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ABSTRACT
We study several fairness notions in allocating indivisible chores
(i.e., items with non-positive values): envy-freeness and its relax-

ations. For allocations under each fairness criterion, we establish

their approximation guarantees for other fairness criteria. Under

the setting of additive cost functions, our results show strong con-

nections between these fairness criteria and, at the same time, reveal

intrinsic differences between goods allocation and chores allocation.

Furthermore, we investigate the efficiency loss under these fairness

constraints and establish their prices of fairness.
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1 INTRODUCTION
Fair division is a central matter of concern in economics, multia-

gent systems, and artificial intelligence [6, 14, 16]. Over the years,

there emerges a tremendous demand for fair division when a set of

indivisible resources, such as classrooms, tasks, and properties, are

divided among a group of𝑛 agents. This field has attracted the atten-

tion of researchers and most results are established when resources

are considered as goods that bring positive utility to agents. How-

ever, in real-life division problems, the resources to be allocated can

also be chores which, instead of positive utility, bring non-positive

utility or cost to agents. For example, one might need to assign

tasks among workers, teaching load among teachers, sharing nox-

ious facilities among communities, and so on. Compared to goods,

fairly dividing chores is relatively under-developed. At first glance,

dividing chores is similar to dividing goods. However, in general,

chores allocation is not covered by goods allocation and results

established on goods do not necessarily hold on chores. Studies in

[12, 13, 17] and [26, 27] have already pointed out this difference in

the context of envy-freeness and equitability, respectively. As an

example [26], when allocating goods a leximin1 allocation is Pareto

1
A leximin solution selects the allocation that maximizes the utility of the least well-off

agent, subject to maximizing the utility of the second least, and so on.
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optimal and equitable up to any item2
, however, a leximin solution

does not guarantee equitability up to any item in chores allocation.

Among the variety of fairness notions introduced in the litera-

ture, envy-freeness (EF) is one of the most compelling ones, which

has drawn research attention over the past few decades [15, 19, 25].

In an envy-free allocation, no agent envies another agent. Unfor-

tunately, the existence of an envy-free allocation cannot be guar-

anteed in general when the items to be assigned are indivisible. A

canonical example is that one needs to assign one chore to two

agents and the chore has a positive cost for either agent. Clearly,

the agent who receives the chore will envy the other. In addition,

deciding the existence of an EF allocation is computationally in-

tractable, even for two agents with identical preference [32]. Given

this predicament, recent studies mainly devote to relaxations of

envy-freeness. One direct relaxation is known as envy-free up to
one item (EF1) [18, 32]. In an EF1 allocation, one agent may be

jealous of another, but by removing one chore from the bundle of

the envious agent, envy can be eliminated. A similar but stricter

notion is envy-free up to any item (EFX) [21]. In such an allocation,

envy can be eliminated by removing any positive-cost chore from

the envious agent’s bundle. Another fairness notion,maximin share
(MMS) [3, 18], generalizes the idea of “cut-and-choose” protocol

in cake cutting. The maximin share is obtained by minimizing the

maximum cost of a bundle of an allocation over all allocations. The

last fairness notion we consider is called pairwise maximin share
(PMMS) [21], which is similar to maximin share but different from

MMS in that each agent partitions the combined bundle of himself

and any other agent into two bundles and then receives the one

with the larger cost.

The existing research on envy-freeness and its relaxations con-

centrates on algorithmic features of fairness criteria, such as their

existence and (approximation) algorithms for finding them. Rela-

tively little research studies the connections between these fairness

criteria themselves, or the trade-off between these fairness criteria

and the system efficiency, known as the price of fairness. When

allocating goods, Amanatidis et al. [2] compare the four aforemen-

tioned relaxations of envy-freeness and provides results on the

approximation guarantee of one to another. However, these con-

nections are unclear in allocating chores. On the price of fairness,

Bei et al. [9] study allocating indivisible goods and focuses on the

notions for which corresponding allocations are guaranteed to exist,

such as EF1, maximin Nash welfare
3
, and leximin. Caragiannis et al.

2
Equitability requires that any pair of agents are equally happy with their bundles. In

equitability up to any item allocations, the violation of equitability can be eliminated

by removing any single item from the happier (in goods allocation)/ less happy agent

(in chores allocation).

