For example, (1, 2z) > (21, 1z), (1, 1z) > (21, 2z) because the most important type with different allocations is D1 and 1 > 2.

Finally, Figure 1(d) shows the relations among all the bundles.

We note that any lexicographic extension of an O-legal CP-net according to the order O does not violate any of the relations induced by the original CP-net, and always induces a linear order over all possible bundles unlike CP-nets which may induce partial orders.

For any O-legal lexicographic preference relation > over D, and given any x ∈ D, x as the projection of the relation > over D1 given x, and > x as the projection of > over {x, z} : x ∈ D. For convenience, given an allocation A, for any i ≤ p, we define > x, A, and > x, A similarly, where the preferences are projected based on the allocation of items of types that are more important than i, and given an O-legal lexicographic profile P, we define P, A, and P, A similarly, by projecting the preferences of every agent. We just leave out x (and similarly, A) if i = 1. We use D1 to stand for the set of all types except D1.

Sequential and Local Mechanisms. An allocation mechanism f : P → A maps O-legal preference profiles to allocations. Given an importance order O = [D1 > ⋅ ⋅ ⋅ > Dp] an O-legal sequential mechanism f0 = (f1, ⋅ ⋅ ⋅ , fp) is composed of p local mechanisms, that are applied one after the other in p rounds, where in each round i ≤ p, a local mechanism fi allocates all of the items of Di given agents’ projected preferences over Di conditioned on the partial allocation in previous rounds.

Desirable Properties. An allocation mechanism f satisfies:

- **anonymity,** if for any permutation Π on the names of agents, and any profile P, f(Π(P)) = Π(f(P));
- **type-wise neutrality,** if for any permutation Π = (Π1, ⋅ ⋅ ⋅ , Πp), where for any i ≤ p, Π permutes the names of the items of type i according to a permutation Πi, and any profile P, f(Π(P)) = Π(f(P));
- **Pareto-optimality,** if for every allocation A such that there exists an agent j such that A(j) > (j) f(P)(j), there is another agent k such that f(P)(k) > (j) A(k).
- **non-bossiness,** if no agent can misreport her preferences and change the allocation of other agents without also changing her own allocation, i.e. there does not exist any pair (P, x) such that P is a profile and > x is the misreported preferences of agent j such that f(P)(j) > f(P, j)(j) and for some agent k ≠ j, f(P)(k) ≠ f(P, j)(j).
- **monotonicity,** for any agent j, any profile P, let > j be a misreport preference such that if y ⊆ D is the set of all bundles whose ranks are raised and it holds that for every x, z ∈ Y, x > j z x > j z, then, f(P, j)(j) ∈ {f(P)(j)} ∪ Y.
- **strategyproofness,** if no agent has a beneficial manipulation i.e. there is no pair (P, > j) where P is a profile and > j is a manipulation of agent j’s preferences such that f(P, j)(j) > f(P)(j).

** Propositions of Sequential Mechanisms under Lexicographic Preferences.**

Theorem. For any importance order O ∈ O, any X ∈ {anonymity, type-wise neutrality, non-bossiness, monotonicity, Pareto-optimality}, and f0 = (f1, ⋅ ⋅ ⋅ , fp) be any O-legal sequential mechanism. Then, for O-legal preferences, for every i ≤ p, the local mechanism fi satisfies X, then f0 satisfies X.

Proof. (Sketch) Throughout, we will assume that O = [D1 > ⋅ ⋅ ⋅ > Dp], and that P is an arbitrary O-legal preference profile over p types. For any i ≤ p, we define gi to be the sequential mechanism (f1, ⋅ ⋅ ⋅ , fi). The proofs of anonymity and type-wise neutrality are relegated to the full version [29] in the interest of space.

non-bossiness. Let us assume for the sake of contradiction that the claim is false, i.e. there exists a profile P, an agent j and a misreport > j such that for P′ = (P, > j), f0(P)(j) = f0(P)(j), and f0(P) ≠ f0(P). Then, there is a type i ≤ p such that, f0(P)(P, A, i) = f0(P′)(P, A, i) and f0(P′)(P, A, i) ≠ f0(P′)(P, A, i). Let A = f0(P)(P, A, i). Then, there is an agent k such that f0(P, A, i) ≠ f0(P′)(P, A, i). By the choice of i, and the assumption that every other agent reports preferences truthfully, > j, A ≠ > j, A.

