Mean-Payoff Games with \(\omega \)-Regular Specifications

Thomas Steeples
Department of Computer Science
University of Oxford
Oxford, United Kingdom
thomas.steeples@cs.ox.ac.uk

Julian Gutierrez
Faculty of Information Technology
Monash University
Melbourne, Australia
julian.gutierrez@monash.edu

Michael Wooldridge
Department of Computer Science
University of Oxford
Oxford, United Kingdom
michael.wooldridge@cs.ox.ac.uk

ABSTRACT

Multi-player mean-payoff games are a natural formalism to model concurrent and multi-agent systems with self-interested players. Players in such a game traverse a graph, while trying to maximise a mean-payoff function that depends on the plays so generated. As with all games, the equilibria that could arise may have undesirable properties. However, as system designers, we typically wish to ensure that equilibria in such systems correspond to desirable system behaviours, for example, satisfying certain safety or liveness properties. One natural way to do this would be to specify such desirable properties using temporal logic. Unfortunately, the use of temporal logic specifications causes game theoretic verification problems to have very high computational complexity. To this end, we consider \(\omega \)-regular specifications, which offer a concise and intuitive way of specifying desirable behaviours of a system. The main results of this work are characterisation and complexity bounds for the problem of determining if there are equilibria that satisfy a given \(\omega \)-regular specification in a multi-player mean-payoff game in a number of computationally relevant game-theoretic settings.

CCS CONCEPTS

- Theory of computation → Logic & verification;
- Computing methodologies → Multi-agent systems.

KEYWORDS

Multi-player games, Mean-payoff games, Automated verification, Temporal logic, Game theory, Equilibria, Multi-agent systems

ACM Reference Format:

1 INTRODUCTION

Modelling concurrent and multi-agent systems as games in which players interact by taking actions in pursuit of their preferences is an increasingly common approach in both formal verification and artificial intelligence [1, 3, 29]. One widely adopted semantic framework for modelling such systems is that of concurrent game structures [3]. Such structures capture the dynamics of a system — the actions that agents/players can perform, and the effects of these actions. On top of this framework, we can impose additional structure to represent each player’s preferences over the possible runs of the system. There are several extant approaches to capturing preferences. One natural quantitative method involves assigning a weight to every state of the game, and then considering each player’s mean-payoff over generated runs: a player prefers runs that maximise their mean-payoff [11, 41, 45]. These games are effective in modelling resource-bounded reactive systems, as well as any scenario with multiple agents and quantitative features. Under the assumption that each agent in the system is acting rationally, concepts from game theory offer a natural framework for understanding its possible behaviours [35]. This approach is expressive enough to capture many applications of interest, and has been receiving increasing attention recently [9]. As such, equilibria for multi-player games with mean-payoff objectives are well studied, and the computation of Nash equilibria in such games has been shown to be NP-complete over state-transition graphs [41].

However, a given game-theoretic equilibrium may have undesirable computational properties from the point of view of a system designer. An equilibrium may visit dangerous states, or get stuck in a deadlock. Thus, one may also want to check if there exist equilibria which satisfy some additional desirable properties associated with the game. This problem — determining whether a given formal specification is satisfied on some/every equilibrium of a multi-agent system — is known as *Rational Verification* [12, 44].

Previous approaches to rational verification have borrowed their methodology from temporal logic verification; cf., [13, 17–19, 26]. However, since rational verification subsumes automated synthesis, the use of temporal logic specifications introduces high computational complexity [37]. To mitigate this problem, one might use fragments of temporal logic with lower complexity (e.g., GR(1) [7, 25]), but in this work we adopt a different approach. Taking inspiration from automata theory, and in particular from [6], we consider system specifications given by a formal language for expressing \(\omega \)-regular specifications, defined in terms of those states in the system that are visited infinitely often. With this approach, the complexity of the main game-theoretic decision problems is considerably lower than in the case with temporal logic specifications.

In this paper, we offer the following main contributions: we introduce a syntax for \(\omega \)-regular specifications and demonstrate they are a natural construct for reasoning qualitatively about concurrent games. We then study multi-player mean-payoff games with \(\omega \)-regular specifications in the non-cooperative setting [35], and consider the natural decision problems relating to these games and their Nash equilibria. Following this, we take inspiration from cooperative game theory and look at equivalent decision problems with respect to a cooperative solution concept derived from the core [20, 35]. Finally, we look at reactive module games [18] as a way of inducing succinctness in our system representations, and look at how this affects our established complexity results.
Structure of the paper. After introducing some necessary background, we give a motivating example, define the main game-theoretic framework, and discuss some of its properties in Section 2. In Sections 3, 4 and 5, we present the main results, and in Section 6 we discuss some relevant related work.

2 MODELS, GAMES, AND SPECIFICATIONS

Games. A concurrent game structure [3] is a tuple,
\[M = (Ag, St, s^0, (Ac_i)_{i \in Ag}, tr) \]
where,
- \(Ag \) and \(St \) are finite, non-empty sets of agents and system states, respectively, where \(s^0 \in St \) is an initial state;
- \(Ac_i \) is a set of actions available to agent \(i \), for each \(i \);
- \(tr : St \times Ac_i \times \cdots \times Ac_{|Ag|} \rightarrow St \) is a transition function.

We define the size of \(M \) to be \(|St| \cdot |Ac|_{|Ag|} \).

Concurrent games are played as follows. The game begins in state \(s^0 \), and each player \(i \in Ag \) simultaneously picks an action \(ac_i^0 \in Ac_i \). The game then transitions to a new state, \(s^1 = tr(s^0, ac_i^0, \ldots, ac_{|Ag|}^0) \), and this process repeats. Thus, the \(n^{th} \) state visited is \(s^n = tr(s^{n-1}, ac_1^{n-1}, \ldots, ac_{|Ag|}^{n-1}) \). Since the transition function is deterministic, a play of a game will be an infinite sequence of states, \(\pi : \mathbb{N} \rightarrow St. \) We call such a sequence of states a run. Typically, we index runs with square brackets, i.e., the \(k^{th} \) state visited in the run \(\pi \) is denoted \(\pi[k] \), and we also use slice notation to denote prefixes, suffixes and fragments of runs. That is, we use \(\pi[m..n] \) to mean \(\pi[m\pi[m+1] \ldots \pi[n-1] \pi[n] \pi[0\pi[1] \ldots \pi[n-1] \pi[n] \pi[m..n] \ldots \) for \(k \in \mathbb{N} \). Consider a run \(\pi \). We say that \(\pi \) visits a state \(s \) if there is some \(k \in \mathbb{N} \) such that \(\pi[k] = s \). Since there are only finitely many states, some must be visited infinitely often. And, unless all states are visited infinitely often, there will also exist some set of states that are visited only finitely often. Thus, given a run \(\pi \), we can define the following two sets, which one can use to define objectives over runs: \(\text{Inf}(\pi) = \{ s \in St \mid \pi \text{ visits } s \text{ infinitely often} \} \) and its complement \(\text{Fin}(\pi) = St \setminus \text{Inf}(\pi) \).

