
Mean-Payoff Games with ω-Regular Specifications
Thomas Steeples

Department of Computer Science

University of Oxford

Oxford, United Kingdom

thomas.steeples@cs.ox.ac.uk

Julian Gutierrez

Faculty of Information Technology

Monash University

Melbourne, Australia

julian.gutierrez@monash.edu

Michael Wooldridge

Department of Computer Science

University of Oxford

Oxford, United Kingdom

michael.wooldridge@cs.ox.ac.uk

ABSTRACT
Multi-player mean-payoff games are a natural formalism to model

concurrent and multi-agent systems with self-interested players.

Players in such a game traverse a graph, while trying to maximise

a mean-payoff function that depends on the plays so generated. As

with all games, the equilibria that could arise may have undesirable

properties. However, as system designers, we typically wish to en-

sure that equilibria in such systems correspond to desirable system

behaviours, for example, satisfying certain safety or liveness prop-

erties. One natural way to do this would be to specify such desirable

properties using temporal logic. Unfortunately, the use of temporal

logic specifications causes game theoretic verification problems to

have very high computational complexity. To this end, we consider

ω-regular specifications, which offer a concise and intuitive way

of specifying desirable behaviours of a system. The main results

of this work are characterisation and complexity bounds for the

problem of determining if there are equilibria that satisfy a given

ω-regular specification in a multi-player mean-payoff game in a

number of computationally relevant game-theoretic settings.

CCS CONCEPTS
• Theory of computation→ Logic & verification; • Computing
methodologies → Multi-agent systems.

KEYWORDS
Multi-player games, Mean-payoff games, Automated verification,

Temporal logic, Game theory, Equilibria, Multi-agent systems

ACM Reference Format:
Thomas Steeples, Julian Gutierrez, and Michael Wooldridge. 2021. Mean-

PayoffGameswithω-Regular Specifications. In Proc. of the 20th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2021),
Online, May 3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
Modelling concurrent and multi-agent systems as games in which

players interact by taking actions in pursuit of their preferences

is an increasingly common approach in both formal verification

and artificial intelligence [1, 3, 29]. One widely adopted semantic

framework for modelling such systems is that of concurrent game

structures [3]. Such structures capture the dynamics of a system —

the actions that agents/players can perform, and the effects of these

actions. On top of this framework, we can impose additional struc-

ture to represent each player’s preferences over the possible runs

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

of the system. There are several extant approaches to capturing

preferences. One natural quantitative method involves assigning

a weight to every state of the game, and then considering each

player’s mean-payoff over generated runs: a player prefers runs

that maximise their mean-payoff [11, 41, 45]. These games are ef-

fective in modelling resource-bounded reactive systems, as well as

any scenario with multiple agents and quantitative features. Under

the assumption that each agent in the system is acting rationally,

concepts from game theory offer a natural framework for under-

standing its possible behaviours [35]. This approach is expressive

enough to capture many applications of interest, and has been re-

ceiving increasing attention recently [9]. As such, equilibria for

multi-player games with mean-payoff objectives are well studied,

and the computation of Nash equilibria in such games has been

shown to be NP-complete over state-transition graphs [41].

However, a given game-theoretic equilibrium may have undesir-

able computational properties from the point of view of a system

designer. An equilibrium may visit dangerous states, or get stuck

in a deadlock. Thus, one may also want to check if there exist equi-

libria which satisfy some additional desirable properties associated

with the game. This problem – determining whether a given formal

specification is satisfied on some/every equilibrium of a multi-agent

system – is known as Rational Verification [12, 44].

Previous approaches to rational verification have borrowed their

methodology from temporal logic verification; cf., [13, 17–19, 26].

However, since rational verification subsumes automated synthesis,

the use of temporal logic specifications introduces high computa-

tional complexity [37]. To mitigate this problem, one might use frag-

ments of temporal logic with lower complexity (e.g., GR(1) [7, 25]),
but in this work we adopt a different approach. Taking inspira-

tion from automata theory, and in particular from [6], we consider

system specifications given by a formal language for expressing ω-
regular specifications, defined in terms of those states in the system

that are visited infinitely often. With this approach, the complexity

of the main game-theoretic decision problems is considerably lower

than in the case with temporal logic specifications.

In this paper, we offer the following main contributions: we

introduce a syntax for ω-regular specifications and demonstrate

they are a natural construct for reasoning qualitatively about con-

current games. We then study multi-player mean-payoff games

with ω-regular specifications in the non-cooperative setting [35],

and consider the natural decision problems relating to these games

and their Nash equilibria. Following this, we take inspiration from

cooperative game theory and look at equivalent decision problems

with respect to a cooperative solution concept derived from the

core [20, 35]. Finally, we look at reactive module games [18] as a

way of inducing succinctness in our system representations, and

look at how this affects our established complexity results.

Main Track AAMAS 2021, May 3-7, 2021, Online

1272

Structure of the paper. After introducing some necessary back-

ground, we give a motivating example, define the main game-

theoretic framework, and discuss some of its properties in Section 2.

In Sections 3, 4 and 5, we present the main results, and in Section 6

we discuss some relevant related work.

2 MODELS, GAMES, AND SPECIFICATIONS
Games. A concurrent game structure [3] is a tuple,

M = (Ag, St, s0, (Aci)i ∈Ag, tr),

where,

• Ag and St are finite, non-empty sets of agents and system

states, respectively, where s0 ∈ St is an initial state;

• Aci is a set of actions available to agent i , for each i;
• tr : St × Ac1 × · · · × Ac |Ag | → St is a transition function.

We define the size ofM to be |St| · |Ac| |Ag | .

Concurrent games are played as follows. The game begins in

state s0, and each player i ∈ Ag simultaneously picks an ac-

tion ac
0

i ∈ Aci . The game then transitions to a new state, s1 =

tr(s0, ac0
1
, . . . , ac0

|Ag |
), and this process repeats. Thus, the nth state

visited is sn = tr(sn−1, acn−1
1
, . . . , acn−1

|Ag |
). Since the transition func-

tion is deterministic, a play of a game will be an infinite sequence of

states, π : N→ St. We call such a sequence of states a run. Typically,
we index runs with square brackets, i.e., the kth state visited in the

run π is denoted π [k], and we also use slice notation to denote pre-

fix, suffixes and fragments of runs. That is, we use π [m..n] to mean

π [m]π [m+1] . . . π [n−1], π [..n] for π [0]π [1] . . . π [n−1] and π [m..]
for π [m]π [m + 1] Now, consider a run π . We say that π visits
a state s if there is some k ∈ N such that π [k] = s . Since there are
only finitely many states, some must be visited infinitely often. And,

unless all states are visited infinitely often, there will also exist some

set of states that are visited only finitely often. Thus, given a run π ,
we can define the following two sets, which one can use to define

objectives over runs: Inf(π) = {s ∈ St | π visits s infinitely often}

and its complement Fin(π) = St \ Inf(π).
Strategies. In order to describe how each player plays the game, we

need to introduce the concept of a ‘strategy’. A strategy for a given

player, in its most general form, can be understood as a function, σi :
St
+ → Aci , which maps sequences, or histories, of states into an

action for the player. A strategy profile is a vector of strategies, ®σ =
(σ1, . . . ,σ |Ag |), one for each player. The set of strategies for a given

player i is denoted by Σi and the set of strategy profiles is denoted

by Σ. If we have a strategy profile ®σ = (σ1, . . . ,σ |Ag |), we use

the notation ®σ−i to denote the vector (σ1, . . . ,σi−1,σi+1, . . . ,σ |Ag |)

and (®σ−i ,σ
′
i) to denote (σ1, . . . ,σi−1,σ

′
i ,σi+1, . . . ,σ |Ag |). Finally,

we write Σ−i as shorthand for Σ1 × . . . × Σi−1 × Σi+1 × . . . × Σ |Ag | .