Then, f0(P, A, i) > j, A(j) = f0(P′, A, i) > j, A(j), but f0(P, A, i) > j, A(k) ≠ f0(P′, A, i) > j, A(k), a contradiction to our assumption that f0 is non-bossy.

monotonicity. Let P′ = (P, > j) be an O-legal profile obtained from P and Y ⊆ D is the set of bundles raising the ranks in P′ such that the relative rankings of bundles in Y are unchanged in P and P′. For any Y ⊆ D, and any u ∈ D, let YD[u] = {x : u ∈ X, xh = u for all h ≤ i}. It is easy to see that if x1 = f0(P′)(j)(j), then it follows from strong monotonicity of f1 that x1 ∈ f0(P′)(j)(j)∪YD1. Now, either x1 ≠ f0(P′)(j)(j), or x1 = f0(P′)(j)(j). Suppose x1 ≠ f0(P′)(j)(j). Then, by strong monotonicity of f1, x1 > f0(P′)(j)(j). Then, by our assumption of O-legal lexicographic preferences, for any z ∈ D, (x1, z) ∈ Y. Therefore, f0(P′)(j) ∈ Y. Suppose x1 = f0(P′)(j)(j), then by a similar argument, f0(P′)(j)(j) ∈ (f0(P′)(j)(j)∪YD2(x1)). Applying our argument recursively, we get that f0(P′)(j) ∈ (f0(P′)(j)∪Y.

Pareto-optimality. Suppose the claim is true for p ≤ k types. Let P be an O-legal lexicographic preference profile over k + 1 types, and f0 = (f1, ⋅ ⋅ ⋅ , fk) is a sequential composition of Pareto-optimal local mechanisms. Suppose for the sake of contradiction that there exists an allocation B such that some agents strictly better off compared to f0(P), and no agent is worse off. Then, by our assumption of lexicographic preferences, for every agent k
who is not strictly better off, $B(k) = f_0(P)(k)$, and for every agent j who is strictly better off, one of two cases must hold. (1) $B(j)_{D_j} >_1 f_0(P)(j)_{D_j}$, or (2) $B(j)_{LD_j} = f_0(P)(j)_{LD_j}$. (1) If there exists an agent such that $B(j)_{LD_j} >_1 f_0(P)(j)_{LD_j}$, this is a contradiction to our assumption that f_j is Pareto-optimal. (2) Suppose $B(j)_{LD_j} = f_0(P)(j)_{LD_j}$ for all agents who are strictly better off. Let $q = (f_1, \ldots, f_k)$. W.l.o.g., let agent 1 strictly prefer $B(1)$ to $f_0(P)(1)$. Then, $g(P_{LD_{D_k}} \setminus D_1, f_0(P)_{LD_1}(1)) >_1 B(1)_{LD_{D_k}}$, and for every other agent $l \neq 1$, either $g(P_{LD_{D_k}} \setminus D_l, f_0(P)_{LD_l}(l) >_1 B(l)_{LD_{D_k}}$, or $g(P_{LD_{D_k}} \setminus D_l, f_0(P)_{LD_l}(l) = B(l)_{LD_{D_k}}$, which is a contradiction to our induction assumption. \hfill \Box

Theorem 2. For any importance order $O \in O$, $X \in \{\text{anonymity}, \text{type-wise neutrality}, \text{non-bossiness}, \text{monotonicity}, \text{Pareto-optimality}\}$, and $f_0 = (f_1, \ldots, f_k)$ be any O-legal sequential mechanism. For O-legal preferences, if f_0 satisfies X, then for every $i \leq p$, f_i satisfies X.

Proof. (Sketch) We only provide the proof of non-bossiness here. The rest of the proofs are in the full version [29].

Non-bossiness. Assume for the sake of contradiction that $k \leq p$ is the most important type such that f_k does not satisfy non-bossiness. Then, there exists a preference profile $Q = (\langle x^k \rangle_{i \leq n}$ over D_k, and a bossy agent l and a misreport $Q' = (\langle x^k_l \rangle_{i \leq n}$, such that $f_k(Q')(l) = f_k(Q)(l)$, but $f_k(Q') \neq f_k(Q)$. Now, consider the O-legal separable lexicographic profile P, where for any type $i \leq p$, the preferences over type D_i is denoted P_{LD_i} and $P_{LD_k} = Q$, and the profile P' obtained from P by replacing $>_1$ with $>_1'$, which in turn is obtained from $>_1$ by replacing $>_1'_{D_k}$ with $>_1'_{D_k}$. It is easy to see that $f_0(P')_{LD_k} = f_0(P)_{LD_k}$, and $f_0(P')(l)_{D_k} = f_0(P)(l)_{D_k}$, but $f_0(P')_{LD_k} \neq f_0(P)_{LD_k}$, and by our assumption of separable preferences, $f_0(P')(P)_{LD_k} = f_0(P)_{LD_k}$. This implies that $f_0(P')(l) = f_0(P)(l)$, but $f_0(P') \neq f_0(P)$, implying that f_0 does not satisfy non-bossiness, which is a contradiction. \hfill \Box