Strategies. In order to describe how each player plays the game, we need to introduce the concept of a ‘strategy’. A strategy for a given player, in its most general form, can be understood as a function, \(\sigma_i : St^* \rightarrow Ac_i \), which maps sequences, or histories, of states into an action for the player. A strategy profile is a vector of strategies, \(\sigma = (\sigma_1, \ldots, \sigma_{|Ag|}) \), one for each player. The set of strategies for a given player \(i \) is denoted by \(\Sigma_i \) and the set of strategy profiles is denoted by \(\Sigma \). If we have a strategy profile \(\sigma = (\sigma_1, \ldots, \sigma_{|Ag|}) \), we use the notation \(\sigma_{-i} \) to denote the vector \((\sigma_1, \ldots, \sigma_{i-1}, \sigma_{i+1}, \ldots, \sigma_{|Ag|}) \) and \((\sigma_i, \sigma_{-i}^\prime) \) to denote \((\sigma_1, \ldots, \sigma_{i-1}, \sigma_{i+1}, \ldots, \sigma_{|Ag|}) \). Finally, we write \(\Sigma \) as shorthand for \(\Sigma_1 \times \cdots \times \Sigma_{i-1} \times \Sigma_{i+1} \times \cdots \times \Sigma_{|Ag|} \). All of these notations can also be generalised in the obvious way to coalitions of agents, \(C \subseteq Ag \). A strategy profile \(\sigma \in \Sigma \) together with a state \(s \) will induce a unique run, which we denote by \(\rho(\sigma, s) : \mathbb{N} \rightarrow St \), as well as an infinite sequence of actions \(ac \in \Sigma \rightarrow Ac, \) with \(Ac = Ac_1 \times \cdots \times Ac_{|Ag|} \). These runs are ordered in the following way. Starting from \(s \), each player plays \(ac_i^0 = \sigma_i(s) \). This transforms the game into a new state, given by \(s^1 = tr(s, ac_i^0, \ldots, ac_{|Ag|}^0) \). Each player then plays \(ac_i^1 = \sigma_i(s^1) \), and this process repeats forever, defining the runs of states and actions. Typically, we are interested in runs that begin in the game’s start state, \(s^0 \), and we write \(\rho(\sigma) \) as shorthand for the infinite run \(\rho(\sigma, s^0) \).

It can be useful to work with strategies which are able to be finitely represented. In this work use consider two such representations: finite-memory strategies and memoryless strategies. A finite-memory strategy is a finite state machine with output: for player \(i \), a finite-memory strategy \(\sigma_i \) is a four-tuple, \((Q_i, q_i^0, \delta_i, \tau_i)\), where, \(Q_i \) is a finite, non-empty set of internal states with \(q_i^0 \in Q_i \) an initial state, \(\delta_i : Q_i \times Ac_i \times \cdots \times Ac_{|Ag|} \rightarrow Q_i \) is an internal transition function and \(\tau_i : Q_i \rightarrow Ac_i \) is an action function. This strategy operates by starting in the initial state, and for each state it is in, producing an action according to \(\tau_i \), looking at what actions have been taken by everyone, and then moving to a new internal state as prescribed by \(\delta_i \). Because such a sequence will be periodic, we can write the run induced on the concurrent game structure as \(\pi = \pi[k] \pi[k] \cdots \) for some \(k, m \in \mathbb{N} \) with \(0 \leq k < m \). Finally, a memoryless strategy is a strategy that depends only on the state the player is currently in. Then, it can be written as a function \(\sigma_i : St \rightarrow Ac_i \). Note that memoryless strategies can be encoded as finite-memory strategies, and that finite-memory strategies are a special case of arbitrary strategies \(\sigma_i : St^* \rightarrow Ac_i \). Whilst we will work with finite-memory and memoryless strategies, we will use arbitrary strategies by default, unless otherwise stated.

Mean-payoff games. A mean-payoff game, \(G \), is given by a tuple, \(G = (M, (w_i)_{i \in Ag}) \), where \(M \) is a concurrent game structure and for each agent \(i \in Ag \), \(w_i : St \rightarrow \mathbb{Z} \) is a weight function [11, 41, 45]. In a mean-payoff game, a run of states, \(\pi = s^0 s^1 \cdots \) induces an infinite sequence of weights for each player, \(w_i(s^0) w_i(s^1) \cdots \) (we denote this sequence by \(w_i(\pi) \)). Under a given run, \(\pi \), a player’s payoff is given by \(mp_i(\pi) \), where for \(\beta \in \mathbb{Z}^+ \), we have \(mp_i(\beta) = \lim_{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \beta \). For notational convenience, we will write \(pay_i(\sigma) \) for \(mp_i(\pi(\sigma)) \). We can then define a preference relation over runs for each player as follows: \(\pi \succeq \pi’ \) if and only if \(pay_i(\pi) \geq \pi’ \). We also write \(\pi \succ \pi’ \) if \(\pi \succeq \pi’ \) and \(\pi’ \nsucceq \pi \).

Solution concepts. We consider solution concepts in the non-cooperative and cooperative game theory literatures. On one hand, a strategy profile \(\sigma \) is said to be a Nash equilibrium [33, 34] if for all players \(i \) and strategies \(\sigma_i^* \), we have \(\pi \succeq (\sigma_{-i}, \sigma_i^*) \). Informatively, a Nash equilibrium is a strategy profile from which no player has any incentive to unilaterally deviate. On the other hand, we also consider the core [20], a fundamental solution concept that arises from cooperative game theory [15]. While Nash equilibria are profiles that are resistant to unilateral deviations, the core consists of profiles that are resistant to those deviations by coalitions of agents, where every member of the coalition is better off, regardless of what the rest of the agents do. Formally, we say that a strategy profile, \(\sigma \), is in the core if for all coalitions \(C \subseteq Ag \) and strategy vectors \(\sigma_i^* \), there is then some complementary strategy vector \(\sigma_i^* \), such that \(\sigma \succeq (\sigma_i^*, \sigma_{-i}^* \) for some \(i \in C \). Given a game \(G \), let \(NE(G) \) denote the set of Nash equilibrium strategy profiles of \(G \), and let \(CORE(G) \) denote the set of strategy profiles in the core of \(G \).