3
Nash welfare is the product of agents’ utilities.
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[20] study the price of fairness for both chores and goods, and fo-

cuses on the classical fairness notions, namely, EF, proportionality
4

and equitability. When allocating chores, it provides a tight upper

bound for the price of proportionality and also shows that the price

of both envy-freeness and equitability are infinite (although such

an allocation may not exist at all). However, in allocating chores,

the price of fairness is still unknown for any of the aforementioned

four relaxations of envy-freeness.

In this paper, we fill these gaps by investigating the four relax-

ations of envy-freeness on two aspects. On the one hand, we study

the connections between these criteria and, in particular, we con-

sider the following questions: Does one fairness criterion implies
another? To what extent can one criterion guarantee for another?
On the other hand, we study the trade-off between fairness and

efficiency (or social cost defined as the sum of costs of the individual

agents). Specifically, for each fairness criterion, we investigate its

price of fairness, which is defined as the supremum ratio of the

minimum social cost of a fair allocation to the minimum social cost

of any allocation.

1.1 Main Results
On the connections between fairness criteria, we summarize our

main results in Figure 1 on the approximation guarantee of one

fairness criterion for another when the cost functions are additive,

where 𝛼-Z (formally defined in Section 2) refers to 𝛼-approximation

for fairness of notion Z. While some of our results show similarity

to those in goods allocation [2], others also reveal the difference

between allocating goods and chores.

After comparing each pair of fairness notions, we compare the

efficiency of fair allocations with the optimal one. To quantify the

efficiency loss, we apply the idea of the price of fairness and our

results are summarized in Table 1.

Table 1: Prices of fairness, where P𝑥 .𝑦 points to Proposition 𝑥 .𝑦

EFX PMMS EF1 2-MMS 1.5-PMMS

𝑛 = 2

2 2
5

4
1

7

6

(P5.4) (P5.4) (P5.1) (P5.2) (P5.3)

𝑛 ≥ 3

∞ ∞ ∞ Θ(𝑛) ∞
(P5.5) (P5.5) (P5.5) (P5.8) (P5.6)

1.2 Related Works
The fair division problem has been studied for both indivisible goods

[11, 21, 32] and indivisible chores [5, 7, 27]. Among various fairness

notions, a prominent one is EF proposed in Foley [25]. But an EF

allocation may not exist and even worse, checking the existence

of an EF allocation is NP-complete [6]. For the relaxations of envy-

freeness, Lipton et al. [32] originate the notion of EF1 and provides

an efficient algorithm for EF1 allocations of goods when agents have

monotone utility functions. For allocating chores, EF1 is achievable

4
An allocation of goods (resp. chores) is proportional if the value (resp. cost) of every

agent’s bundle is at least (resp. at most) one 𝑛-th fraction of his value (resp. cost) for

all items.

𝛼-EFX 𝛼-PMMS

𝛼-MMS 𝛼-EF1

LB = UB = 4𝛼
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Note: LB and UB stand for lower and upper bound, respectively. For example,

the directed edge from 𝛼-EFX to 𝛼-PMMS with label LB = UB = 4𝛼
2𝛼+1

means that 𝛼-EFX implies
4𝛼

2𝛼+1
-PMMS, and this result is tight. P𝑥.𝑦 points

to Proposition 𝑥 .𝑦

Figure 1: Connections between fairness criteria

by allocating chores in a round-robin fashion if agents have additive

cost functions [4]. Another fairness notion that has been a subject

of much interest in the last few years is MMS, proposed by Budish

[18]. However, existence of an MMS allocation is not guaranteed

either for goods [31] or for chores [7], even with additive functions.

Consequently, more efforts are on approximation of MMS, with

[3, 28, 29] on goods allocation and [7, 30] on chores allocation. The

notions of EFX and PMMS are introduced by Caragiannis et al.

[21]. They consider goods allocation and establish that a PMMS

allocation is also EFX when the valuation functions are additive.

Beyond the simple case of 𝑛 = 2, the existence of an EFX allocation

has not been settled in general. However, significant results have

been achieved for some special cases. When 𝑛 = 3, the existence of

an EFX allocation of goods is proved in Chaudhury et al. [22]. Based

on a modified version of leximin solutions, Plaut and Roughgarden

[33] show that an EFX allocation is guaranteed to exist when all

agents have identical valuations. The work most related to ours is

Amanatidis et al. [2], which is on goods allocation, and provides

connections between the four EF relaxations.