All of these notations can also be generalised in the obvious way to

coalitions of agents,C ⊆ Ag. A strategy profile ®σ ∈ Σ together with

a state s will induce a unique run, which we denote by ρ(®σ , s) : N→

St, as well as an infinite sequence of actions ®ac : N → Ac, with

Ac = Ac1 × · · · × Ac |Ag | . These runs are obtained in the following

way. Starting from s , each player plays ac
0

i = σi (s). This transforms

the game into a new state, given by s1 = tr(s, ac0
1
, . . . , ac0

|Ag |
). Each

player then plays ac
1

i = σi (ss
1), and this process repeats forever,

defining the runs of states and actions. Typically, we are interested

in runs that begin in the game’s start state, s0, and we write ρ(®σ)
as shorthand for the infinite run ρ(®σ , s0).

It can be useful to work with strategies which are able to be

finitely represented. In this work use consider two such repre-

sentations: finite-memory strategies and memoryless strategies. A
finite-memory strategy is a finite state machine with output: for

player i , a finite-memory strategy σi is a four-tuple, (Qi ,q
0

i ,δi ,τi),

where, Qi is a finite, non-empty set of internal states with q0i ∈ Qi
an initial state, δi : Qi × Ac1 × · · · × Ac |Ag | → Qi is an internal

transition function and τi : Qi → Aci is an action function. This

strategy operates by starting in the initial state, and for each state

it is in, producing an action according to τi , looking at what actions
have been taken by everyone, and then moving to a new internal

state as prescribed by δ . Because such a sequence will be periodic,

we can write the run induced on the concurrent game structure as

π = π [..k]π [k ..m]ω , for some k,m ∈ N with 0 ≤ k < m. Finally, a

memoryless strategy is a strategy that depends only on the state

the player is currently in. Then, it can be written as a function

σi : St → Aci . Note that memoryless strategies can be encoded as

finite-memory strategies, and that finite-memory strategies are a

special case of arbitrary strategies σi : St
+ → Aci . Whilst we will

work with finite-memory and memoryless strategies, we will use

arbitrary strategies by default, unless otherwise stated.

Mean-payoff games. A mean-payoff game, G , is given by a tuple,

G = (M, (wi)i ∈Ag), where M is a concurrent game structure and

for each agent i ∈ Ag,wi : St → Z is a weight function [11, 41, 45].

In a mean-payoff game, a run of states, π = s0s1 . . . induces an
infinite sequence of weights for each player,wi (s

0)wi (s
1) We

denote this sequence by wi (π). Under a given run, π , a player’s

payoff is given by mp(wi (π)), where for β ∈ Zω , we have mp(β) =
lim infn→∞

1

n
∑n−1
i=0 βi . For notational convenience, we will write

payi (π) for mp(wi (π)). We can then define a preference relation

over runs for each player as follows:π ⪰i π
′
if and only if payi (π) ≥

payi (π
′). We also write π ≻i π

′
if π ⪰i π

′
and not π ′ ⪰i π .

Solution concepts. We consider solution concepts in the non-
cooperative and cooperative game theory literatures. On one hand,

a strategy profile ®σ is said to be a Nash equilibrium [33, 34] if for

all players i and strategies σ ′
i , we have ®σ ⪰i (®σ−i ,σ

′
i). Informally,

a Nash equilibrium is a strategy profile from which no player has

any incentive to unilaterally deviate. On the other hand, we also

consider the core [20], a fundamental solution concept that arises

from cooperative game theory [15]. While Nash equilibria are pro-

files that are resistant to unilateral deviations, the core consists of

profiles that are resistant to those deviations by coalitions of agents,

where every member of the coalition is better off, regardless of what

the rest of the agents do. Formally, we say that a strategy profile,

®σ , is in the core if for all coalitions C ⊆ Ag, and strategy vectors

®σ ′
C , then there is some complementary strategy vector ®σ ′

Ag\C such

that ®σ ⪰i (®σ
′
C , ®σ

′
Ag\C), for some i ∈ C . Given a game G, let NE(G)

denote the set of Nash equilibrium strategy profiles of G, and let

CORE(G) denote the set of strategy profiles in the core of G.
It is worth noting that if a strategy profile is not a Nash equilib-

rium, then at least one player can deviate and be better off, under

the assumption that the remainder of the players do not change

their actions. However, if a strategy profile is not in the core, then

some coalition can deviate and become better off, regardless of what

Main Track AAMAS 2021, May 3-7, 2021, Online

1273

the other players do. Thus, the core should not be confused with

the solution concept of strong Nash equilibrium, which is a strategy

profile which is stable under multilateral deviations, assuming the

remainder of the players ‘stay put’ [4, 5]. We do not consider strong

Nash equilibria in this work, but simply mention them to further

highlight the different game-theoretic nature of the core.

ω-regular specifications. In [6], Boolean combinations of atoms

of the form Inf(F) are used to describe acceptance conditions of

arbitrary ω-automata. We use this approach to specify system prop-

erties for our games. Formally, the language of ω-regular specifica-
tions, α , is defined by the following grammar:

α := Inf(F) | ¬α | α ∧ α ,

where F ranges over subsets of St. For notational convenience, we

write Fin(F) as shorthand for ¬ Inf(F), Inf(F) for Inf(St \ F) and we

define disjunction, · ∨ ·, implication · → · and bi-implication · ↔ ·

in the usual way. The size of a specification is simply the sum of the

sizes of the sets within its atoms. We now talk about what it means

for a run to model a specification. Let π be a run, F be a subset of

St and α , β be arbitrary ω-regular specifications. Then,

• π |= Inf(F), if Inf(π) ∩ F , ∅;

• π |= ¬α , if it is not the case that π |= φ;
• π |= α ∧ β , if π |= α and π |= β .

Note that we use Inf in two different, but interrelated senses.

First, we use it as an operator over runs, as in Inf(π), to denote the

set of states visited infinitely often in a run π , but we also use it as

an operator over sets, as in Inf(F), as an atom in the specifications

just defined. The semantics of the latter are defined in terms of the

former. We will use these interchangeably: usage will be clear from

the context. Using this notation, we can readily define conventional

ω-regular winning conditions, as in following table
1
:

Type Associated Sets ω-regular specification

Büchi F ⊆ St Inf(F)

Gen. Büchi (Fk)k ∈K ⊆ 2
St

∧
k ∈K Inf(Fk)

Rabin (Li ,Ui)i ∈I ⊆ 2
St × 2

St
∨
i ∈I Fin(Li) ∧ Inf(Ui)

Streett (Lj ,Uj)j ∈J ⊆ 2
St × 2

St
∧
j ∈J Fin(Lj) ∨ Inf(Uj)

Muller (Fk)k ∈K ⊆ 2
St

∨
k ∈K Inf(Fk) ∧ Fin(Fk)

With this defined, we can talk about specifications in the context

of games. Let ®σ be some strategy profile. Then, ®σ induces some run,

ρ(®σ), and given that ω-regular specifications are defined on runs,

we can talk about strategies modelling specifications. But we are not

interested in whether arbitrary runs model a given specification

– it is more natural in the context of multi-player games to ask

whether the runs induced by some or all of the equilibria of a

game model a specification, both in the non-cooperative and in the

cooperative contexts, in particular using solution concepts such as

Nash equilibrium and the core, respectively.

Example 2.1. To illustrate the concepts we have laid out so far,

we give an example. Suppose we have four delivery robots in a

warehouse (given by the coloured triangles in Figure 1), who want

to pick up parcels at the pickup points (labelled by the bold Ps)
and drop them off at the delivery points (labelled by the bold Ds).

1
We can, of course, also define all otherω-regular properties, including safety, liveness,

co-Büchi, and parity acceptance conditions, which due to space are omitted.

If a robot is not holding a parcel, and goes to a pickup point, it

automatically gets given one. If it has a parcel, and goes to the

delivery point, then it loses the parcel, and gains a payoff of 1. And,

if two robots collide, by entering the same node at the same time,

then they crash, and get a payoff of −999 at every future timestep.

P

P

D

D

Figure 1: Robots manoeuvering in a warehouse.