It is worth noting that if a strategy profile is not a Nash equilibrium, then at least one player can deviate and be better off, under the assumption that the remainder of the players do not change their actions. However, if a strategy profile is not in the core, then some coalition can deviate and become better off, regardless of what
the other players do. Thus, the core should not be confused with the solution concept of strong Nash equilibrium, which is a strategy profile which is stable under multilateral deviations, assuming the remainder of the players ‘stay put’ [4, 5]. We do not consider strong Nash equilibria in this work, but simply mention them to further highlight the different game-theoretic nature of the core.

\omega-regular specifications. In [6], Boolean combinations of atoms of the form Inf(F) are used to describe acceptance conditions of arbitrary \omega-automata. We use this approach to specify system properties for our games. Formally, the language of \omega-regular specifications, \alpha, is defined by the following grammar:

\[\alpha := \text{Inf}(F) \mid \neg \alpha \mid \alpha \land \alpha, \]

where \(F \) ranges over subsets of \(St \). For notational convenience, we write Fin(F) as shorthand for \(\neg \text{Inf}(F) \). Inf(\emptyset) for Inf(St \setminus F) and we define disjunction, \(\lor \), implication \(\rightarrow \) and bi-implication \(\leftrightarrow \) in the usual way. The size of a specification is simply the sum of the sizes of the sets within its atoms. We now talk about what it means for a run to model a specification. Let \(\pi \) be a run, \(F \) be a subset of \(St \) and \(\alpha, \beta \) be arbitrary \omega-regular specifications. Then,

- \(\pi \models \text{Inf}(F) \), if \(\pi(\pi) \cap F \neq \emptyset \);
- \(\pi \models \neg \alpha \), if it is not the case that \(\pi \models \varphi \);
- \(\pi \models \alpha \land \beta \), if \(\pi \models \alpha \) and \(\pi \models \beta \).

Note that we use Inf in two different, but interrelated senses. First, we use it as an operator over runs, as in Inf(\pi), to denote the set of states visited infinitely often in a run \(\pi \), but we also use it as an operator over sets, as in Inf(F), as an atom in the specifications just defined. The semantics of the latter are defined in terms of the former. We will use these interchangeably: usage will be clear from the context. Using this notation, we can readily define conventional \omega-regular winning conditions, as in following table:

<table>
<thead>
<tr>
<th>Type</th>
<th>Associated Sets</th>
<th>\omega-regular specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Büchi</td>
<td>(F \subseteq St)</td>
<td>Inf(\emptyset)</td>
</tr>
<tr>
<td>Gen. Büchi</td>
<td>((F_k){k \in K} \subseteq 2^{St} \land \bigwedge{k \in K} \text{Inf}(F_k))</td>
<td></td>
</tr>
<tr>
<td>Rabin</td>
<td>((L_i, U_i){i \in I} \subseteq 2^{St} \times 2^{St} \land \bigvee{i \in I} \text{Fin}(L_i) \land \text{Inf}(U_i))</td>
<td></td>
</tr>
<tr>
<td>Streett</td>
<td>((L_i, U_i){i \in J} \subseteq 2^{St} \times 2^{St} \land \bigvee{j \in J} \text{Fin}(L_j) \lor \text{Inf}(U_j))</td>
<td></td>
</tr>
<tr>
<td>Muller</td>
<td>((F_k){k \in K} \subseteq 2^{St} \land \bigwedge{k \in K} \text{Inf}(F_k) \land \text{Fin}(F_k))</td>
<td></td>
</tr>
</tbody>
</table>

With this defined, we can talk about specifications in the context of games. Let \(\tilde{\sigma} \) be some strategy profile. Then, \(\tilde{\sigma} \) induces some run, \(\rho(\tilde{\sigma}) \), and that \omega-regular specifications are defined on runs, we can talk about strategies modelling specifications. But we are not interested in whether arbitrary runs model a given specification – it is more natural in the context of multi-player games to ask whether the runs induced by some or all of the equilibria of a game model a specification, both in the non-cooperative and in the cooperative contexts, in particular using solution concepts such as Nash equilibrium and the core, respectively.

Example 2.1. To illustrate the concepts we have laid out so far, we give an example. Suppose we have four delivery robots in a warehouse (given by the coloured triangles in Figure 1), who want to pick up parcels at the pickup points (labelled by the bold Ps) and drop them off at the delivery points (labelled by the bold Ds). If a robot is not holding a parcel, and goes to a pickup point, it automatically gets given one. If it has a parcel, and goes to the delivery point, then it loses the parcel, and gains a payoff of 1. And, if two robots collide, by entering the same node at the same time, then they crash, and get a payoff of −999 at every future timestep.

![Figure 1: Robots manoeuvering in a warehouse.](image)

Now, there are a number of Nash equilibria here (infinitely many, in fact). But it is easy to see that many of them exhibit undesirable properties. For instance, consider the strategy profile where red and pink go back and forth between the pickup and delivery points, and threaten to crash into, or deadlock, blue and yellow if they move from their starting positions. This is a Nash equilibrium, but is clearly not Pareto optimal – computationally, it is not fair.

It is easy to identify the most socially desirable outcome - all four robots visiting the pickup and delivery points infinitely often, waiting for the others to pass when they reach bottleneck points. If we call the set containing the two states where robots \(i \) visits a pickup point \(P_i \) and similarly label the set of delivery points \(D_i \), we can express this condition concisely with an \omega-regular specification:

\[\bigcap_{i \in [4]} \text{Inf}(P_i) \land \text{Inf}(D_i). \]

Thus, we can conclude that there exists some Nash equilibrium which models the above (generalised Büchi) specification. However, we just did this by inspection. In practice, we would like to ask this question in a more principled way. As such, we will spend the rest of this paper exploring the natural decision problems associated with mean-payoff games with \omega-regular specifications.

Before proceeding, we note that given a fixed concurrent game structure, not all \omega-regular behaviours that the game can exhibit can be described with our formalism (for instance, consider the LTL formula \(G \phi \), where \(\phi \) is some propositional formula). However, one can circumvent this restriction by taking the \omega-regular automata of the property of interest and performing a product construction with the underlying concurrent game structure.