As for the price of fairness, Caragiannis et al. [20] show that, in

the case of divisible goods, the price of proportionality is Θ(
√
𝑛)

and the price of equitability is Θ(𝑛). Bertsimas et al. [10] extend the

study to other fairness notions,maximin5 fairness and proportional
fairness, and provides a tight bound on the price of fairness for a

broad family of problems. Bei et al. [9] focus on indivisible goods

and concentrates on the fairness notions that are guaranteed to

exist. The authors present an asymptotically tight upper bound

5
It maximizes the lowest utility level among all the agents.
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of Θ(𝑛) on the price of maximum Nash welfare [23], maximum

egalitarian welfare [16] and leximin. They also consider the price

of EF1 but leave a gap between the upper bound 𝑂 (𝑛) and lower

bound Ω(
√
𝑛). This gap is later closed by Barman et al. [8] with

the results that, for both EF1 and
1

2
-MMS, the price of fairness is

𝑂 (
√
𝑛). In addition, the price of fairness has been studied in other

topics of multi-agent systems, such as machine scheduling [1] and

kidney exchange [24].

2 PRELIMINARIES
In a fair division problem on indivisible chores, we have a set 𝑁 =

{1, 2, . . . , 𝑛} of 𝑛 agents and a set 𝐸 = {𝑒1, . . . , 𝑒𝑚} of𝑚 indivisible

chores. As chores are the items with non-positive values, each agent

𝑖 ∈ 𝑁 is associated with a cost function 𝑐𝑖 : 2
𝐸 → 𝑅≥0, which maps

any subsets of 𝐸 into a non-negative real number. In this paper,

we assume 𝑐𝑖 (∅) = 0 and 𝑐𝑖 is monotone, that is, 𝑐𝑖 (𝑆) ≤ 𝑐𝑖 (𝑇 )
for any 𝑆 ⊆ 𝑇 ⊆ 𝐸. We say a (set) function 𝑐 (·) is additive if

𝑐 (𝑆) =
∑
𝑒∈𝑆 𝑐 (𝑒) for any 𝑆 ⊆ 𝐸. In the remainder of this paper,

we assume all cost functions are additive. For simplicity, instead of

𝑐𝑖 ({𝑒 𝑗 }), we use 𝑐𝑖 (𝑒 𝑗 ) to represent the cost of chore 𝑒 𝑗 for agent 𝑖 .

An allocation A := (𝐴1, . . . , 𝐴𝑛) is an 𝑛-partition of 𝐸 among

agents in 𝑁 , i.e., 𝐴𝑖 ∩𝐴 𝑗 = ∅ for any 𝑖 ≠ 𝑗 and ∪𝑖∈𝑁𝐴𝑖 = 𝐸. Each

subset 𝑆 ⊆ 𝐸 also refers to a bundle of chores. For any bundle 𝑆 and

𝑘 ∈ N+, we denote by Π𝑘 (𝑆) the set of all 𝑘-partition of 𝑆 , and |𝑆 |
the number of chores in 𝑆 .

2.1 Fairness Criteria
We study envy-freeness and its relaxations and are concerned with

both exact and approximate versions of these fairness notions.

Definition 2.1. For any 𝛼 ≥ 1, an allocation A = (𝐴1, . . . , 𝐴𝑛) is
𝛼-EF if for any 𝑖, 𝑗 ∈ 𝑁, 𝑐𝑖 (𝐴𝑖 ) ≤ 𝛼 · 𝑐𝑖 (𝐴 𝑗 ). In particular, 1-EF is

simply called EF.

Definition 2.2. For any 𝛼 ≥ 1, an allocation A = (𝐴1, . . . , 𝐴𝑛) is
𝛼-EF1 if for any 𝑖, 𝑗 ∈ 𝑁 , there exists 𝑒 ∈ 𝐴𝑖 such that 𝑐𝑖 (𝐴𝑖 \ {𝑒}) ≤
𝛼 · 𝑐𝑖 (𝐴 𝑗 ). In particular, 1-EF1 is simply called EF1.

Definition 2.3. For any 𝛼 ≥ 1, an allocation A = (𝐴1, . . . , 𝐴𝑛) is
𝛼-EFX if for any 𝑖, 𝑗 ∈ 𝑁, 𝑐𝑖 (𝐴𝑖 \ {𝑒}) ≤ 𝛼 · 𝑐𝑖 (𝐴 𝑗 ) for any 𝑒 ∈ 𝐴𝑖

with 𝑐𝑖 (𝑒) > 0. In particular, 1-EFX is simply called EFX.