Now, there are a number of Nash equilibria here (infinitely many,

in fact). But it is easy to see that many of them exhibit undesirable

properties. For instance, consider the strategy profile where red

and pink go back and forth between the pickup and delivery points,

and threaten to crash into, or deadlock, blue and yellow if they

move from their starting positions. This is a Nash equilibrium, but

is clearly not Pareto optimal – computationally, it is not fair.

It is easy to identify the most socially desirable outcome - all

four robots visiting the pickup and delivery points infinitely often,

waiting for the others to pass when they reach bottleneck points.

If we call the set containing the two states where robots i visits a
pickup point Pi and similarly label the set of delivery points Di , we

can express this condition concisely with anω-regular specification:∧
i ∈[4]

Inf(Pi) ∧ Inf(Di).

Thus, we can conclude that there exists some Nash equilibrium

which models the above (generalised Büchi) specification. However,

we just did this by inspection. In practice, we would like to ask this

question in a more principled way. As such, we will spend the rest

of this paper exploring the natural decision problems associated

with mean-payoff games with ω-regular specifications.

Before proceeding, we note that given a fixed concurrent game

structure, not all ω-regular behaviours that the game can exhibit

can be described with our formalism (for instance, consider the LTL

formulaGϕ, where ϕ is some propositional formula). However, one

can circumvent this restriction by taking the ω-regular automata

of the property of interest and performing a product construction

with the underlying concurrent game structure.

Mean-payoff games with ω-regular specifications. Given that

we have proposed ω-regular specifications as an alternative to

LTL [36] specifications, it is natural to ask how they compare. The

connection between them is given by the following statement:

Proposition 2.2. Let G be a game and let α be some ω-regular
specification. Then there exists a set of atomic propositions, Φ, a la-
belling function λ : St → P (Φ), and an LTL formula φ such that, for
all runs π , we have π |= α if and only if λ(π) |= φ.

Thus, on a fixed concurrent game structure, ω-regular specifica-
tions can be seen as being ‘isomorphic’ to a strict subset of LTL. As

Main Track AAMAS 2021, May 3-7, 2021, Online

1274

such, we hope the restriction of the setting may yield some lower

complexities when considering the analogous decision problems.

That is, we will study a number of decision problems within the

rational verification framework [20, 44], where ω-regular specifica-
tions replace LTL specifications in a very natural way.

Firstly, given a game, a strategy profile, and an ω-regular specifi-
cation, we can ask if the strategy profile is an equilibrium whose

induced run models the specification. Secondly, given a game and

an ω-regular specification, we can ask if the specification is mod-

elled by the run/runs induced by some/every strategy profile in

the set of equilibria of the game. Each of these problems can be

phrased in the context of a non-cooperative game or a cooperative

game, depending on whether we let the set of equilibria be, respec-

tively, the Nash equilibria or the core of the game. Formally, in the

non-cooperative case, we have the following decision problems:

MEMBERSHIP:
Given: Game G, strategy profile ®σ , and specification, α .
Question: Is it the case that ®σ ∈ NE(G) and ρ(®σ) |= α?

E-NASH:

Given: Game G and specification α .
Question: Does there exist a ®σ ∈ NE(G) such that ρ(®σ) |= α?

A natural dual to E-NASH is the A-NASH problem, which in-

stead of asking if the specification holds in the run induced by some
Nash equilibrium, asks if the specification holds in all equilibria.
Formally, this decision problem is stated as follows:

A-NASH:

Given: Game G and specification α .
Question: Is it the case that ρ(®σ) |= α , for all ®σ ∈ NE(G)?

In the cooperative setting, the analogous problems are defined

simply by changing NE(G) for CORE(G). They are called MEM-
BERSHIP, E-CORE, and A-CORE, respectively – as can be seen,

with a small abuse of notation for the first decision problem.

It is worth noting here one technical detail about representations.

In the E-NASH problem, the quantifier asks if there exists a Nash

equilibrium which models the specification. This quantification

ranges over all possible Nash equilibria and the strategies may

be arbitrary strategies. However, in theMEMBERSHIP problem,

the strategy ®σ is part of the input, and thus, needs to be finitely

representable. Therefore, when considering E-NASH (orA-NASH,

or the corresponding problems for the core), we place no restrictions

on the strategies, but when reasoning aboutMEMBERSHIP, we
work exclusively with memoryless or finite-memory strategies.

3 NON-COOPERATIVE GAMES
In the non-cooperative setting, MEMBERSHIP, E-NASH, and A-
NASH are the relevant decision problems. In this section, we will

show that MEMBERSHIP lies in P for memoryless strategies,

while E-NASH is NP-complete for memoryless, finite-memory

strategies, as well as arbitrary strategies – thus, no worse than solv-

ing a multi-player mean-payoff game [41]. Because A-NASH is the

dual problem of E-NASH, it also follows that A-NASH is co-NP-

complete. In order to obtain some of these results, we also provide

a semantic characterisation of the runs associated with strategy

profiles in the set of Nash equilibria that satisfy a given ω-regular
specification. We will first study theMEMBERSHIP problem, and

then investigate E-NASH, providing an upper bound for arbitrary

strategies and a lower bound for memoryless strategies.

Proposition 3.1. For memoryless strategies, MEMBERSHIP is
in P.

Proof Sketch. To demonstrate it is a Nash equilibrium, we

‘run’ the strategy profile to calculate each player’s payoff and in the

process, we can verify it models the specification. Then for each

player, we fix the strategy vector of the other players, and then use

Karp’s algorithm [31] to verify that the given player has no other

memoryless strategy under which they are better off. □

Given the simplicity of the above algorithm, there is some hope

that is might extend to finite-memory strategies. However, in this

case, the entire configuration of the game is not just given by the

current state – it is given by the current state, as well as the state

that each of the player’s strategies are in. Thus, we might have to

visit at least |St| · |Q | |Ag | + 1 (whereQ is the smallest set of strategy

states over the set of players) configurations until we discover a

loop. This quantity is not polynomial in the size of the input, and

so we cannot use the above algorithm in the case of finite memory

strategies to get a polynomial time upper bound.

We now consider E-NASH. Instead of providing the full NP-

completeness result here, we start by showing that the problem is

NP-hard, even for memoryless strategies, and delay the proof of

the upper bound until we develop a useful characterisation of Nash

equilibrium in the context of ω-regular specifications. For now, we
have the following hardness result, obtained using a reduction from

the Hamiltonian cycle problem [14, 30] – a similar, but simpler,

reasoning technique can be found in [41].

Proposition 3.2. E-NASH is NP-hard, even for games with one
player, constant weights, and memoryless strategies.

Propositions 3.1 and 3.2 together give an NP-completeness result

for multi-player mean-payoff games with ω-regular specifications
and memoryless strategies: one can non-deterministically guess

a memoryless strategy for each player (which is simply a list of

actions for each player, one for each state), and useMEMBERSHIP
to verify that it is indeed a Nash equilibrium that models the speci-

fication. However, as shown later, the problem is NP-complete in

the general case, which we show using the characterisation below.

To characterise the Nash equilibria of these games we need to

introduce the notion of the punishment value in a multi-player

mean-payoff game [21, 22]. The punishment value, puni (s), of a
player i in a given state s can be thought of as the worst value the

other players can impose on a player at a given state. Concretely,

if we regard the game G as a two player, zero-sum game, where

player i plays against the coalition Ag \ {i}, then the punishment

value for player i is the smallest mean-payoff value that the rest of

players in Ag can inflict on i from a given state. Formally, given a

player i and a state s ∈ St, we define the punishment value, puni (s)
against player i at state s , as follows:

puni (s) = min

®σ−i ∈Σ−i
max

τi ∈Σi
payi (ρ((®σ−i ,τi), s))

How efficiently can we calculate this value? As established in

[41], we proceed in the following way: in a two player, turn-based,

Main Track AAMAS 2021, May 3-7, 2021, Online

1275

zero-sum, mean-payoff game, positional strategies suffice to achieve

the punishment value [11]. Thus, we can non-deterministically

guess a pair of positional strategies for each player (one for the

coalition punishing the player, and one for the player themselves),

use Karp’s algorithm [31] to find the maximum payoff for both

the player and the coalition against their respective punishing

strategies, and then verify that the two values coincide. With this

established, we have the following lemma, which can be proved

using techniques for mean-payoff games adapted from [25, 41].