Mean-payoff games with \omega-regular specifications. Given that we have proposed \omega-regular specifications as an alternative to LTL [36] specifications, it is natural to ask how they compare. The connection between them is given by the following statement:

Proposition 2.2. Let \(G \) be a game and let \(\alpha \) be some \omega-regular specification. Then there exists a set of atomic propositions, \(\Phi \), a labelling function \(\lambda : St \rightarrow \mathcal{P}(\Phi) \), and an LTL formula \(\varphi \) such that, for all runs \(\pi \), we have \(\pi \models \alpha \) if and only if \(\lambda(\pi) \models \varphi \).

Thus, on a fixed concurrent game structure, \omega-regular specifications can be seen as being ‘isomorphic’ to a strict subset of LTL.
such, we hope the restriction of the setting may yield some lower complexities when considering the analogous decision problems. That is, we will study a number of decision problems within the rational verification framework [20, 44], where ω-regular specifications replace LTL specifications in a very natural way.

Firstly, given a game, a strategy profile, and an ω-regular specification, we can ask if the strategy profile is an equilibrium whose induced run models the specification. Secondly, given a game and an ω-regular specification, we can ask if the specification is modelled by the run/runs induced by some/every strategy profile in the set of equilibria of the game. If each of these problems can be phrased in the context of a non-cooperative game or a cooperative game, depending on whether we let the set of equilibria be, respectively, the Nash equilibria or the core of the game. Formally, in the non-cooperative case, we have the following decision problems:

MEMBERSHIP:
- **Given**: Game G, strategy profile $\bar{\sigma}$, and specification α.
- **Question**: Is it the case that $\bar{\sigma} \in \text{NE}(G)$ and $\rho(\bar{\sigma}) \models \alpha$?

E-NASH:
- **Given**: Game G and specification α.
- **Question**: Does there exist a $\bar{\sigma} \in \text{NE}(G)$ such that $\rho(\bar{\sigma}) \models \alpha$?

A natural dual to E-NASH is the A-NASH problem, which instead of asking if the specification holds in the run induced by some Nash equilibrium, asks if the specification holds in all equilibria. Formally, this decision problem is stated as follows:

A-NASH:
- **Given**: Game G and specification α.
- **Question**: Is it the case that $\rho(\bar{\sigma}) \models \alpha$, for all $\bar{\sigma} \in \text{NE}(G)$?

In the cooperative setting, the analogous problems are defined simply by changing $\text{NE}(G)$ for $\text{CORE}(G)$. They are called MEMBERSHIP, E-CORE, and A-CORE, respectively – as can be seen, with a small abuse of notation for the first decision problem.

It is worth noting here one technical detail about representations. In the E-NASH problem, the quantifier asks if there exists a Nash equilibrium which models the specification. This quantification ranges over all possible Nash equilibria and the strategies may be arbitrary strategies. However, in the MEMBERSHIP problem, the strategy $\bar{\sigma}$ is part of the input, and thus, needs to be finitely representable. Therefore, when considering E-NASH (or A-NASH, or the corresponding problems for the core), we place no restrictions on the strategies, but when reasoning about MEMBERSHIP, we work exclusively with memoryless or finite-memory strategies.

3 Non-Cooperative Games

In the non-cooperative setting, MEMBERSHIP, E-NASH, and A-NASH are the relevant decision problems. In this section, we will show that MEMBERSHIP lies in \mathbb{P} for memoryless strategies, while E-NASH is NP-complete for memoryless, finite-memory strategies, as well as arbitrary strategies – thus, no worse than solving a multi-player mean-payoff game [41]. Because A-NASH is the dual problem of E-NASH, it also follows that A-NASH is co-NP-complete. In order to obtain some of these results, we also provide a semantic characterisation of the runs associated with strategy profiles in the set of Nash equilibria that satisfy a given ω-regular specification. We will first study the MEMBERSHIP problem, and then investigate E-NASH, providing an upper bound for arbitrary strategies and a lower bound for memoryless strategies.

Proposition 3.1. For memoryless strategies, MEMBERSHIP is in \mathbb{P}.

Proof Sketch. To demonstrate it is a Nash equilibrium, we ‘run’ the strategy profile to calculate each player’s payoff and in the process, we can verify it models the specification. Then for each player, we fix the strategy vector of the other players, and then use Karp’s algorithm [31] to verify that the given player has no other memoryless strategy under which they are better off. □

Given the simplicity of the above algorithm, there is some hope that it might extend to finite-memory strategies. However, in this case, the entire configuration of the game is not just given by the current state – it is given by the current state, as well as the state that each of the player’s strategies are in. Thus, we might have to visit at least $|\mathcal{S}| \cdot |Q|^{|\mathcal{A}_g|} + 1$ (where Q is the smallest set of strategy states over the set of players) configurations until we discover a loop. This quantity is not polynomial in the size of the input, and so we cannot use the above algorithm in the case of finite memory strategies to get a polynomial time upper bound.

We now consider E-NASH. Instead of providing the full NP-completeness result here, we start by showing that the problem is NP-hard, even for memoryless strategies, and delay the proof of the upper bound until we develop a useful characterisation of Nash equilibrium in the context of ω-regular specifications. For now, we have the following hard result, obtained using a reduction from the Hamiltonian cycle problem [14, 30] – a similar, but simpler, reasoning technique can be found in [41].

Proposition 3.2. E-NASH is NP-hard, even for games with one player, constant weights, and memoryless strategies.

Propositions 3.1 and 3.2 together give an NP-completeness result for multi-player mean-payoff games with ω-regular specifications and memoryless strategies: one can non-deterministically guess a memoryless strategy for each player (which is simply a list of actions for each player, one for each state), and use MEMBERSHIP to verify that it is indeed a Nash equilibrium that models the specification. However, as shown later, the problem is NP-complete in the general case, which we show using the characterisation below.