5 STRATEGYPROOFNESS OF SEQUENTIAL MECHANISMS

A natural question to ask is whether it is possible to design strategy-proof sequential mechanisms when preferences are lexicographic, but each agent $j \leq n$ may have a possibly different important order $O_j \in O$ over the types, and their preference over D is O_j-legal and lexicographic. A sequential mechanism applies local mechanisms according to some importance order $O \in O$ and is only well defined for O-legal preferences. When preferences are not O-legal, it is necessary to define how to project agents’ preferences given a partial allocation when a sequential mechanism is applied. Consider an agent j with O_j-legal preferences and, a partial allocation $A_{j,S}$ for some $S \subseteq T$, which allocates $x \in D_k$ to j. A natural question to ask is how should agent j’s preferences be interpreted over a type D_l which has not been allocated yet. We define two natural ways in which agents’ may wish their preferences to be interpreted. We say that an agent is optimistic, if for any type $D_i \in S$, and any pair of items $a_i, b_i \in D_i$, $a_i > b_i$ if and only if inf $\{y \in D : y_k = x_k \} > \sup \{y \in D : y_k = x_k \}$ for every $D_k \in S, y_i = a_i$. Similarly, an agent is pessimistic, if for any type $D_i \notin S$, and any pair of items $a_i, b_i \in D_i$, $a_i > b_i$ if and only if inf $\{y \in D : y_k = x_k \} > \sup \{y \in D : y_k = x_k \}$ for every $D_k \in S, y_i = a_i$.

Proposition 1.

For any importance order $O \in O$, when the preferences are not O-legal, and agents are either optimistic or pessimistic, a sequential mechanism f_0 composed of strategyproof mechanisms is not necessarily strategyproof.

Proof. When preferences are lexicographic, and not O-legal, a sequential mechanism composed of locally strategyproof mechanisms is not necessarily strategyproof, when agents are either optimistic or pessimistic, as we show with counterexamples. Consider the profile with two agents and two types H and C. Agent 1’s importance order is $H > C$, preferences over H is $1_H > 2_H$ and over C is conditioned on the assignment of house $1_H: 1_C > 2_C, 2_H: 2_C > 1_C$. Agent 2 has importance order $C > H$ and separable preferences with order on cars being $2_C > 1_C$, and order on houses $1_H > 2_H$. Consider the sequential mechanism composed of serial dictatorships where $H \succ C$ and for houses the picking order over agents is $1, 2$, and for cars $2, 1$. When agents are truthful and either optimistic or pessimistic, the allocation is 2_H2_C and 1_H1_C respectively to agents 1 and 2. When agent 2 misreports her preferences over houses as $2_H > 1_H$, and agent 1 is truthful and either optimistic or pessimistic, the allocation is 1_H1_C and 2_H2_C to agents 1 and 2 respectively, a beneficial misreport for agent 2. \hfill \Box

In contrast, sequential mechanisms composed of locally strategyproof mechanisms are guaranteed to be strategyproof under two natural restrictions on the domain of lexicographic preferences: (1) when agents’ preferences are lexicographic and separable, but not necessarily O-legal w.r.t. a common importance order O, and (2) when agents’ have O-legal lexicographic preferences, and the local mechanisms also satisfy non-bossiness.

Proposition 2.

For any importance order $O \in O$, a sequential mechanism composed of strategyproof local mechanisms is strategyproof, (1) when agents are either optimistic or pessimistic, and their preferences are separable and lexicographic, or (2) when agents’ preferences are lexicographic and O-legal and the local mechanisms also satisfy non-bossiness.

Proof. (1): Let P be a profile of separable lexicographic preferences. Suppose for the sake of contradiction that an agent j has a beneficial misreport $>_j'$, and let $P' = (P-j,>_j')$. Let k be the type of highest importance to j for which $f_0(P')(j)_k \neq f_0(P)(j)_k$. Then, by our assumption that preferences are lexicographic, k being the most important type for j where her allocated item differs, and that P' is a beneficial manipulation, it must hold that $f_0(P')(j)_k > f_0(P)(j)_k$. Since, preferences are separable, $f_0(P')(j)_k = f_0(P'_{LD_j}(j))$. Since every other agent is truthful, $P'_{LD_j}(j) = (P-j_{LD_j}(j))_{j \neq j_{LD_j}(j)}$, there is a beneficial manipulation, which implies that $f_0(j) \neq f_0(P)$, a contradiction to our assumption.