Lemma 3.3. Let π be a run in G and let { ®ac[k]}k ∈N be the run
of associated action profiles. Then there is a Nash equilibrium, ®σ ∈

NE(G), such that π = ρ(®σ) if and only if there exists some ®z ∈ QAg,
with zi ∈ {puni (s) | s ∈ St}, such that:

• for each k , we have puni (tr(π [k], (®ac[k]−i , ac
′
i))) ≤ zi for all

i ∈ Ag and ac′i ∈ Aci , and;
• for all players i ∈ Ag, we have zi ≤ payi (π).

With this lemma in mind, we define a graph, G[®z; F] = (V ,E) as
follows.We setV = St and include e = (u,v) ∈ E if there exists some

action profile ®ac such thatv = tr(u, ®ac)with puni (tr(u, (®ac−i , ac
′
i))) ≤

zi for all i ∈ Ag and ac
′
i ∈ Aci . Having done this, we then prune

any components which cannot be reached from the start state and

then remove all states and edges not contained in F , before reintro-
ducing any states in F that may have been removed. Thus, given

this definition and the preceding lemma, to determine if there exists

a Nash equilibrium which satisfies an ω-regular specification, α ,
we calculate the punishment values, and guess a vector ®zs ∈ St

Ag
,

as well a set of states, F , which satisfy the specification. Letting

zi = puni (zs), we form the graphG[®z; F] and then check if there is

some run π inG[®z; F]with zi ≤ payi (π) for each player i which vis-
its every state infinitely often. Trivially, if this graph is not strongly

connected, then no run can visit every state infinitely often. Thus,

to determine if the above condition holds, we need one more piece

of technical machinery, in the form of the following proposition:

Proposition 3.4. Let G = (V ,E) be a strongly connected graph,
let {wi }i ∈Ag be a set of weight functions, let ®z ∈ QAg. Then, we can
determine if there is some run π such that i) zi ≤ payi (π) for each
i ∈ Ag and ii) visits every state infinitely often, in polynomial time.

Conceptually, Proposition 3.4 is similar to Theorem 18 of [41],

but with two keys differences - firstly, we need to do additional work

to determine if there is a path that visits every state infinitely often.

Moreover, the argument of [41] is adapted so we have the corollary

that if there is a Nash equilibrium that models the specification,

then there is some finite state Nash equilibrium that also models

the specification. This means that the construction in our proof can

not only be used for verification, but also for synthesis.

With the above series of propositions in place, we are now ready

to establish the complexity of the E-NASH problem.

Proposition 3.5. E-NASH is NP-complete.

Proof. For NP-hardness we have Proposition 3.2. For the upper

bound, suppose we have an instance, (G,α), of the problem. Then

we proceed as follows. We non-deterministically guess pairs of

punishing strategy profiles, (ζi , ®ζ−i) for each player i ∈ Ag, a state

zs for each player, and a set of states F . From these, we can easily

check that the valuation induced by F satisfies the specification

and we can also use Karp’s algorithm to compute the punishment

values, puni (s), for each state s ∈ St and for each player i ∈ Ag.

Setting zi = puni (zs), we invoke Lemma 3.3 and form the graph

G[®z; F]. If it is not strongly connected, then we reject. Otherwise,

we use Proposition 3.4 to determine if the associated linear program

has a solution. If it does, then we accept, otherwise we reject. □

Corollary 3.6. LetG be a game and α anω-regular specification.
Suppose that G has some Nash equilibrium ®σ such that ®σ |= α . Then,
G also has some finite-memory Nash equilibrium ®σ ′ such that ®σ ′ |= α .

4 COOPERATIVE GAMES
We begin by askingwhether games always have a non-empty core, a

property that holds for gameswith LTL goals and specifications [20].

We find that this does not hold in general for mean-payoff games.

Proposition 4.1. In mean-payoff games, if |Ag| ≤ 2, then the
core is non-empty. For |Ag| > 2, there exist games with an empty core.

The proof of the above for the two-player case is routine manip-

ulation. The counterexample for when |Ag| > 2 is omitted due to

space, but consists of a start state leading to three sink states, with

three players. The game is such that there are always two players

who can beneficially deviate from any given state.

Before proceeding, it is worth reflecting on the definition of

the core. We can redefine this solution concept in the language

of ‘beneficial deviations’. That is, we say that given a game G, a
strategy profile ®σ , a beneficial deviation by a coalitionC , is a strategy
vector ®σ ′

C such that for all complementary strategy profiles ®σ ′
Ag\C ,

we have ρ(®σ ′
C , ®σ

′
Ag\C) ≻i ρ(®σ) for all i ∈ C . We can then say that

®σ is a member of the core, if there exists no coalition C which

has a beneficial deviation from ®σ . Note this formulation is entirely

identical to our earlier definition of the core.

From a computational perspective, there is an immediate concern

here - given a potential beneficial deviation, how can we verify

that it is preferable to the status quo under all possible counter-
responses? Given that strategies can be arbitrary mathematical

functions, how can we reason about that universal quantification

effectively? Fortunately, as we show in the following lemma, we

can restrict our attention to memoryless strategies when thinking

about potential counter-responses to players’ deviations:

Lemma 4.2. Let G be a game, C ⊆ Ag be a coalition and ®σ be a
strategy profile. Further suppose that ®σ ′

C is a strategy vector such that
for all memoryless strategy vectors ®σ ′

Ag\C , we have,

ρ(®σ ′
C , ®σ

′
Ag\C) ≻i ρ(®σ).

Then, for all strategy vectors, ®σ ′
Ag\C , not necessarily memoryless, we

have,
ρ(®σ ′

C , ®σ
′
Ag\C) ≻i ρ(®σ).

Before we prove this, we need to introduce an auxillary concept

of two-player, turn-based, zero-sum, multi-mean-payoff games [43]
(we will just call these multi-mean-payoff games moving forward).

Informally, these are similar to two-player, turn-based, zero-sum

mean-payoff games, except player 1 has k weight functions asso-

ciated with the edges, and they are trying to ensure the resulting

Main Track AAMAS 2021, May 3-7, 2021, Online

1276

k-vector of mean-payoffs is component-wise greater than a vec-

tor threshold. Formally, a multi-mean-payoff game is a 5-tuple,

G = (V1,V2,v
0,E,w, zk), where V1,V2 are sets of states controlled

by players 1 and 2 respectively, with V = V1 ∪V2 the state space,

v0 ∈ V the start state, E ⊆ V ×V a set of edges andw : E → Zk a

weight function, assigning to each edge a vector of weights.