To characterise the Nash equilibria of these games we need to introduce the notion of the punishment value in a multi-player mean-payoff game [21, 22]. The punishment value, $\text{pun}_i(s)$, of a player i in a given state s can be thought of as the worst value the other players can impose on a player at a given state. Concretely, if we regard the game G as a two player, zero-sum game, where player i plays against the coalition $\mathcal{A}_g \setminus \{i\}$, then the punishment value for player i is the smallest mean-payoff value that the rest of players in \mathcal{A}_g can inflict on i from a given state. Formally, given a player i and a state $s \in \mathcal{S}$, we define the punishment value, $\text{pun}_i(s)$ against player i at state s, as follows:

$$\text{pun}_i(s) = \min_{\bar{\sigma}_i \in \Sigma_i} \max_{\tau_i \in \Sigma_i} \rho((\bar{\sigma}_{-i}, \tau_i), s)$$

How efficiently can we calculate this value? As established in [41], we proceed in the following way: in a two player, turn-based,
zero-sum, mean-payoff game, positional strategies suffice to achieve
the punishment value [11]. Thus, we can non-deterministically
guess a pair of positional strategies for each player (one for the
coalition punishing the player, and one for the player themselves),
use Karp’s algorithm [31] to find the maximum payoff for both
the player and the coalition against their respective punishing
strategies, and then verify that the two values coincide. With
this established, we have the following lemma, which can be proved
using techniques for mean-payoff games adapted from [25, 41].

Lemma 3.3. Let \(\pi \) be a run in \(G \) and let \(\{ a[k]\}_{k \in \mathbb{N}} \) be the run
of associated action profiles. Then there is a Nash equilibrium, \(\sigma \in
\text{NE}(G) \), such that \(\pi = \rho(\sigma) \) if and only if there exists some \(z \in \mathbb{Z}^{\mathbb{N}} \),
with \(z_i \in \{ \text{pun}_i(s) \mid s \in S \} \), such that:

- for each \(k \), we have \(\text{pun}_i(m(\pi[k], (\tilde{a}[k]_{-i}, ac_i))) \leq z_i \) for all
 \(i \in Ag \) and \(ac_i \in Ac_i \), and;
- for all players \(i \in Ag \), we have \(z_i \leq \text{pay}_i(\pi) \).

With this lemma in mind, we define a graph, \(G[\mathbb{Z}, F] = (V, E) \) as follows. We set \(V = S \) and include \(e = (u, v) \in E \) if there exists some action profile \(\tilde{a} \) such that \(v = \text{tr}(u, \tilde{a}) \) with \(\text{pun}_i(\text{tr}(u, (\tilde{a}_{-i}, ac_i))) \leq z_i \) for all \(i \in Ag \) and \(ac_i \in Ac_i \). Having done this, we then prune
any components which cannot be reached from the start state and
then remove all states and edges not contained in \(F \), before reintro-
ducing any states in \(F \) that may have been removed. Thus,
given this definition and the preceding lemma, to determine if there exists
a Nash equilibrium which satisfies an \(\omega \)-regular specification, \(\alpha \),
we calculate the punishment values, and guess a vector \(\tilde{a} \in S^{\mathbb{N}} \),
as well as a set of states, \(F \), which satisfy the specification. Letting
\(z_i = \text{pun}_i(z_s) \), we form the graph \(G[\mathbb{Z}, F] \) and then check if there is some run \(\pi \) in \(G[\mathbb{Z}, F] \) with \(z_i \leq \text{pay}_i(\pi) \) for each player \(i \) which visits
every state infinitely often. Trivially, if this graph is not strongly
connected, then no run can visit every state infinitely often. Thus,
to determine if the above condition holds, we need one more piece of
technical machinery, in the form of the following proposition:

Proposition 3.4. Let \(G = (V, E) \) be a strongly connected graph,
and \(\{ w_i \}_{i \in Ag} \) be a set of weight functions, let \(\mathbb{Z} \in \mathbb{Q}^{\mathbb{N}} \). Then, we can
determine if there is some run \(\pi \) such that \(i \) exists \(z_i \leq \text{pay}_i(\pi) \) for each
\(i \in Ag \) and visits every state infinitely often, in polynomial time.

Conceptually, Proposition 3.4 is similar to Theorem 18 of [41],
but with two keys differences - firstly, we need to do additional work
to determine if there is a path that visits every state infinitely often.
Moreover, the argument of [41] is adapted so we have the corollary
that if there is a Nash equilibrium that models the specification,
then there is some finite state Nash equilibrium that also models
the specification. This means that the construction in our proof can
not only be used for verification, but also for synthesis.

With the above series of propositions in place, we are now ready
to establish the complexity of the \textsc{E-Nash} problem.

Proposition 3.5. \textsc{E-Nash} is \textsc{NP}-complete.

Proof. For \textsc{NP}-hardness we have Proposition 3.2. For the upper
bound, suppose we have an instance, \((G, \alpha)\), of the problem. Then
we proceed as follows. We non-deterministically guess pairs of
punishing strategy profiles, \((\tilde{a}_i, \tilde{z}_s)\) for each player \(i \in Ag \), a state
\(z_s \) for each player, and a set of states \(F \). From these, we can easily
check that the valuation induced by \(F \) satisfies the specification
and we can also use Karp’s algorithm to compute the punishment
values, \(\text{pun}_i(s) \), for each state \(s \in S \) and for each player \(i \in Ag \).
Setting \(z_i = \text{pun}_i(z_s) \), we invoke Lemma 3.3 and form the graph
\(G[\mathbb{Z}, F] \). If it is not strongly connected, then we reject. Otherwise,
we use Proposition 3.4 to determine if the associated linear program
has a solution. If it does, then we accept, otherwise we reject. \(\square \)

Corollary 3.6. Let \(G \) be a game and \(\alpha \) an \(\omega \)-regular specification.
Suppose that \(G \) has some Nash equilibrium \(\tilde{\sigma} \) such that \(\tilde{\sigma} \models \alpha \). Then,
\(G \) also has some finite-memory Nash equilibrium \(\tilde{\sigma}' \) such that \(\tilde{\sigma}' \models \alpha \).

4 COOPERATIVE GAMES

We begin by asking whether games always have a non-empty core, a
property that holds for games with LTL goals and specifications [20].
We find that this does not hold in general for mean-payoff games.

Proposition 4.1. In mean-payoff games, if \(|Ag| \leq 2 \), then
the core is non-empty. For \(|Ag| > 2 \), there exist games with an empty core.

The proof of the above for the two-player case is routine manipu-
lation. The counterexample for when \(|Ag| > 2 \) is omitted due to
space, but consists of a start state leading to three sink states, with
three players. The game is such that there are always two players
who can beneficially deviate from any given state.

Before proceeding, it is worth reflecting on the definition of
the core. We can redefine this solution concept in the language
of ‘beneficial deviations’. That is, we say that a given game \(G \), a
strategy profile \(\tilde{\sigma} \), a beneficial deviation by a coalition \(C \), is a strategy
vector \(\tilde{\sigma}' \) such that for all complementary strategy profiles \(\tilde{\sigma}'_C \in C \),
we have \(\rho(\tilde{\sigma}'_C, \tilde{\sigma}'_C) > 1 \) for all \(i \in C \). We can then say that
the \(i \) is a member of the core, if there exists no coalition \(C \) which
has a beneficial deviation from \(\tilde{\sigma} \). Note this formulation is entirely
equivalent to our earlier definition of the core.