(2) Now, we consider the case where the profile of truthful preferences P is an arbitrary O-legal and lexicographic profile of preferences that may not be separable, and the local mechanisms are non-bossy and strategyproof. Suppose for the sake of contradiction...
that an agent j has a beneficial misreport \succ_j', and let $P' = (P_j, \succ_j')$. W.l.o.g. let $O = \{1 \supset \cdots \supset p\}$.

Let k be the most important type for which agent j receives a different item. We begin by showing that by our assumption that the local mechanisms are non-bossy, and our assumption of O-legal lexicographic preferences, it holds that for every $i < k$ according to O, $f_i(P')_{\perp D_i} = f_i(P)_{\perp D_i}$. For the sake of contradiction, let $h < k$ be the first type for which some agent f receives a different item, i.e., $[f(P')_{\perp D_h}]_{f_h} \neq [f(P)_{\perp D_h}]_{f_h}$ and $f(P')_{\perp D_h} = f(P)_{\perp D_h}$. Then, by our assumption of O-legal lexicographic preferences, and every other agent reporting truthfully, $P'_{\perp D_h} = (P'_{\perp D_h}, f(P')_{\perp D_h}, f(P)_{\perp D_h})$. By minimality of h, we know that $f_h(P')_{\perp D_h} = f_h(P)_{\perp D_h}$. But, $f_h(P')_{\perp D_h} \neq f_h(P)_{\perp D_h}$, which implies that f_h does not satisfy non-bossiness, which is a contradiction.

Now, by minimality of k and our assumption that preferences are O-legal and lexicographic and that k is the most important type for which any agents’ allocation changes as we just showed, it must hold that $[f(P')_{\perp D_k}]_{f_k} = f_k(P')_{\perp D_k} = f_k(P)_{\perp D_k}$. However, $f_k(P')_{\perp D_k} = f(P')_{\perp D_k}$ and $P'_{\perp D_k} = P_{\perp D_k}$. This implies that f_k is not strategyproof, which is a contradiction. □

Having established that it is possible to design strategyproof sequential mechanisms, we now turn our attention to strategyproof sequential mechanisms that satisfy other desirable properties such as non-bossiness, neutrality, monotonicity, and Pareto-optimality. In Theorem 3, we show that under O-legal preferences, a mechanism satisfies strategyproofness and non-bossiness of more important types if and only if it is an O-legal CR-net composed of mechanisms that satisfy the corresponding counterparts of these properties for allocating items of a single type, namely, local strategyproofness and non-bossiness.

Definition 1. [CR-net] A (directed) conditional rule net (CR-net) M over O is defined by

(i) a directed graph $G = (\{D_1, \ldots, D_p\}, E)$, called the dependency graph, and

(ii) for each D_i, there is a conditional rule table CRT_i that contains a mechanism denoted $M_{L,D_i,A}$ for D_i for each allocation A of all items of types that are parents of D_i in G, denoted $Pat(D_i)$.

Let $O = \{D_1 \triangleright \cdots \triangleright D_p\}$, then a CR-net is O-legal if there is no edge (D_i, D_j) in its dependency with $i > j$.

Example 5.1. We note that the local mechanisms in a CR-net may be any mechanism that can allocate n items to n agents given strict preferences. In Figure 2, we show a CR-net f where all the local mechanisms are serial dictatorships. The directed graph is shown in Figure 2(a), which implies D_2 depends on D_1. Figure 2(b) shows the CRT of f. In the CRT, f_1: (a, b) means that in the serial dictatorship f_1, agent b picks her most preferred item first followed by agent a, and it is similar for f_2, f_3. The conditions in the CR-net, which are partial allocations are represented by mappings, for example, $(a \rightarrow 2)$ means agent a gets 2. Figure 2(c) and (d) are the O-legal preferences of agents a and b, respectively, where $O = [D_1 \triangleright D_2]$. According to f, first we apply f_1 on D_1, and we have $a \rightarrow 1_1, b \rightarrow 2_1$. Then, by CRT of f we use f_2 for D_2, and we have $a \rightarrow 1_2, b \rightarrow 2_2$. Therefore f outputs an allocation where $a \rightarrow (1_1, 1_2), b \rightarrow (2_1, 2_2)$.

Lemma 1. When agents’ preferences are restricted to the O-legal lexicographic preference domain, for any strategyproof mechanism f, any profile P, and any pair (P_j, \succ_j) obtained by agent j misreporting her preferences by raising the rank of $f(P)(j)$ such that for any bundle b, $f(P)(j) \succ_j b \implies f(P')(j) \succ_j b$, it holds that $f(P_j, \succ_j j)(j) = f(P')(j)$.