Clearly, EFX
6
is stricter than EF1. Next, we formally introduce

the notion of maximin share. For any 𝑘 ∈ [𝑛] = {1, . . . , 𝑛} and
bundle 𝑆 ⊆ 𝐸, the maximin share of agent 𝑖 on 𝑆 among 𝑘 agents is

MMS𝑖 (𝑘, 𝑆) = min

𝐴∈Π𝑘 (𝑆)
max

𝑗 ∈[𝑘 ]
𝑐𝑖 (𝐴 𝑗 ) .

We are interested in the allocation in which each agent receives

cost no more than his maximin share.

Definition 2.4. For any 𝛼 ≥ 1, an allocation A = (𝐴1, . . . , 𝐴𝑛)
is 𝛼-MMS if for any 𝑖 ∈ 𝑁, 𝑐𝑖 (𝐴𝑖 ) ≤ 𝛼 ·MMS𝑖 (𝑛, 𝐸). In particular,

1-MMS is called MMS.

6
Note Plaut and Roughgarden [33] consider a stronger version of EFX by dropping

the condition 𝑐𝑖 (𝑒) > 0. In this paper, all results about EFX, except Propositions 4.1

and 4.6, still hold under the stronger version.

Definition 2.5. For any 𝛼 ≥ 1, an allocation A = (𝐴1, . . . , 𝐴𝑛) is
𝛼-PMMS if for any 𝑖, 𝑗 ∈ 𝑁 ,

𝑐𝑖 (𝐴𝑖 ) ≤ 𝛼 · min

B∈Π2 (𝐴𝑖∪𝐴 𝑗 )
max {𝑐𝑖 (𝐵1), 𝑐𝑖 (𝐵2)} .

In particular, 1-PMMS is called PMMS.

Note that the right-hand side of the above inequality is equivalent

to 𝛼 ·MMS𝑖 (2, 𝐴𝑖 ∪𝐴 𝑗 ).
Example 2.6. Let us consider an example with three agents and

a set 𝐸 = {𝑒1, . . . , 𝑒7} of seven chores. The cost functions of agents

are shown as follows.

𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7

Agent 1 2 3 3 0 4 2 1

Agent 2 3 1 3 2 5 0 5

Agent 3 1 5 10 2 3 1 3

It is not hard to verify that MMS1 (3, 𝐸) = 5,MMS2 (3, 𝐸) =

7,MMS3 (3, 𝐸) = 10. For instance, agent 2 can partition 𝐸 into three

bundles: {𝑒1, 𝑒3}, {𝑒2, 𝑒7}, {𝑒4, 𝑒5, 𝑒6}, so that the maximum cost of

any single bundle for her is 7. Moreover, there is no other partitions

that can guarantee a better worst-case cost.

Now examine allocation A = (𝐴1, 𝐴2, 𝐴3) with 𝐴1 = {𝑒1, 𝑒4, 𝑒7},
𝐴2 = {𝑒2, 𝑒3, 𝑒6} and 𝐴3 = {𝑒5}. It is not hard to see that A is an

EF allocation, and accordingly, it is also an EFX, EF1, MMS and

PMMS allocation. For another allocation Bwith 𝐵1 = {𝑒1, 𝑒5, 𝑒7}, 𝐵2

= {𝑒2, 𝑒4, 𝑒6}, 𝐵3 = {𝑒3}, agent 1 would still envy agent 2 even if

chore 𝑒7 is eliminated from her bundle, and hence, allocation B is

neither exact EF nor EFX. One can verify that B is indeed
7

3
-EF and

2-EFX. Moreover, B is an EF1 allocation because agent 1 would not

envy others if chore 𝑒5 is eliminated from her bundle and agent 3

would not envy others if chore 𝑒3 is eliminated from her bundle. As

for the approximation guarantee on the notions of MMS and PMMS,

it is not hard to verify that allocation B is
7

5
-MMS and

7

5
-PMMS.

2.2 Price of Fairness
Let 𝐼 = ⟨𝑁, 𝐸, (𝑐𝑖 )𝑖∈𝑁 ⟩ be an instance of the problem for allocating

indivisible chores and let I be the set of all such instances. The

social cost of an allocation A = (𝐴1, . . . , 𝐴𝑛) is defined as SC(A) =∑
𝑖∈𝑁 𝑐𝑖 (𝐴𝑖 ). The optimal social cost for an instance 𝐼 , denoted by

OPT(𝐼 ), is the minimum social cost over all allocations for this

instance. Following previous work [9, 20], when study the price of

fairness, we assume that agents cost functions are normalized to

one, i.e., 𝑐𝑖 (𝐸) = 1 for all 𝑖 ∈ 𝑁 .