From a computational perspective, there is an immediate concern here -
given a potential beneficial deviation, how can we verify that it is preferable
to the status quo under all possible counter-
responses? Given that strategies can be arbitrary mathematical
functions, how can we reason about that universal quantification
effectively? Fortunately, as we show in the following lemma, we
can restrict our attention to memoryless strategies when thinking
about potential counter-responses to players’ deviations:

Lemma 4.2. Let \(G \) be a game, \(C \subseteq Ag \) be a coalition and \(\tilde{\sigma} \) be
a strategy profile. Further suppose that \(\tilde{\sigma}'_C \) is a strategy vector such that
for all memoryless strategy vectors \(\tilde{\sigma}'_C \in C \), we have:
\[\rho(\tilde{\sigma}'_C, \tilde{\sigma}'_C) > 1 \rho(\tilde{\sigma}). \]
Then, for all strategy vectors, \(\tilde{\sigma}'_C \notin C \), not necessarily memoryless, we have:
\[\rho(\tilde{\sigma}'_C, \tilde{\sigma}'_C) > 1 \rho(\tilde{\sigma}). \]

Before we prove this, we need to introduce an auxiliary concept
of two-player, turn-based, zero-sum, multi-mean-payoff games [43]
(we will just call these multi-mean-payoff games moving forward).
Informally, these are similar to two-player, turn-based, zero-sum
mean-payoff games, except player 1 has \(k \) weight functions asso-
ciated with the edges, and they are trying to ensure the resulting

1276
for every \(j \in C \) – this can be done in polynomial time simply by ‘running’ the strategy profile \(\vec{\sigma} \). Then compute the graph \(G[\vec{\sigma}^*_C] \), which contains all possible behaviours (i.e., strategy profiles) for \(Ag \setminus C \) with respect to \(\vec{\sigma} \) – this construction is similar to the one used in the proof of Proposition 3.1, that is, the game when we fix \(\vec{\sigma}^*_C \), and can be done in polynomial time. Finally, we ask whether every path \(\pi \) in \(G[\vec{\sigma}^*_C] \) satisfies \(\text{pay}_j(\pi) > z_j^* \), for every \(j \in C \) – for this step, we can use Karp’s algorithm to answer the question in polynomial time for every \(j \in C \). If every path in \(G[\vec{\sigma}^*_C] \) has this property, then we accept; otherwise, we reject. For hardness, we reduce from 3SAT, using a variation of the construction in [38]. □

From Proposition 4.4 follows that checking if no coalition of players has a beneficial deviation with respect to a given strategy profile is a co-NP problem. More importantly, it also follows that MEMBERSHIP is a co-NP-complete problem too.

Proposition 4.5. For memoryless strategies, MEMBERSHIP is co-NP-complete.

Proof. Recall that given a game \(G \), a strategy profile \(\vec{\sigma} \), and an \(\omega \)-regular specification \(\alpha \), we have \((G, \vec{\sigma}, \alpha) \in \text{MEMBERSHIP} \) if and only if \((G, \vec{\sigma}) \notin \text{BEN-DEV} \) and \(\rho(\vec{\sigma}) \models \alpha \). Thus, we can solve MEMBERSHIP simply by first checking \(\rho(\vec{\sigma}) \models \alpha \), which can be done in polynomial time and we reject if that check fails. If \(\rho(\vec{\sigma}) \models \alpha \), then we ask \((G, \vec{\sigma}) \in \text{BEN-DEV} \) and accept if that check fails, and reject otherwise. Finally, since BEN-DEV is NP-hard, it follows from the above procedure that MEMBERSHIP is co-NP-hard, which concludes the proof of the statement. □

BEN-DEV can also be used to solve \text{E-CORE} in this case.

Proposition 4.6. For memoryless strategies, \text{E-CORE} is in \(\Sigma^P_2 \).

Proof. Given any instance \((G, \alpha) \), we guess a strategy profile \(\vec{\sigma} \) and check that \(\rho(\vec{\sigma}) \models \alpha \) and that \((G, \vec{\sigma}, \alpha) \) is not an instance of BEN-DEV. While the former can be done in polynomial time, the latter can be solved in co-NP using an oracle for BEN-DEV. Thus, we have a procedure that runs in \(\text{NP}^{\text{co-NP}} = \text{NP}^{\Sigma^P_2} \). □

Proposition 4.6 sharply contrasts with that for Nash equilibrium, where the same problem lies in NP. Moreover, the result also shows that the (complexity) dependence on the type of coalitional deviation is only weak, in the sense that different types of beneficial deviations may be considered within the same complexity class, as long as such deviations can be checked with an NP or co-NP oracle. For instance, in [20] other types of cooperative solution concepts are defined, which differ from the one in this paper (known in the cooperative game theory literature as \(\alpha \)-core [35]) simply in the type of beneficial deviation under consideration. Another concept introduced in [20] is that of ‘fulfilled coalition’, which informally characterises coalitions that have the strategic power (a joint strategy) to ensure a minimum given payoff no matter what the other players in the game do. Generalising to our setting, from qualitative to quantitative payoffs, we introduce the notion of a lower bound, which we will use to reason about cooperative games.

Definition 4.7. Let \(C \subseteq Ag \) be a coalition in a game \(G \) and let \(\vec{z}_C \in Q^C \). We say that \(\vec{z}_C = (z_1, \ldots, z_i, \ldots, z_C) \) is a lower bound for \(C \) if there is a joint strategy \(\vec{\sigma}_C \) for \(C \) such that for all strategies \(\vec{\sigma}_{-C} \) for \(Ag \setminus C \), we have \(\text{pay}_j(\vec{\sigma}_{-C}) \geq z_i \), for every \(i \in C \).
Based on the definition above, we can prove the following lemma, which characterises the core in terms of runs where mean-payoffs can be ensured collectively, no matter any adversarial behaviour.

Lemma 4.8. Let \(\pi \) be a run in \(G \). There is \(\sigma \in \text{CORE}(G) \) such that \(\pi = \rho(\sigma) \) if and only if for every coalition \(C \subseteq A_g \) and lower bound \(\tau_C \in Q_C^G \) for \(C \), there is some \(i \in C \) such that \(z_i \leq \text{pay}_j(\pi) \).