Proof. Suppose for the sake of contradiction that f is a strategyproof mechanism that does not satisfy monotonicity. Let $P = (\succ_j)_{j \in O}$ be a profile, j be an agent who misreports her preferences as \succ_j' obtained from \succ_j by raising the rank of $f(P)(j)$, specifically, for any bundle b, $f(P)(j) \succ_j b \implies f(P')(j) \succ_j' b$. Then, either: (1) $f(P_j, \succ_j j)(j) \succ_j' f(P)(j)$, or (2) $f(P)(j) \succ_j f(P_j, \succ_j j)(j)$.

(1) Suppose $f(P_j, \succ_j j)(j) \succ_j' f(P)(j)$. First, we claim that if $f(P_j, \succ_j j)(j) \succ_j' f(P)(j)$, then $f(P_j, \succ_j j)(j) \succ_j f(P)(j)$. Suppose for the sake of contradiction that this were not true, then $f(P)(j) \succ_j f(P_j, \succ_j j)(j)$ and $f(P_j, \succ_j j)(j) \succ_j' f(P)(j)$. This is a contradiction to our assumption on \succ_j'. This implies that $f(P_j, \succ_j j)(j) \succ_j f(P)(j)$ and \succ_j is a beneficial misreport for agent j, a contradiction to our assumption that f is strategyproof.

(2) If $f(P)(j) \succ_j f(P_j, \succ_j j)(j)$, then j is a beneficial misreport for agent j w.r.t. P', a contradiction to our assumption that f is strategyproof. □

Theorem 3. For any importance order O, a mechanism satisfies strategyproofness and non-bossiness of more important types under the O-legal lexicographic preference domain if and only if it is an O-legal locally strategyproof and non-bossy CR-net.

Proof. The if part is obvious (and is proved in Proposition 2). We prove the only if part by induction.

Claim 1. If an allocation mechanism satisfies non-bossiness of more important types and strategyproofness, then it can be decomposed into a locally strategyproof and non-bossy CR-net.

Proof by induction on the number of types. The claim is trivially true for the base case with $p = 1$ type. Suppose the claim holds true for $p = k$ types i.e. when there are at most k types, if an allocation mechanism is non-bossy in more important types and strategyproof, then it can be decomposed into locally strategyproof and non-bossy CR-net.
When \(p = k + 1 \), we prove that any non-bossy and strategyproof allocation mechanism \(f \) for a basic type-wise allocation problem can be decomposed into two steps by \(\textbf{Step 1} \):

1. Applying a local allocation mechanism \(f_1 \) to \(D_1 \) to compute allocation \([A_1] \).
2. Applying an allocation mechanism \(f_{LD,1}[A_1] \) to types \(D_1 \).

Step 1. For any strategyproof allocation mechanism satisfying non-bossiness of more important types, allocations for type 1 depend only on preferences restricted to \(D_1 \).

Claim 2. For any pair of profiles \(P = (x_j)_{j \leq n}, Q = (\bar{x}_j)_{j \leq n} \), and \(P_{LD_1} = Q_{LD_1} \), we must have that \(f(P)_{LD_1} = f(Q)_{LD_1} \).

Proof. Suppose for sake of contradiction that \(f(P)_{LD_1} \neq f(Q)_{LD_1} \). For any \(0 \leq j \leq n \), define \(P_j = (x'_1, \ldots, x'_j, x_{j+1}, \ldots, x_n) \) and suppose \(f(P_j)_{LD_1} \neq f(P_{j+1})_{LD_1} \) for some \(j \leq n - 1 \). Let \([A_1] = f(P_j)(j+1)_{LD_1} \) and \([B_1] = f(P_{j+1})(j+1)_{LD_1} \). Now, suppose that

- Case 1: \([A_1] = [B_1] \), but for some other agent \(j \), \(f(P_j)(j)_{LD_1} \neq f(P_{j+1})(j)_{LD_1} \). This is a direct violation of non-bossiness of more important types because \(P_{j+1} = P_{j+1,LD_1} \) by construction.
- Case 2: \([A_1] \neq [B_1] \). If \([B] \neq x_{j+1,LD_1} [A_1] \), then \(P_{j+1} \neq x_{j+1,LD_1} \) is a beneficial manipulation due to agents’ lexicographic preferences. Otherwise, if \([A_1] > x_{j+1,LD_1} [B_1] \), then \(P_{j+1} > x_{j+1,LD_1} \) is a beneficial manipulation due to our assumption that \(x_{j+1,LD_1} = x_{j+1,LD_1} \) and agents’ lexicographic preferences. This contradicts the strategyproofness of \(f \).

Step 2. Show that \(f_1 \) is strategyproof and non-bossy.