The price of fairness is the supremum ratio over all instances

between the social cost of the “best” fair allocation and the optimal

social cost, where “best” refers to the one with the minimum cost.

Since we consider several fairness criteria, let 𝐹 be any given fair-

ness criterion and define by 𝐹 (𝐼 ) as the set (possibly empty) of all

allocations for instance 𝐼 that satisfy fairness criterion 𝐹 .

Definition 2.7. For any given fairness property 𝐹 , the price of

fairness with respect to 𝐹 is defined as

PoF = sup

𝐼 ∈I
min

A∈𝐹 (𝐼 )
SC(A)
OPT(𝐼 ) ,

where PoF is equal to +∞ if 𝐹 (𝐼 ) = ∅.
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2.3 Simple Facts
We begin with some initial results, which reveal some intrinsic

difference in allocating goods and allocating chores as far as ap-

proximation guarantee is concerned. Due to space constraint, proofs

of these results are omitted, which can be found in [34]. First, we

state a simple lemma concerning lower bounds of the maximin

share.

Lemma 2.8. For any agent 𝑖 ∈ 𝑁 and bundle 𝑆 ⊆ 𝐸,
• MMS𝑖 (𝑘, 𝑆) ≥ 1

𝑘
𝑐𝑖 (𝑆),∀𝑘 ∈ [𝑛];

• MMS𝑖 (𝑘, 𝑆) ≥ 𝑐𝑖 (𝑒),∀𝑒 ∈ 𝑆,∀𝑘 ∈ [𝑛].

Based on the lower bounds in Lemma 2.8, we provide a trivial

approximation guarantee for PMMS and MMS.

Lemma 2.9. Any allocation is 2-PMMS and 𝑛-MMS.

As can be seen from the proof of Lemma 2.9, in allocating chores,

if one assigns all chores to one agent, then the allocation still has

a bounded approximation for PMMS and MMS. However, when

allocating goods, if an agent receives nothing but his maximin share

is positive, then clearly the corresponding allocation has an infinite

approximation guarantee for PMMS and MMS.

3 PERFORMANCE BOUNDS ON EF, EFX, AND
EF1

Let us start with EF. According to the definitions, for any 𝛼 ≥ 1,

𝛼-EF is stronger than 𝛼-EFX and 𝛼-EF1. The following proposition

presents an approximation guarantee of 𝛼-EF for MMS and PMMS.

Proposition 3.1. For any 𝛼 ≥ 1, an 𝛼-EF allocation is also 𝑛𝛼
𝑛−1+𝛼 -

MMS, and this result is tight.

Proposition 3.2. For any 𝛼 ≥ 1, an 𝛼-EF allocation is also 2𝛼
1+𝛼 -

PMMS, and this result is tight.

Proposition 3.2 indicates that the approximation guarantee of

𝛼-EF for PMMS is independent of the number of agents. However,

according to Proposition 3.1, its approximation guarantee for MMS

is affected by the number of agents. Moreover, this guarantee ratio

converges to 𝛼 as 𝑛 goes to infinity.

We remark that none of EFX, EF1, PMMS andMMShas a bounded

guarantee for EF. We show this by a simple example. Consider an

instance of two agents and one chore, and the chore has a positive

cost for both agents. Assigning the chore to an arbitrary agent

results in an allocation that satisfies EFX, EF1, PMMS and MMS,

simultaneously. However, since one agent has a positive cost on

his own bundle and zero cost on other agents’ bundle, such an

allocation has an infinite approximation guarantee for EF.

Next, we consider approximation of EFX and EF1.

Proposition 3.3. An 𝛼-EFX allocation is 𝛼-EF1 for any 𝛼 ≥ 1.
On the other hand, an EF1 allocation is not 𝛽-EFX for any 𝛽 ≥ 1.

Next, we consider the approximation guarantee of EF1 for MMS.

In allocating goods, Amanatidis et al. [2] present a tight result that

an 𝛼-EF1 allocation is 𝑂 (𝑛)-MMS. In contrast, in allocating chores,

𝛼-EF1 can have a much better guarantee for MMS.

Proposition 3.4. For any 𝛼 ≥ 1 and 𝑛 ≥ 2, an 𝛼-EF1 allocation
is also 𝑛𝛼+𝑛−1

𝑛−1+𝛼 -MMS, and this result is tight.