The game is played by starting in the start state, s0 ∈ Si , and
player i choosing an edge (s0, s1), and traversing it to the next

state. From this new state, s1 ∈ Sj , player j chooses an edge

and so on, repeating this process forever. Runs are defined in the

usual way and the payoff of a run π , pay(π), is simply the vector

(mp(w1(π)), . . . ,mp(wk (π))). Finally, z
k ∈ Qk is a threshold vec-

tor and player 1 wins if the payi (π) ≥ zi for all i ∈ {1, . . . ,k},
and loses otherwise. An important question associated with these

games is whether player 1 can force a win. As shown in [43], this

problem is co-NP-complete. Whilst we do not need to utilise this

result right now, this sets us up to prove Lemma 4.2:

Proof of Lemma 4.2. Let ®σ
Ag\C be an arbitrary strategy and let

i ∈ C be an arbitrary agent. Denote ρ(®σ) by ρ and ρ(®σ ′
C , ®σ

′
Ag\C) by

ρ ′. We aim to show that ρ ′ ≻i ρ. Suppose instead it is the case that

ρ ⪰i ρ
′
. Thus, we have ρ(®σ) ⪰i ρ(®σ

′
C , ®σ

′
Ag\C). Considering this as

a two-player multi-mean-payoff game, where player 1’s strategy is

fixed and encoded into the game structure (i.e., player 1 follows ®σ ′
C ,

but has no say in the matter), and the payoff threshold is mp(ρ(®σ)),
then ®σ ′

Ag\C is a winning strategy for player 2 in this game. Now,

by [32, 43], if player 2 has a winning strategy, then they have a

memoryless winning strategy. Thus, there is a memoryless strategy

®σ ′′
Ag\C such that ρ(®σ) ⪰i ρ(®σ ′

C , ®σ
′′
Ag\C). But this contradicts the

assumptions of the lemma, and thus we must have ρ ′ ≻i ρ. □

We now look at some complexity bounds for mean-payoff games

in the cooperative setting. Having introduced beneficial deviations,

let us consider the following decision problem:

BENEFICIAL-DEVIATION (BEN-DEV):
Given: Game G and strategy profile ®σ .
Question: Is there C ⊆ Ag and ®σ ′

C ∈ ΣC such that for all

®σ ′
Ag\C ∈ Σ

Ag\C and for all i ∈ C , we have:

ρ(®σ ′
C , ®σ

′
Ag\C) ≻i ρ(®σ)?

Using this new problem, we can prove the following statement.

Proposition 4.3. Let G be a game, ®σ a strategy profile, and α
a specification. Then, (G, ®σ ,α) ∈ MEMBERSHIP if and only if
(G, ®σ) < BEN-DEV and ρ(®σ) |= α .

The above proposition characterises the MEMBERSHIP prob-

lem for cooperative games in terms of beneficial deviations, and, in

turn, provides a direct way to study its complexity. In the remainder

of this section we concentrate on the memoryless case.

Proposition 4.4. For memoryless strategies, BEN-DEV is NP-
complete.

Proof. First correctly guess a deviating coalition C and a strat-

egy profile ®σ ′
C for such a coalition of players. Then, use the fol-

lowing three-step algorithm. First, compute the mean-payoffs that

players in C get on ρ(®σ), that is, a set of values z∗j = payj (ρ(®σ))

for every j ∈ C — this can be done in polynomial time simply by

‘running’ the strategy profile ®σ . Then compute the graph G[®σ ′
C],

which contains all possible behaviours (i.e., strategy profiles) for

Ag \ C with respect to ®σ - this construction is similar to the one

used in the proof of Proposition 3.1, that is, the game when we fix

®σ ′
C , and can be done in polynomial time. Finally, we ask whether

every path π in G[®σ ′
C] satisfies payj (π) > z∗j , for every j ∈ C - for

this step, we can use Karp’s algorithm to answer the question in

polynomial time for every j ∈ C . If every path in G[®σ ′
C] has this

property, then we accept; otherwise, we reject. For hardness, we

reduce from 3SAT, using a variation of the construction in [38]. □

From Proposition 4.4 follows that checking if no coalition of

players has a beneficial deviation with respect to a given strategy

profile is a co-NP problem. More importantly, it also follows that

MEMBERSHIP is a co-NP-complete problem too.

Proposition 4.5. For memoryless strategies, MEMBERSHIP is
co-NP-complete.

Proof. Recall that given a game G, a strategy profile ®σ , and
an ω-regular specification α , we have (G, ®σ ,α) ∈ MEMBERSHIP
if and only if (G, ®σ) < BEN-DEV and ρ(®σ) |= α . Thus, we can

solve MEMBERSHIP simply by first checking ρ(®σ) |= α , which
can be done in polynomial time and we reject if that check fails.

If ρ(®σ) |= α , then we ask (G, ®σ) ∈ BEN-DEV and accept if that

check fails, and reject otherwise. Finally, since BEN-DEV is NP-

hard, it follows from the above procedure thatMEMBERSHIP is

co-NP-hard, which concludes the proof of the statement. □

BEN-DEV can also be used to solve E-CORE in this case.

Proposition 4.6. For memoryless strategies, E-CORE is in ΣP
2
.

Proof. Given any instance (G,α), we guess a strategy profile

®σ and check that ρ(®σ) |= α and that (G, ®σ ,α) is not an instance of

BEN-DEV. While the former can be done in polynomial time, the

latter can be solved in co-NP using an oracle for BEN-DEV. Thus,
we have a procedure that runs in NP

co-NP
= NP

NP
= ΣP

2
. □

Proposition 4.6 sharply contrasts with that for Nash equilibrium,

where the same problem lies in NP. More importantly, the result also

shows that the (complexity) dependence on the type of coalitional

deviation is only weak, in the sense that different types of beneficial

deviations may be considered within the same complexity class,

as long as such deviations can be checked with an NP or co-NP

oracle. For instance, in [20] other types of cooperative solution

concepts are defined, which differ from the one in this paper (known

in the cooperative game theory literature as α-core [35]) simply

in the type of beneficial deviation under consideration. Another

concept introduced in [20] is that of ‘fulfilled coalition’, which

informally characterises coalitions that have the strategic power (a

joint strategy) to ensure a minimum given payoff no matter what
the other players in the game do. Generalising to our setting, from

qualitative to quantitative payoffs, we introduce the notion of a

lower bound, which we will use to reason about cooperative games.

Definition 4.7. Let C ⊆ Ag be a coalition in a game G and let

®zC ∈ QC . We say that ®zC = (z1, . . . , zi , . . . , z |C |) is a lower bound
for C if there is a joint strategy ®σC for C such that for all strategies

®σ−C for Ag \C , we have payi (ρ(®σC , ®σ−C)) ≥ zi , for every i ∈ C .

Main Track AAMAS 2021, May 3-7, 2021, Online

1277

Based on the definition above, we can prove the following lemma,

which characterises the core in terms of runs where mean-payoffs

can be ensured collectively, no matter any adversarial behaviour.

Lemma 4.8. Let π be a run in G. There is ®σ ∈ CORE(G) such that
π = ρ(®σ) if and only if for every coalition C ⊆ Ag and lower bound
®zC ∈ QC for C , there is some i ∈ C such that zi ≤ payi (π).

With this lemma in mind, we want to determine if a given vector,

®zC , is in fact a lower bound and importantly, how efficiently we

can do this. That is, to understand the following decision problem:

LOWER-BOUND:
Given: Game G, coalition C ⊆ Ag, and vector ®zC ∈ QAg.
Question: Is ®zC is a lower bound for C in G?

Proposition 4.9. LOWER-BOUND is co-NP-complete.

Whilst the results thus far give us key insights into the nature

of the core, a general upper bound for E-CORE remains elusive.

5 WEIGHTED REACTIVE MODULE GAMES
One problem with concurrent game structures as we have worked

with them so far is that they are extremely verbose. The transition

function, tr : St×Ac1×· · ·×Ac |Ag | → St is a total function, so it has

size |Ac| |Ag | . Thus, the size of the game scales exponentially with

the number of the agents. In example 2.1, the underlying concurrent

game structure has a size of 429,981,696. Obviously, such a simple

example can (and should) be specified in a much more concise way.

One natural framework we can use to induce succinctness is

that of Reactive Modules [2]. Specifically, we modify the Reactive

Module Games of [18] with weights on the guarded commands. We

begin by walking through some preliminaries.

Reactive Module Games do not use the full power of reactive

modules, but instead use a subset of the reactive modules syntax,

namely the simple reactive modules language (SRML) [42]. In SRML

terms, agents are described by modules, which in turn consist of

a set of variables controlled by the module, along with a set of

guarded commands. Formally, given a set of propositional variables

Φ, a guarded command д is an expression of the form,

φ { x ′
1
B ψ1; . . . ;x

′
k B ψk ,

where φ and each ψi are propositional formulae over Φ and each

x j also lies in Φ. We call φ the guard of д and denote it by guard(д),
and we call the variables (the x j s) on the right-hand-side of д the
controlled variables of д, denoted by ctr(д). The idea is that under
a given valuation of a set of variables, v ⊆ Φ, each module has a

set of commands for which guard(д) is true (we say that they are

enabled for execution). Each module can then choose one enabled

command, д, and reassign the variables in ctr(д) according to the
assignments given on the right hand side ofд. For instance, ifφ were

true, then the above guarded command could be executed, setting

each x j to the truth value of ψj under v . Only if no д is enabled,

a special guarded command дskip – which does not change the

value of any controlled variable – is enabled for execution so that

modules always have an action they can take.