First, we show that \(f_1 \) must satisfy strategyproofness by contradiction. Suppose for the sake of contradiction that \(f \) is strategyproof but \(f_1 \) is not strategyproof. Let \(P = (x_j)_{j \leq n} \) be a profile of agents’ preferences over \(D_1 \). Then, there exists an agent \(j^* \) with a beneficial manipulation \(\Rightarrow \). Now, consider a profile \(Q = (\bar{x}_j)_{j \leq n} \) where for every agent \(j \), \(\bar{x}_j > x_j \) and the mechanism \(f \) whose local mechanism for \(D_1 \) is \(f_1 \). We know from Step 1 that \(f(Q)_{LD_1} = f(Q_{LD_1}) = f(P) \). However, in that case, because agents’ preferences are lexicographic with \(D_1 \) being the most important type, agent \(j^* \) has a successful manipulation \(\Rightarrow \), where \(\Rightarrow \) is the resulting allocation of \(f_1(\Rightarrow, \Rightarrow) \) is a strictly preferred item of type \(D_1 \). This is a contradiction to our assumption on the strategyproofness of \(f \).

Then, we also show that \(f_1 \) satisfies non-bossiness. Suppose for the sake of contradiction that \(f_1 \) is not non-bossy. Let \(P = (x_j)_{j \leq n} \) be a profile of agents’ preferences over \(D_1 \). Then, there exists an agent \(j^* \) with a bossy preference \(\Rightarrow \) such that for \(P' = (\Rightarrow, \Rightarrow) \), \(f_1(P)(j^*) = f_1(P')(j^*) \) while \(f_1(P)(j) \neq f_1(P')(j) \) for some \(j \). Now, consider a profile \(Q = (\bar{x}_j)_{j \leq n} \) where for every agent \(j \), \(\bar{x}_j > x_j \) and the mechanism \(f \) whose local mechanism for \(D_1 \) is \(f_1 \). We know from Step 1 that \(f(Q)_{LD_1} = f(Q_{LD_1}) = f(P) \). However, in that case, because agents’ preferences are lexicographic with \(D_1 \) being the most important type, agent \(j^* \) has a bossy preference \(\Rightarrow \), where \(\Rightarrow \) is the resulting allocation of \(f(Q)(\Rightarrow, \Rightarrow)_{LD_1} = f_1(\Rightarrow, \Rightarrow)(j)_{LD_1} \) while \(f(Q)(j)_{LD_1} \neq f_1(\Rightarrow, \Rightarrow)(j)_{LD_1} \) for some \(j \). This is a contradiction to our assumption that \(f \) satisfies non-bossiness of more important types.

Step 3. The allocations for the remaining types only depend on the allocations for \(D_1 \).

Claim 3. Consider any pair of profiles \(P_1, P_2 \) such that \([A_1] = f_1(P_{1,LD_1}) = P_{1,LD_1}, [A_2] = P_{2,LD_1} \), then \(f(P_1) = f(P_2) \).

Proof. We prove the claim by constructing a profile \(P \) such that \(f(P) = f(P_1) = f(P_2) \).

Let \(P = (\bar{x}_j)_{j \leq n} \), \(P_2 = (\bar{x}_j)_{j \leq n} \), and \(P = (\bar{x}_j)_{j \leq n} \). Let \(\bar{x}_j \) be obtained from \(\bar{x}_j \) by changing the preferences over \(D_1 \) by raising \([A_1] \) to the top position. Agents’ preference over \(D_1 \) are \(x_{j,LD_1} [A_1] = x_{j,LD_1} [A_1] \). It is easy to check that for any bundle \(b \), \(f(P)(j) \succ b \) implies \(f(P)(j) \succ \bar{x}_j \). By applying Lemma 1 sequentially to every agent, \(f(P) = f(P_1) \). Similarly, \(f(P) = f(P_2) \). It follows that for any allocation \([A_1] \) of items of type \(D_1 \), there exists a mechanism \(f_{LD,1}[A_1] \) such that for any profile \(P \), we can write \(f(P) = (f(P_{LD_1}), f_{LD,1}[A_1], P_{LD,1}[A_1]) \).

Step 4. Show that \(f_{LD,1}[A_1] \) satisfies strategyproofness and non-bossiness of important types for any allocation \([A_1] \) of \(D_1 \).

Suppose for the sake of contradiction that \(f_{LD,1}[A_1] \) is not strategyproof for some profile \(P_{LD,2}[A_1] \). Then, for \(P = (\bar{x}_j)_{j \leq n} \) there is an agent \(j^* \) with a beneficial manipulation w.r.t. \(P \) and \([A_1] \), \(x_{j^*,LD_1}[A_1] \neq x_{j^*,LD_1}[A_1] \), and \(x_{j^*,LD_1}[A_1] \neq x_{j^*,LD_1}[A_1] \). Let \(Q = (\bar{x}_j, \bar{x}_j) \). Then, \(f(Q)(j) = (f_1[A_1], f_{LD,1}[A_1], Q_{LD_1}[A_1]) \). It is easy to check that \(Q \) is a beneficial manipulation. This contradicts the strategyproofness of \(f \).