Proof. We first prove the upper bound. Let A = (𝐴1, . . . , 𝐴𝑛)
be an 𝛼-EF1 allocation and we focus on agent 𝑖 . If 𝐴𝑖 = ∅ or 𝐴𝑖

only contains chores with zero cost for agent 𝑖 , then 𝑐𝑖 (𝐴𝑖 ) = 0

which would violate neither 𝛼-EF1 nor MMS. Thus, without loss of

generality, we assume 𝐴𝑖 ≠ ∅ and 𝐴𝑖 contains chores with strictly

positive cost for agent 𝑖 . Let 𝑒 be the chore with largest cost for

agent 𝑖 in bundle 𝐴𝑖 , i.e., 𝑒 ∈ arg max𝑒∈𝐴𝑖
𝑐𝑖 (𝑒).

By the definition of 𝛼-EF1, for any 𝑗 ∈ 𝑁 \ {𝑖}, 𝑐𝑖 (𝐴𝑖 \ {𝑒}) ≤
𝛼 · 𝑐𝑖 (𝐴 𝑗 ) holds. Then, by summing up 𝑗 over 𝑁 \ {𝑖} and adding a

term 𝛼𝑐𝑖 (𝐴𝑖 ) on both sides, the following holds,

𝛼 ·
∑︁
𝑗 ∈𝑁

𝑐𝑖 (𝐴 𝑗 ) ≥ (𝑛 − 1 + 𝛼)𝑐𝑖 (𝐴𝑖 ) − (𝑛 − 1)𝑐𝑖 (𝑒) . (1)

From Lemma 2.8, we have MMS𝑖 (𝑛, 𝐸) ≥ max{ 1

𝑛𝑐𝑖 (𝐸), 𝑐𝑖 (𝑒)}, and
by additivity, it holds that

𝑛𝛼MMS𝑖 (𝑛, 𝐸) ≥ (𝑛 − 1 + 𝛼)𝑐𝑖 (𝐴𝑖 ) − (𝑛 − 1)MMS𝑖 (𝑛, 𝐸) . (2)

Inequality (2) is equivalent to
𝑐𝑖 (𝐴𝑖 )

MMS𝑖 (𝑛,𝑀) ≤ 𝑛𝛼+𝑛−1

𝑛−1+𝛼 , as required.

As for tightness, consider an instance with 𝑛 agents and a set

𝐸 = {𝑒1, . . . , 𝑒𝑛2−𝑛+1
} of 𝑛2 − 𝑛 + 1 chores. Agents have identical

cost profile. The cost function of agent 1 is as follow:

𝑐1

(
𝑒 𝑗
)
=


𝛼 + 𝑛 − 1, 𝑗 = 1,

𝛼, 2 ≤ 𝑗 ≤ 𝑛,

1, 𝑗 ≥ 𝑛 + 1.

Now, consider an allocation B = {𝐵1, . . . , 𝐵𝑛} with 𝐵1 = {𝑒1, . . . ,

𝑒𝑛} and 𝐵 𝑗 = {𝑒𝑛+(𝑛−1) ( 𝑗−2)+1
, . . . , 𝑒𝑛+(𝑛−1) ( 𝑗−1) } for any 𝑗 ≥ 2.

Since agents have identical cost profile, for any agent 𝑖 and bundle

𝐵 𝑗 with 𝑗 ≥ 2, 𝑐𝑖 (𝐵 𝑗 ) = 𝑐1 (𝐵 𝑗 ) = 𝑛 − 1, smaller than the cost

of bundle 𝐵1. Accordingly, except for agent 1, no one else will

violate the condition of 𝛼-EF1 and MMS. As for agent 1, since

𝑐1 (𝐵1 \ {𝑒1}) = (𝑛 − 1)𝛼 = 𝛼𝑐1 (𝐵 𝑗 ),∀𝑗 ≥ 2, then we can claim

that allocation B is 𝛼-EF1. To calculate MMS1 (𝑛, 𝐸), consider an
allocation T = (𝑇1, . . . ,𝑇𝑛) with𝑇1 = {𝑒1} and𝑇𝑗 = {𝐵 𝑗 ∪

{
𝑒 𝑗
}
} for

any 2 ≤ 𝑗 ≤ 𝑛. It is not hard to verify that 𝑐1 (𝑇𝑗 ) = 𝛼 + 𝑛 − 1 for

any 𝑗 ∈ 𝑁 . Therefore, we have MMS1 (𝑛, 𝐸) = 𝛼 + 𝑛 − 1 implying

the ratio
𝑐1 (𝐵1)

MMS1 (𝑛,𝐸) = 𝑛𝛼+𝑛−1

𝑛−1+𝛼 , completing the proof. □

We now study 𝛼-EFX in terms of its approximation guarantee

for MMS and provide upper and lower bounds for general 𝛼 ≥ 1 or

𝑛 ≥ 2.