With this lemma in mind, we want to determine if a given vector, \(\tau_C \), is in fact a lower bound and importantly, how efficiently we can do this. That is, to understand the following decision problem:

LOWER-BOUND:

Given: Game \(G \), coalition \(C \subseteq A_g \), and vector \(\tau_C \in Q_C^G \).

Question: Is \(\tau_C \) is a lower bound for \(C \) in \(G \)?

Proposition 4.9. **LOWER-BOUND** is co-NP-complete.

Whilst the results thus far give us key insights into the nature of the core, a general upper bound for E-CORE remains elusive.

5 WEIGHTED REACTIVE MODULE GAMES

One problem with concurrent game structures as we have worked with them so far is that they are extremely verbose. The transition function, \(\text{tr} : \text{St} \times A_C \times \cdots \times A_{|A_g|} \rightarrow \text{St} \) is a total function, so it has size \(|A_C|^{|A_g|} \). Thus, the size of the game scales exponentially with the number of the agents. In example 2.1, the underlying concurrent game structure has a size of 429,981,696. Obviously, such a simple example can (and should) be specified in a much more concise way.

One natural framework we can use to induce succinctness is that of Reactive Modules [2]. Specifically, we modify the Reactive Module Games of [18] with weights on the guarded commands. We begin by walking through some preliminaries.

Reactive Module Games do not use the full power of reactive modules, but instead use a subset of the reactive modules syntax, namely the simple reactive modules language (SRML) [42]. In SRML terms, agents are described by modules, which in turn consist of a set of variables controlled by the module, along with a set of guarded commands. Formally, given a set of propositional variables \(\Phi \), a guarded command \(g \) is an expression of the form

\[\varphi \leadsto x_1^\iota : = \psi_1; \ldots; x_k^\iota : = \psi_k, \]

where \(\varphi \) and each \(\psi_j \) are propositional formulae over \(\Phi \) and each \(x_j^\iota \) also lies in \(\Phi \). We call \(\varphi \) the guard of \(g \) and denote it by \(\text{guard}(g) \), and we call the variables (the \(x_j^\iota \)) on the right-hand-side of \(g \) the controlled variables of \(g \), denoted by \(\text{ctr}(g) \). The idea is that under a given valuation of a set of variables, \(v \subseteq \Phi \), each module has a set of commands for which \(\text{guard}(g) \) is true (we say that they are enabled for execution). Each module can then choose one enabled command, \(g \), and reassign the variables in \(\text{ctr}(g) \) according to the assignments given on the right hand side of \(g \). For instance, if \(\varphi \) were true, then the above guarded command could be executed, setting each \(x_j^\iota \) to the truth value of \(\psi_j \) under \(v \). Only if no \(g \) is enabled, a special guarded command \(g_{\text{skip}} \) – which does not change the value of any controlled variable – is enabled for execution so that modules always have an action they can take.

Given a set of propositional variables, \(\Phi \), a simple reactive module, \(m \), is a tuple \((\Psi, I, U) \), where,

- \(I \) is a set of initialisation guarded commands, where for all \(g \in I \), we have \(\text{guard}(g) = \top \) and \(\text{ctr}(g) \subseteq \Psi \),
- \(U \) is a set of update guarded commands, where for all \(g \in U \), \(\text{guard}(g) \) is a propositional formula over \(\Phi \) and \(\text{ctr}(g) \subseteq \Psi \).

An SRML arena, \(A \), is a tuple \((A_g, \Phi, \{m_i\}_{i \in A_g}) \), where \(A_g \) is a finite, non-empty set of agents, \(\Phi \) is a set of propositional variables and each \(m_i \) is a simple reactive module \(m_i = (\Psi_i, I_i, U_i) \) such that \(\{\Psi_i\}_{i \in A_g} \) is a partition for \(\Phi \). With this syntactic machinery in place, we are finally ready to describe the semantics of SRML arenas. In the interest of conciseness, we give a brief, high-level description here – for full mathematical details, please refer to [18, 42].

Given a valuation \(v \subseteq \Phi \) at a point in time, each agent \(i \) has a set of commands they can use, denoted \(\text{enabled}(i, v) \). We then denote the set of possible vectors of guarded commands across all players under a given valuation by \(\text{enabled}(v) \). Given a valuation \(v \) and a joint guarded command \(j \in \text{enabled}(v) \), the new valuation induced by executing this command is denoted \(\text{exec}(j, v) \).

The game starts by each agent choosing an initialisation command, which induces a first valuation \(v^0 \). Each player then picks a guarded command in \(\text{enabled}(v^0) \), forming a joint guarded command, \(j^1 \), and the game moves to the valuation \(v^1 = \text{exec}(j^1, v^0) \). This process repeats ad infinitum, producing a run of the game as before. However, unlike in the previous setting, where we defined runs over states of the game, here, we define runs over joint guarded commands, \(\rho : N \rightarrow (I_1 \cup U_1) \times \cdots \times (I_{|A_g|} \cup U_{|A_g|}) \). While, superficially, this may look like a departure from our previous convention, it is not. Given that these games are entirely deterministic, if we know the sequence of joint guarded commands that have been taken, we can infer the sequence of states. Additionally, knowing the sequence of joint guarded commands provides us with more information that knowing the sequence of states - a state may have multiple joint guarded commands that lead to it. All of the techniques we developed before transfer readily to this new setting, so take it for granted that there is a straightforward link between the two approaches and will not comment on it further.

We can now define weighted reactive module games. A weighted reactive module game (WRMG), \(G = (A_g, \{w_i\}_{i \in A_g}) \), is an SRML arena, \(A = (A_g, \Phi, \{m_i\}_{i \in A_g}) \), along with a set of weight functions, with \(w_i : I_i \cup U_i \rightarrow Z \). That is, each module has an assigned weight function that maps commands to integers. As before, a player’s payoff is given by the mean-payoff of the weights attached to a run.

Finally, we need to define \(\omega \)-regular specifications in the context of WRMGs. Sets of states are already conveniently parameterised by the propositional variables of \(\Phi \), so we introduce specifications which are Boolean combinations of atoms of the form \(\text{Inf}(p) \) with \(p \in \Phi \). The semantics of these specifications are defined in a nearly identical way to before. Let us now walk through an example to demonstrate their conciseness and utility of WRMGs.