Given a set of propositional variables, Φ, a simple reactive mod-

ule,m, is a tuple (Ψ, I ,U), where,

• Ψ ⊆ Φ is a set of propositional variables;

• I is a set of initialisation guarded commands, where for all

д ∈ I , we have guard(д) = ⊤ and ctr(д) ⊆ Ψ.
• U is a set of update guarded commands, where for all д ∈ U ,

guard(д) is a propositional formula over Φ and ctr(д) ⊆ Ψ.

An SRML arena,A, is a tupleA = (Ag,Φ, {mi }i ∈Ag), where Ag is

a finite, non-empty set of agents, Φ is a set of propositional variables

and eachmi is a simple reactive modulemi = (Φi , Ii ,Ui) such that

{Φi }i ∈Ag is a partition forΦ. With this syntactic machinery in place,

we are finally ready to describe the semantics of SRML arenas. In

the interest of conciseness, we give a brief, high-level description

here – for full mathematical details, please refer to [18, 42].

Given a valuation v ⊆ Φ at a point in time, each agent i has a set
of commands they can use, denoted enabledi (v). We then denote

the set of possible vectors of guarded commands across all players

under a given valuation by enabled(v). Given a valuation v , and a

joint guarded command J ∈ enabled(v), the new valuation induced

by executing this command is denoted exec(J ,v).
The game starts by each agent choosing an initialisation com-

mand, which induces a first valuation v0. Each player then picks a

guarded command in enabledi (v
0), forming a joint guarded com-

mand, J1, and the game moves to the valuation v1 = exec(J1,v0).
This process repeats ad infinitum, producing a run of the game

as before. However, unlike in the previous setting, where we de-

fined runs over states of the game, here, we define runs over joint

guarded commands, ρ : N→ (I1∪U1)× . . .×(I |Ag | ∪U |Ag |). Whilst,

superficially, this may look like a departure from our previous con-

vention, it is not. Given that these games are entirely deterministic,

if we know the sequence of joint guarded commands that have been

taken, we can infer the sequence of states. Additionally, knowing

the sequence of joint guarded commands provides us with more

information that knowing the sequence of states - a state may have

multiple joint guarded commands that lead to it. All of the tech-

niques we developed before transfer readily to this new setting, so

take it for granted that there is a straightforward link between the

two approaches and will not comment on it further.

We can now define weighted reactive module games. A weighted

reactive module game (WRMG), G = (A, {wi }i ∈Ag), is an SRML

arena, A = (Ag,Φ, {mi }i ∈Ag), along with a set of weight functions,

withwi : Ii ∪Ui → Z. That is, each module has an assigned weight

function that maps commands to integers. As before, a player’s

payoff is given by the mean-payoff of the weights attached to a run.

Finally, we need to define ω-regular specifications in the context

of WRMGs. Sets of states are already conveniently parameterised

by the propositional variables of Φ, so we introduce specifications

which are Boolean combinations of atoms of the form Inf(p) with
p ∈ Φ. The semantics of these specifications are defined in a nearly

identical way to before. Let us now walk through an example to

demonstrate their conciseness and utility of WRMGs.

Example 5.1. In the robot example from before (Example 2.1),

the state of the game is entirely described by the position of each

of the four robots, whether they are holding a parcel or not, and

whether they have crashed. Thus, we define four reactive mod-

ules m1, . . . ,m4 with mi = (Φi , Ii ,Ui) as follows - we set Φi =
{xi,1, . . . ,xi,12,pi , ci }, where the xi model which node the robot

is in, numbered top-to-bottom, left-to-right with respect to the di-

agram, pi denotes if the robot is carrying a parcel or not, and ci

Main Track AAMAS 2021, May 3-7, 2021, Online

1278

denotes if the robot has crashed or not. With this defined, we can

define one initialisation command for each robot:

⊤ { x ′i,1 B ⊥; . . . x ′i,n B ⊤; . . . ;x ′i,12 B ⊥;p′i B ⊥; c ′i B ⊥ [0],

where n is appropriately set, given the starting position of the robot.

Additionally, the [0] at the end of the guarded command denotes the

weight rewarded for performing that command. Then for each agent

i and edge (xn ,xm) of the graph, we define a guarded command,

¬ci ∧ xi,n { x ′i,n B ⊥;x ′i,m B ⊤ [0].

We alsomodel picking up and delivering a parcel, as well as crashing

into another robot. We do this with the following commands:

¬ci ∧ ¬pi ∧ (xi,1 ∨ xi,2) { pi ′ B ⊤ [0],

¬ci ∧ pi ∧ (xi,11 ∨ xi,12) { pi ′ B ⊥ [1],

¬ci ∧ xi,n ∧ (x j,n ∨ xk,n ∨ xln) { c ′i B ⊤ [−999]

ci { c ′i B ⊤ [−999]

where i ranges over players; j , k and l range over the other players;

and j ranges from 1 to 12. We also have the дskip command from

before, so the robot can stay still on a node for a time step.

It is easy to see that this setup models the example from before, is

exponentially more concise, requiring 52 guarded commands in total,

and is natural to work with. Note that we could save even more

space by encoding the robots positions in binary, at the expense of

making our guarded commands slightly more complicated. Whilst

this technique may be useful for larger systems, we give a unary

encoding here for clarity.

With WRMGs now adequately motivated, the main decision

problem to consider then is the following:

WRMG-E-NASH:

Given: WRMG G, and ω-regular specification α .
Question: Does there exist a ®σ ∈ NE(G) such that ρ(®σ) |= α?

This problem seems to be harder than answering the same ques-

tion for games with an explicit representation, e.g., using concurrent
games structures. In fact, we have the following result.

Proposition 5.2. The WRMG-E-NASH problem lies in NEXP-
TIME and is EXPTIME-hard.

Proof Sketch. For the upper bound, the idea is to ‘blow up’

the simple reactive module arena into a concurrent game structure,

then apply the same techniques as in Section 3. For the lower bound,

we reduce from PEEK-G4, known to be EXPTIME-hard [39] □

6 RELATEDWORK
Mean-payoff games.Mean-payoff games are a useful verification

tool in the analysis of quantitative aspects of computer systems.

Most work has been devoted to the study of two-player zero-sum

games, which can be solved in NP∩co-NP [45]. Beyond such games,

two kinds of mean-payoff games have been studied: multi-player

mean-payoff games, whose solution was studied with respect to

Nash equilibria [41], and two-player multi-mean-payoff games [43],

where the focus is on the computation of winning strategies for

either player, a problem that can be solved in NP for memoryless

strategies and in co-NP for arbitrary strategies, although in such a

case optimal strategies may require infinite memory [43].

Combined qualitative and quantitative reasoning. Combin-

ing qualitative and quantitative reasoning has mainly been done

by modifying players’ mean-payoff with some qualitiatve measure.

In [10], the authors consider two-player, zero-sum games, where

on each run of the game, every player is assigned a two-size tu-

ple (parity goal, mean-payoff), where each player’s payoff is −∞

if the parity goal is not met, and the mean-payoff otherwise. In

a similar setting, [21, 22] look at multi-player concurrent games

with lexicographic preferences over (parity/LTL goal, mean-payoff)

tuples and look at the decision problem of determining if there

exists some finite state strict ϵ Nash equilibrium. Additionally, [25]

considered multi-player concurrent games where the players have

mean-payoff goals, and the question is whether there is some Nash

equilibrium which models some temporal specification.