Proposition 3.5. When agents have additive cost functions, for
any 𝛼 ≥ 1 and 𝑛 ≥ 2, an 𝛼-EFX allocation is min

{
2𝑛𝛼

𝑛−1+2𝛼 ,
𝑛𝛼+𝑛−1

𝑛−1+𝛼
}
-

MMS, while it is not 𝛽-MMS for any 𝛽 < max

{
2𝑛𝛼

2𝛼+2𝑛−3
, 2𝑛
𝑛+1

}
.

Proof. We first prove the upper bound. Let A = (𝐴1, . . . , 𝐴𝑛)
be an 𝛼-EFX allocation with 𝛼 ≥ 1 and we focus on agent 𝑖 . The

upper bound
𝑛𝛼+𝑛−1

𝑛−1+𝛼 directly follows from Proposition 3.3 and 3.4.

In what follows, we prove the upper bound
2𝑛𝛼

𝑛−1+2𝛼 . If 𝐴𝑖 = ∅ or

𝐴𝑖 only contains chores with zero cost for agent 𝑖 , then 𝑐𝑖 (𝐴𝑖 ) = 0

which would violate the condition of neither MMS nor 𝛼-EFX. Thus,

without loss of generality, we assume that 𝐴𝑖 ≠ ∅ and meanwhile

contains chores with a strictly positive cost for agent 𝑖 . Let 𝑒∗ be
the chore in bundle 𝐴𝑖 having the minimum cost for agent 𝑖 , i.e.,

𝑒∗ ∈ arg min𝑒∈𝐴𝑖
𝑐𝑖 (𝑒). Next, we divide the proof into two cases.
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Case 1: |𝐴𝑖 | = 1. Then 𝑒∗ is the unique element in 𝐴𝑖 , and

thus 𝑐𝑖 (𝐴𝑖 ) = 𝑐𝑖 (𝑒∗). By the second point of Lemma 2.8, 𝑐𝑖 (𝑒∗) ≤
MMS𝑖 (𝑛, 𝐸) holds, and thus, 𝑐𝑖 (𝐴𝑖 ) ≤ MMS𝑖 (𝑛, 𝐸).

Case 2: |𝐴𝑖 | ≥ 2. By the definition of 𝛼-EFX, for any agent

𝑗 ∈ 𝑁 \ {𝑖} , 𝑐𝑖 (𝐴𝑖 \ {𝑒∗}) ≤ 𝛼 ·𝑐𝑖 (𝐴 𝑗 ). Since 𝑒∗ ∈ arg min𝑒∈𝐴𝑖
𝑐𝑖 (𝑒)

and |𝐴𝑖 | ≥ 2, we have 𝑐𝑖 (𝑒∗) ≤ 1

2
𝑐𝑖 (𝐴𝑖 ). Then, the following holds,

𝛼𝑐𝑖 (𝐴 𝑗 ) ≥ 𝑐𝑖 (𝐴𝑖 ) − 𝑐𝑖 (𝑒∗) ≥
1

2

𝑐𝑖 (𝐴𝑖 ), ∀𝑗 ∈ 𝑁 \ {𝑖} . (3)

By summing up 𝑗 over 𝑁 \ {𝑖} and adding a term 𝛼𝑐𝑖 (𝐴𝑖 ) on both

sides of inequality (3), the following holds

𝛼𝑐𝑖 (𝐸) = 𝛼
∑︁

𝑗 ∈𝑁 \{𝑖 }
𝑐𝑖 (𝐴 𝑗 ) + 𝛼𝑐𝑖 (𝐴𝑖 ) ≥

𝑛 − 1 + 2𝛼

2

𝑐𝑖 (𝐴𝑖 ) . (4)

On the other hand, from the first point of Lemma 2.8, we know

MMS𝑖 (𝑛, 𝐸) ≥ 1

𝑛𝑐𝑖 (𝐸), which combines inequality (4) yielding the

ratio

𝑐𝑖 (𝐴𝑖 )
MMS𝑖 (𝑛,𝑀) ≤ 2𝑛𝛼

𝑛 − 1 + 2𝛼
.