Example 5.1. In the robot example from before (Example 2.1), the state of the game is entirely described by the position of each of the four robots, whether they are holding a parcel or not, and whether they have crashed. Thus, we define four reactive modules \(m_1, \ldots, m_4 \) with \(m_i = (\Phi_i, I_i, U_i) \) as follows - we set \(\Phi_i = \{x_i, 1, \ldots, x_i, 12, p_i, c_i\} \), where the \(x_i \) model which node the robot is in, numbered top-to-bottom, left-to-right with respect to the diagram, \(p_i \) denotes if the robot is carrying a parcel or not, and \(c_i \)
We also model picking up and delivering a parcel, as well as crashing weight rewarded for performing that command. Then for each agent where the focus is on the computation of winning strategies for

\[i \]

 comparatively

\[n \]

 is appropriately set, given the starting position of the robot. Additionally, the [0] at the end of the guarded command denotes the weight rewarded for performing that command. Then for each agent \(i \) and edge \((x_n, x_m) \) of the graph, we define a guarded command,

\[\neg x_i \land x_{i,n} \Rightarrow x_{i,n} \land x_{i,m} := \top \ [0] \]

We also model picking up and delivering a parcel, as well as crashing into another robot. We do this with the following commands:

\[\neg x_i \land \neg p_i \land \neg x_{i,1} \land \neg x_{i,2} \Rightarrow p_{i'} := \top \ [0] \]

\[\neg x_i \land \neg x_{i,1} \land \neg x_{i,2} \Rightarrow p_{i'} := \bot \ [1] \]

\[\neg x_i \land x_{i,n} \land (x_{j,n} \lor x_{k,n} \lor x_{l,n}) \Rightarrow c_i := \top \ [\sim -999] \]

\[c_i \Rightarrow c_i' := \top \ [\sim -999] \]

where \(i \) ranges over players; \(j, k \) and \(l \) range over the other players; and \(j \) ranges from 1 to 12. We also have the \(g_{\text{skip}} \) command from before, so the robot can stay still on a node for a time step.

It is easy to see that this setup models the example from before, is exponentially more concise, requiring 52 guarded commands in total, and is natural to work with. Note that we could save even more space by encoding the robots positions in binary, at the expense of making our guarded commands slightly more complicated. Whilst this technique may be useful for larger systems, we give a unary encoding here for clarity.

With WRMGs now adequately motivated, the main decision problem to consider then is the following:

\[\text{WRMG-E-NASH:} \]

\[\text{Given: WRMG } G, \text{ and } \omega\text{-regular specification } \alpha. \]

\[\text{Question: Does there exist a } \sigma \in \text{NE}(G) \text{ such that } p(\sigma) \models \alpha? \]

This problem seems to be harder than answering the same question for games with an explicit representation, e.g., using concurrent games structures. In fact, we have the following result.

Proposition 5.2. The WRMG-E-NASH problem lies in NEXP-TIME and is EXPTIME-hard.

Proof Sketch. For the upper bound, the idea is to ’blow up’ the simple reactive module arena into a concurrent game structure, then apply the same techniques as in Section 3. For the lower bound, we reduce from PEEK-G4, known to be EXPTIME-hard [39].

6 RELATED WORK

Mean-payoff games. Mean-payoff games are a useful verification tool in the analysis of quantitative aspects of computer systems. Most work has been devoted to the study of two-player zero-sum games, which can be solved in NP/co-NP [45]. Beyond such games, two kinds of mean-payoff games have been studied: multi-player mean-payoff games, whose solution was studied with respect to Nash equilibria [41], and two-player multi-mean-payoff games [43], where the focus is on the computation of winning strategies for either player, a problem that can be solved in NP for memoryless strategies and in co-NP for arbitrary strategies, although in such a case optimal strategies may require infinite memory [45].

Combined qualitative and quantitative reasoning. Combining qualitative and quantitative reasoning has mainly been done by modifying players’ mean-payoff with some qualitative measure. In [10], the authors consider two-player, zero-sum games, where on each run of the game, every player is assigned a two-size tuple (parity goal, mean-payoff), where each player’s payoff is \(-\infty \) if the parity goal is not met, and the mean-payoff otherwise. In a similar setting, [21, 22] look at multi-player concurrent games with lexicographic preferences over (parity/LTL goal, mean-payoff) tuples and look at the decision problem of determining if there exists some finite state strict ε Nash equilibrium. Additionally, [25] considered multi-player concurrent games where the players have mean-payoff goals, and the question is whether there is some Nash equilibrium which models some temporal specification.

On ω-regular specifications. Games with ω-regular objectives have been studied mostly in the context of two-player games [9], where the goal of one of the players is to show that the ω-regular objective holds in the system, while the goal of the other player is to show otherwise. Such games are usually used in the context of synthesis and model-checking of temporal logic specifications. These two-player zero-sum games are rather different from ours since in our games, the ω-regular specification is not part of the goal of the players, but rather a property that an external system designer wishes to see satisfied. This changes completely the overall problem setup and explains why the drastic differences in complexity between traditional games with ω-regular objectives – whose complexity can range from P (for instance, for Büchi games) to PSPACE (for instance, for Muller games) – and multi-player mean-payoff games with ω-regular specifications, even for two-player zero-sum instances with constant weights.

On Rational verification. The problem we have studied in this paper is called Rational Verification, which has been studied for different types of arena games [8, 17, 18, 23], strategies [16], and specification languages, including LTL [17, 18, 23], CTL [19], and LDL [28]. While rational verification is 2EXPTIME-complete with LTL goals, and even undecidable for games with imperfect information [27], the problem can be shown to be considerably easier when considering simpler specification languages [25]. However, in the context of multi-player mean-payoff games, only a solution for generalised Büchi goals was known, using an encoding via GR(1) specifications, and only for Nash equilibrium. In this paper, we have extended such results to account for all ω-regular specifications, and have provided results for cooperative games and succinct representations. With respect to the former, the only relevant related work is [20], where the core for concurrent game structures was introduced. And, regarding the latter, a comprehensive study using reactive modules games can be found in [18] – work that has been extended, and parts of it implemented, in various ways [24, 40].

ACKNOWLEDGMENTS

T. Steeple gratefully acknowledges the support of the EPSRC Centre for Doctoral Training in Autonomous Intelligent Machines and Systems EP/L015897/1 and the Ian Palmer Memorial Scholarship. M. Wooldridge was supported by JP Morgan and the Alan Turing Institute. We would also like to thank the three anonymous reviewers for their detailed comments and constructive criticism – these were incredibly helpful in shaping the final version of this paper.
REFERENCES