On ω-regular specifications. Games with ω-regular objectives
have been studied mostly in the context of two-player games [9],

where the goal of one of the players is to show that the ω-regular
objective holds in the system, while the goal of the other player

is to show otherwise. Such games are usually used in the context

of synthesis and model-checking of temporal logic specifications.

These two-player zero-sum games are rather different from ours

since in our games, the ω-regular specification is not part of the

goal of the players, but rather a property that an external system
designer wishes to see satisfied. This changes completely the overall

problem setup and explains why the drastic differences in complex-

ity between traditional games with ω-regular objectives – whose

complexity can range from P (for instance, for Büchi games) to

PSPACE (for instance, for Muller games) – and multi-player mean-

payoff games with ω-regular specifications, even for two-player

zero-sum instances with constant weights.

On Rational verification. The problem we have studied in this

paper is called Rational Verification, which has been studied for

different types of arena games [8, 17, 18, 23], strategies [16], and

specification languages, including LTL [17, 18, 23], CTL [19], and

LDL [28]. While rational verification is 2EXPTIME-complete with

LTL goals, and even undecidable for games with imperfect infor-

mation [27], the problem can be shown to be considerably easier

when considering simpler specification languages [25]. However, in

the context of multi-player mean-payoff games, only a solution for

generalised Büchi goals was known, using an encoding via GR(1)

specifications, and only for Nash equilibrium. In this paper, we have

extended such results to account for all ω-regular specifications,
and have provided results for cooperative games and succinct rep-

resentations. With respect to the former, the only relevant related

work is [20], where the core for concurrent game structures was

introduced. And, regarding the latter, a comprehensive study using

reactive modules games can be found in [18] – work that has been

extended, and parts of it implemented, in various ways [24, 40].

ACKNOWLEDGMENTS
T. Steeples gratefully acknowledges the support of the EPSRC Cen-

tre for Doctoral Training in Autonomous Intelligent Machines and

Systems EP/L015897/1 and the Ian Palmer Memorial Scholarship.

M. Wooldridge was supported by JP Morgan and the Alan Turing

Institute. We would also like to thank the three anonymous review-

ers for their detailed comments and constructive criticism – these

were incredibly helpful in shaping the final version of this paper.

Main Track AAMAS 2021, May 3-7, 2021, Online

1279

REFERENCES
[1] Luca de Alfaro and Thomas A. Henzinger. 2000. Concurrent Omega-Regular

Games. In 15th Annual IEEE Symposium on Logic in Computer Science, Santa
Barbara, California, USA, June 26-29, 2000. IEEE Computer Society, 141–154.

https://doi.org/10.1109/LICS.2000.855763

[2] Rajeev Alur and Thomas A. Henzinger. 1996. Reactive Modules. In Proceedings,
11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New
Jersey, USA, July 27-30, 1996. IEEE Computer Society, 207–218. https://doi.org/

10.1109/LICS.1996.561320

[3] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. 2002. Alternating-time

temporal logic. J. ACM 49, 5 (2002), 672–713. https://doi.org/10.1145/585265.

585270

[4] Robert J. Aumann. 1959. Acceptable points in general cooperative n-person
games. In Contributions to the theory of games, Vol. IV. Princeton University Press,

Princeton, N.J., 287–324.

[5] Robert J. Aumann. 1960. Acceptable points in games of perfect information.

Pacific J. Math. 10 (1960), 381–417.
[6] Tomás Babiak, Frantisek Blahoudek, Alexandre Duret-Lutz, Joachim Klein, Jan

Kretínský, David Müller, David Parker, and Jan Strejcek. 2015. The Hanoi Omega-

Automata Format. In Computer Aided Verification - 27th International Conference,
CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 9206), Daniel Kroening and Corina S. Pasareanu

(Eds.). Springer, 479–486. https://doi.org/10.1007/978-3-319-21690-4_31

[7] Roderick Bloem, Barbara Jobstmann, Nir Piterman, Amir Pnueli, and Yaniv Sa’ar.

2012. Synthesis of Reactive(1) designs. J. Comput. Syst. Sci. 78, 3 (2012), 911–938.
https://doi.org/10.1016/j.jcss.2011.08.007

[8] Julian C. Bradfield, Julian Gutierrez, and Michael J. Wooldridge. 2016. Partial-

order Boolean games: informational independence in a logic-based model of

strategic interaction. Synth. 193, 3 (2016), 781–811.
[9] Krishnendu Chatterjee and Thomas A. Henzinger. 2012. A survey of stochastic

ω-regular games. J. Comput. Syst. Sci. 78, 2 (2012), 394–413. https://doi.org/10.

1016/j.jcss.2011.05.002

[10] Krishnendu Chatterjee, Thomas A Henzinger, and Marcin Jurdzinski. 2005. Mean-

payoff parity games. In 20th Annual IEEE Symposium on Logic in Computer Science
(LICS’05). IEEE, 178–187.

[11] Andrzej Ehrenfeucht and Jan Mycielski. 1979. Positional strategies for mean

payoff games. International Journal of Game Theory 8, 2 (1979), 109–113.

[12] Dana Fisman, Orna Kupferman, and Yoad Lustig. 2009. Rational Synthesis. CoRR
abs/0907.3019 (2009). http://arxiv.org/abs/0907.3019 _eprint: 0907.3019.

[13] Tong Gao, Julian Gutierrez, and Michael J. Wooldridge. 2017. Iterated Boolean

Games for Rational Verification. In Proceedings of the 16th Conference on Au-
tonomous Agents and MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, May
8-12, 2017. ACM, 705–713.

[14] M. R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to
the Theory of NP-Completeness. W. H. Freeman.

[15] Donald B. Gillies. 1959. 3. Solutions to General Non-Zero-Sum Games. In

Contributions to the Theory of Games (AM-40), Volume IV, Albert William Tucker

and Robert Duncan Luce (Eds.). Princeton University Press, 47–86. https://doi.

org/10.1515/9781400882168-005

[16] Julian Gutierrez, Paul Harrenstein, Giuseppe Perelli, and Michael J. Wooldridge.

2019. Nash Equilibrium and Bisimulation Invariance. Log. Methods Comput. Sci.
15, 3 (2019).

[17] Julian Gutierrez, Paul Harrenstein, and Michael J. Wooldridge. 2015. Iterated

Boolean games. Inf. Comput. 242 (2015), 53–79. https://doi.org/10.1016/j.ic.2015.

03.011

[18] Julian Gutierrez, Paul Harrenstein, and Michael J. Wooldridge. 2017. From model

checking to equilibrium checking: Reactive modules for rational verification.

Artif. Intell. 248 (2017), 123–157. https://doi.org/10.1016/j.artint.2017.04.003

[19] Julian Gutierrez, Paul Harrenstein, and Michael J. Wooldridge. 2017. Reasoning

about equilibria in game-like concurrent systems. Ann. Pure Appl. Log. 168, 2
(2017), 373–403.

[20] Julian Gutierrez, Sarit Kraus, and Michael J. Wooldridge. 2019. Cooperative

Concurrent Games. In Proceedings of the 18th International Conference on Au-
tonomous Agents and MultiAgent Systems, AAMAS ’19, Montreal, QC, Canada,
May 13-17, 2019, Edith Elkind, Manuela Veloso, Noa Agmon, and Matthew E.

Taylor (Eds.). International Foundation for Autonomous Agents and Multiagent

Systems, 1198–1206. http://dl.acm.org/citation.cfm?id=3331822

[21] Julian Gutierrez, AnielloMurano, Giuseppe Perelli, Sasha Rubin, Thomas Steeples,

and Michael Wooldridge. 2020. Equilibria for games with combined qualitative

and quantitative objectives. Acta Informatica (2020), 1–26. Publisher: Springer.
[22] Julian Gutierrez, Aniello Murano, Giuseppe Perelli, Sasha Rubin, and Michael

Wooldridge. 2017. Nash equilibria in concurrent games with lexicographic pref-

erences. (2017). Publisher: AAAI.

[23] Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael Wooldridge.