Suppose for sake of contradiction that \(f_{LD,1}[A_1] \) does not satisfy non-bossiness of important types. Then, there is a profile \(P = (\bar{x}_j)_{j \leq n} \) and an agent \(j^* \) with a bossy manipulation of her preferences \(x_{j^*,LD_1}[A_1] \). Then, it is easy to verify that \(f \) also does not satisfy non-bossiness of important types.

In Step 1, we showed that the allocation for \(D_1 \) only depends on the restriction of agents’ preferences to \(D_1 \) i.e. over \(P_{LD_1} \). In Step 3 we showed that \(f(P) \) can be decomposed as \((f_1(P_{LD_1}), f_{LD,1}[A_1], P_{LD,1}[A_1]) \) where \([A_1] = f_1(P_{LD_1}) \). In Step 2 we showed that \(f_1 \) must be strategyproof and non-bossy. In Step 4, we showed that for any output \([A_1] \) of \(f_1 \), the mechanism \(f_{LD,1}[A_1] \), satisfies both strategyproofness and non-bossiness of important types i.e. that we can apply the induction assumption that \(f_{LD,1}[A_1] \) is a locally strategyproof and non-bossy CR-net of allocation mechanisms. Together with the statement of Step 2, this completes the inductive argument.

In Theorem 4, we characterize the class of strategyproof, non-bossy of more important types, and type-wise neutral mechanisms under O-legal lexicographic preferences, as the class of O-legal sequential compositions of serial dictatorships. The proof relies on Theorems 3 and Claim 4, where we show that any CR-net mechanism that satisfies type-wise neutrality is an O-legal sequential composition of neutral mechanisms, one for each type.

Claim 4. For any importance order \(O \), an O-legal CR-net with type-wise neutrality is an O-legal sequential composition of neutral mechanisms.

Proof. We prove the claim by induction. Suppose \(f \) is such a CR-net. From the decomposition in the proof of Claim 1, we observe
that the mechanism used for type i depends on $f(P)_{LD,i}$. From this observation, and the importance order O, we can deduce that the mechanism for type i depends on no other type, and therefore there is only one mechanism for type 1, say, f_1. First we show that f_1 is neutral. Otherwise, there exists a permutation Π_1 over $D_1, f_1(\Pi_1(P_{LD,1})) \neq \Pi_1(f_1(P_{LD,1}))$. Let $I = (i_1)_{i_1 \in J}$ where i_1 is the identity permutation for type i. Then for $\Pi = (\Pi_1, I_{-1})$, we have $f_1(P_{LD,1}) = f_1(\Pi_1(P_{LD,1})) \neq \Pi_1(f_1(P_{LD,1})) = \Pi_1(f(P)_{LD,1})$, a contradiction.

Now, suppose that for a given i, there is only one mechanism f_i for each type $i' \leq i$, and each f_i is neutral. Let $\Pi = (\Pi_{\leq i}, I_{i+1})$ and we have $f_1(P_{LD,1}) = f_1(\Pi_1(P_{LD,1}))$. Let $A = f(P)_{LD,i}$. Because P is chosen arbitrarily, A and B are also arbitrary outputs of mechanism f over $D_{\leq i}$. Let $f_{i+1} = f_{LD,1,i}$, and $f'_{i+1} = f_{LD,0,i,B}$. Similarly both f_{i+1} and f'_{i+1} are arbitrary mechanisms in CRT. Because f is neutral, we have $f_1(P_{LD,1}) = f_1(\Pi_1(P_{LD,1}))$, i.e., $f_{i+1}(P_{LD,1,i}) = f'_{i+1}(\Pi_1(P_{LD,1,i}))$. By assumption we know that $\Pi_{i+1} = I_{i+1}$, so $f_{i+1}(P_{LD,1,i}) = f_{i+1}(\Pi_1(P_{LD,1,i}))$. That means f_{i+1} and f'_{i+1} can replace each other in CRT of f for type $i + 1$. Therefore in fact there is only one mechanism f_{i+1} for type $i + 1$ in CRT.