2020. Automated Temporal Equilibrium Analysis: Verification and Synthesis of

Multi-Player Games. arXiv:2008.05638 [cs.LO]

[24] Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael J. Wooldridge.

2018. EVE: A Tool for Temporal Equilibrium Analysis. In Automated Technology
for Verification and Analysis - 16th International Symposium, ATVA 2018, Los
Angeles, CA, USA, October 7-10, 2018, Proceedings (Lecture Notes in Computer
Science, Vol. 11138), Shuvendu K. Lahiri and Chao Wang (Eds.). Springer, 551–557.

https://doi.org/10.1007/978-3-030-01090-4_35

[25] Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael J. Wooldridge.

2019. On Computational Tractability for Rational Verification. In Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, Sarit Kraus (Ed.). ijcai.org, 329–335. https:
//doi.org/10.24963/ijcai.2019/47

[26] Julian Gutierrez, Muhammad Najib, Giuseppe Perelli, and Michael J. Wooldridge.

2020. Automated temporal equilibrium analysis: Verification and synthesis of

multi-player games. Artif. Intell. 287 (2020), 103353.
[27] Julian Gutierrez, Giuseppe Perelli, and Michael J. Wooldridge. 2018. Imperfect

information in Reactive Modules games. Inf. Comput. 261, Part (2018), 650–675.
https://doi.org/10.1016/j.ic.2018.02.023

[28] Julian Gutierrez, Giuseppe Perelli, and Michael J. Wooldridge. 2021. Multi-player

games with LDL goals over finite traces. Inf. Comput. 276 (2021), 104555.
[29] Thomas A. Henzinger. 2005. Games in system design and verification. In Proceed-

ings of the 10th Conference on Theoretical Aspects of Rationality and Knowledge
(TARK-2005), Singapore, June 10-12, 2005, Ron van der Meyden (Ed.). National

University of Singapore, 1–4. https://dl.acm.org/citation.cfm?id=1089935

[30] Richard M. Karp. 1972. Reducibility Among Combinatorial Problems. In Proceed-
ings of a symposium on the Complexity of Computer Computations, held March
20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New
York, USA (The IBM Research Symposia Series), Raymond E. Miller and James W.

Thatcher (Eds.). Plenum Press, New York, 85–103. https://doi.org/10.1007/978-1-

4684-2001-2_9

[31] Richard M Karp. 1978. A characterization of the minimum cycle mean in a

digraph. Discrete mathematics 23, 3 (1978), 309–311.
[32] Eryk Kopczynski. 2006. Half-Positional Determinacy of Infinite Games. In Au-

tomata, Languages and Programming, 33rd International Colloquium, ICALP 2006,
Venice, Italy, July 10-14, 2006, Proceedings, Part II (Lecture Notes in Computer
Science, Vol. 4052), Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo

Wegener (Eds.). Springer, 336–347. https://doi.org/10.1007/11787006_29

[33] John Nash. 1951. Non-cooperative games. Annals of mathematics (1951), 286–295.
[34] John F Nash et al. 1950. Equilibrium points in n-person games. Proceedings of the

national academy of sciences 36, 1 (1950), 48–49.
[35] Martin J Osborne and Ariel Rubinstein. 1994. A course in game theory. MIT press.

[36] Amir Pnueli. 1977. The Temporal Logic of Programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA. IEEE Computer

Society, 46–57. https://doi.org/10.1109/SFCS.1977.32

[37] Amir Pnueli and Roni Rosner. 1989. On the Synthesis of an Asynchronous

Reactive Module. In Automata, Languages and Programming, 16th International
Colloquium, ICALP89, Stresa, Italy, Proceedings (LNCS, Vol. 372). Springer, 652–671.
https://doi.org/10.1007/BFb0035790

[38] A. Prasad Sistla and Edmund M. Clarke. 1985. The Complexity of Propositional

Linear Temporal Logics. J. ACM 32, 3 (1985), 733–749. https://doi.org/10.1145/

3828.3837

[39] Larry J. Stockmeyer and Ashok K. Chandra. 1979. Provably Difficult Combinato-

rial Games. SIAM J. Comput. 8, 2 (1979), 151–174. https://doi.org/10.1137/0208013
[40] Alexis Toumi, Julian Gutierrez, and Michael J. Wooldridge. 2015. A Tool for the

Automated Verification of Nash Equilibria in Concurrent Games. In Theoretical
Aspects of Computing - ICTAC 2015 - 12th International Colloquium Cali, Colombia,
October 29-31, 2015, Proceedings (Lecture Notes in Computer Science, Vol. 9399),
Martin Leucker, Camilo Rueda, and Frank D. Valencia (Eds.). Springer, 583–594.

https://doi.org/10.1007/978-3-319-25150-9_34

[41] Michael Ummels and DominikWojtczak. 2011. The Complexity of Nash Equilibria

in Limit-Average Games. CoRR abs/1109.6220 (2011). http://arxiv.org/abs/1109.

6220

[42] Wiebe van der Hoek, Alessio Lomuscio, and Michael J. Wooldridge. 2006. On the

complexity of practical ATL model checking. In 5th International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2006), Hakodate, Japan,
May 8-12, 2006, Hideyuki Nakashima, Michael P. Wellman, Gerhard Weiss, and

Peter Stone (Eds.). ACM, 201–208. https://doi.org/10.1145/1160633.1160665

[43] Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger,

Alexander Moshe Rabinovich, and Jean-François Raskin. 2015. The complexity

of multi-mean-payoff and multi-energy games. Inf. Comput. 241 (2015), 177–196.
https://doi.org/10.1016/j.ic.2015.03.001

[44] Michael J. Wooldridge, Julian Gutierrez, Paul Harrenstein, Enrico Marchioni,

Giuseppe Perelli, and Alexis Toumi. 2016. Rational Verification: From Model

Checking to Equilibrium Checking. In Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence, Phoenix, Arizona, USA. AAAI Press, 4184–4191.

[45] Uri Zwick and Mike Paterson. 1996. The complexity of mean payoff games on

graphs. Theoretical Computer Science 158, 1-2 (1996), 343–359.

Main Track AAMAS 2021, May 3-7, 2021, Online

1280

https://doi.org/10.1109/LICS.2000.855763
https://doi.org/10.1109/LICS.1996.561320
https://doi.org/10.1109/LICS.1996.561320
https://doi.org/10.1145/585265.585270
https://doi.org/10.1145/585265.585270
https://doi.org/10.1007/978-3-319-21690-4_31
https://doi.org/10.1016/j.jcss.2011.08.007
https://doi.org/10.1016/j.jcss.2011.05.002
https://doi.org/10.1016/j.jcss.2011.05.002
http://arxiv.org/abs/0907.3019
https://doi.org/10.1515/9781400882168-005
https://doi.org/10.1515/9781400882168-005
https://doi.org/10.1016/j.ic.2015.03.011
https://doi.org/10.1016/j.ic.2015.03.011
https://doi.org/10.1016/j.artint.2017.04.003
http://dl.acm.org/citation.cfm?id=3331822
https://arxiv.org/abs/2008.05638
https://doi.org/10.1007/978-3-030-01090-4_35
https://doi.org/10.24963/ijcai.2019/47
https://doi.org/10.24963/ijcai.2019/47
https://doi.org/10.1016/j.ic.2018.02.023
https://dl.acm.org/citation.cfm?id=1089935
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/11787006_29
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/BFb0035790
https://doi.org/10.1145/3828.3837
https://doi.org/10.1145/3828.3837
https://doi.org/10.1137/0208013
https://doi.org/10.1007/978-3-319-25150-9_34
http://arxiv.org/abs/1109.6220
http://arxiv.org/abs/1109.6220
https://doi.org/10.1145/1160633.1160665
https://doi.org/10.1016/j.ic.2015.03.001

	Abstract
	1 Introduction
	2 Models, Games, and Specifications
	3 Non-cooperative games
	4 Cooperative games
	5 Weighted Reactive Module Games
	6 Related Work
	Acknowledgments
	References