Moreover f_{i+1} must be neutral. Otherwise, there must be some permutation Π_{i+1} over $D_{i+1}, f_{i+1}(\Pi_{i+1}(P_{LD,1,i})) \neq \Pi_{i+1}(f_{i+1}(P_{LD,1,i}))$. Then for $\Pi = (\Pi_{\leq i+1}, I_{i+1})$, we have $f_1(P_{LD,1}) = f_1(\Pi_1(P_{LD,1,i})) = f_1(\Pi_1(P_{LD,1,i})) \neq \Pi_{i+1}(f_{i+1}(P_{LD,1,i})) = \Pi_{i+1}(f(P)_{LD,1,i})$, a contradiction. \square.

Theorem 4. For any importance order O, under the O-legal lexicographic preference domain, an allocation mechanism satisfies strategyproofness, non-bossiness of more important types, and type-wise neutrality if and only if it is an O-legal sequential composition of serial dictatorships.

Proof. Let $O = [D_1 \triangleright D_2 \triangleright \cdots \triangleright D_p]$. When $p = 1$, we know that serial dictatorship is characterized by strategyproofness, non-bossiness, and neutrality [20]. Let $P = ([j]_{j \leq n}$ be an arbitrary O-legal lexicographic preference profile.

\Rightarrow: Let $f_0 = (f_1, \ldots, f_p)$. It follows from Theorem 3 that if each f_i satisfies strategyproofness and non-bossiness, then f_0 satisfies strategyproofness and non-bossiness of more important types, because f_0 can be regarded as a CR-net with no dependency among types. If each f_i satisfies neutrality, then by Theorem 1 we have that f satisfies type-wise neutrality. Therefore, since each f_i is a serial dictatorship, which implies that it satisfies strategyproofness, non-bossiness, and neutrality, we have that f_0 satisfies strategyproofness, non-bossiness of more important types, and type-wise neutrality.

\Leftarrow: We now prove the converse. Let f be a strategyproof and non-bossy mechanism under O-legal lexicographic preferences. Then by Theorem 3, we have that f is an O-legal strategyproof and non-bossy CR-net. The rest of the proof depends on the following claim:

Claim 4 implies that there is only one mechanism f_i for each type i in CRT, and f_i is neutral. Therefore with Theorem 3 and Claim 4, if f satisfies strategyproofness, non-bossiness of more important types, and type-wise neutrality, we have that f is an O-legal sequential composition of local mechanisms that are strategyproof, non-bossy, and neutral, which implies that they are serial dictatorships [20]. \square.

Theorem 5. For any arbitrary importance order O, under the O-legal lexicographic preference domain, an allocation mechanism satisfies strategyproofness, non-bossiness of more important types, and Pareto-optimality if and only if it is an O-legal CR-net composed of serial dictatorships.

Proof. (Sketch) For a single type, we know that serial dictatorship is characterized by strategyproofness, Pareto-optimality, and non-bossiness [23]. The proof is similar to Theorem 4, and uses a similar argument to Theorems 1 and 2, to show that an O-legal CR-net is Pareto-optimal if and only if every local mechanism is Pareto-optimal. The details are provided in the full version [29]. \square

Finally, we revisit the question of strategyproofness when preferences are not O-legal w.r.t. a common importance order. We show in Theorem 6 that even when agents’ preferences are restricted to lexicographic preferences, there is a computational barrier against manipulation; determining whether there exists a beneficial manipulation w.r.t. a sequential mechanism is NP-complete for MTRAs, even when agents’ preferences are lexicographic. Details and the full proof are relegated to the full version [29].

Definition 2. Given an MTRA (N,M,P), where P is a profile of lexicographic preferences, and a sequential mechanism f_0, in BENEFICIALMANIPULATION, we are asked whether there exists an agent j and an O-legal lexicographic preference relation \succ'_j such that $f_0((P,j,\succ'_j))((j)) > f_0(P)(j)$.

Theorem 6. BENEFICIALMANIPULATION is NP-complete when preferences are not O-legal.

6 CONCLUSION AND FUTURE WORK

We studied the design of strategyproof sequential mechanisms for MTRAs under O-legal lexicographic preferences, and showed the relationship between properties of sequential mechanisms and the local mechanisms that they are composed of. In doing so, we obtained strong characterization results showing that any mechanism satisfying strategyproofness, and combinations of appropriate notions of non-bossiness, neutrality, and Pareto-optimality for MTRAs must be a sequential composition of local mechanisms. This decomposability of strategyproof mechanisms for MTRAs provides a fresh hope for the design of decentralized mechanisms for MTRAs and multiple assignment problems. Going forward, there are several interesting open questions such as whether it is possible to design decentralized mechanisms for MTRAs that are fair, efficient, and strategyproof under different preference domains.

ACKNOWLEDGMENTS

LX acknowledges support from NSF #1453542 and #1716333 and a gift fund from Google. YC acknowledges NSFC under Grants 61772035 and 61932001.
REFERENCES