Regarding the lower bound
2𝑛
𝑛+1

, consider an instance with 𝑛 agents

and a set 𝐸 = {𝑒1, 𝑒2, ..., 𝑒2𝑛} of 2𝑛 chores. Agents have identical

cost profile. The cost function of agent 1 is 𝑐1 (𝑒 𝑗 ) = ⌈ 𝑗
2
⌉ for any

𝑗 ≥ 1. It is easy to see MMS𝑖 (𝑛, 𝐸) = 𝑛 + 1 for any agent 𝑖 . Then,

consider an allocation B = (𝐵1, ..., 𝐵𝑛) with 𝐵1 = {𝑒2𝑛−1, 𝑒2𝑛} and
𝐵𝑖 = (𝑒𝑖−1, 𝑒2𝑛−𝑖 ) for any 𝑖 ≥ 2. Since agents have identical profile,

for any agent 𝑖 and bundle 𝐵 𝑗 with 𝑗 ≥ 2, we have 𝑐𝑖 (𝐵 𝑗 ) = 𝑐1 (𝐵 𝑗 ) =
𝑛. Thus, except for agent 1, no one else will violate the condition of

MMS and EFX. As for agent 1, envy can be eliminated by removing

any single chore since 𝑐1 (𝐵1 \ {𝑒2𝑛}) = 𝑐1 (𝐵1 \ {𝑒2𝑛−1}) = 𝑛. Hence,

the allocation B is EFX and its approximation guarantee on MMS

equals to
𝑐1 (𝐵1)

MMS1 (𝑛,𝐸) = 2𝑛
𝑛+1

, as required.

Next, for lower bound
2𝑛𝛼

2𝛼+2𝑛−3
, let us consider an instance with

𝑛 agents and a set 𝐸 = {𝑒1, ..., 𝑒2𝑛2−2𝑛} of 2𝑛2 − 2𝑛 chores. We

focus on agent 1 and his cost function is 𝑐1 (𝑒 𝑗 ) = 2𝛼 for 𝑗 ≤
𝑛 and 𝑐1 (𝑒 𝑗 ) = 1 for 𝑗 ≥ 𝑛 + 1. Now, consider an allocation

B = (𝐵1, ..., 𝐵𝑛) with 𝐵1 = {𝑒1, ..., 𝑒𝑛}, 𝐵2 = {𝑒𝑛+1, ..., 𝑒3𝑛−2} and
𝐵 𝑗 = {𝑒

3𝑛−1+( 𝑗−3) (2𝑛−1) , ..., 𝑒3𝑛−2+( 𝑗−2) (2𝑛−1) } for any 𝑗 ≥ 3. Ac-

cordingly, bundle 𝐵2 contains 2𝑛 − 2 chores and 𝐵 𝑗 contains 2𝑛 − 1

chores for any 𝑗 ≥ 3. For 𝑖 ≥ 2, every agent 𝑖 has cost 0 < 𝛿 < 𝜖

on each single chore in bundle 𝐵𝑖 with 𝛿 arbitrarily small, while

his cost on other chores are one. Consequently, except for agent

1, no one else will violate the condition of MMS and 𝛼-EFX. As

for agent 1, his cost on 𝐵2 is the smallest over all bundles and

𝑐1 (𝐵1 \ {𝑒1}) = 2𝛼 (𝑛 − 1) = 𝛼𝑐1 (𝐵2), as a result, the allocation

B is 𝛼-EFX. For MMS1 (𝑛, 𝐸), it happens that 𝐸 can be evenly di-

vided into 𝑛 bundles of the same cost (for agent 1), so we have

MMS1 (𝑛, 𝐸) = 2𝛼 + 2𝑛 − 3 implying the ratio
𝑐1 (𝐵1)

MMS1 (𝑛,𝐸) = 2𝑛𝛼
2𝛼+2𝑛−3

,

completing the proof. □

The upper bound in Proposition 3.5 is almost tight since
𝑛𝛼+𝑛−1

𝑛−1+𝛼 −
2𝑛𝛼

2𝛼+2𝑛−3
< 𝑛−1

𝑛−1+𝛼 < 1. In addition, we highlight that the upper

and lower bounds provided in Proposition 3.5 are tight in two

interesting cases: (i) 𝛼 = 1 and (ii) 𝑛 = 2.

On the approximation of EFX and EF1 for PMMS, we have the

following propositions.

Proposition 3.6. For any 𝛼 ≥ 1, an 𝛼-EFX allocation is also
4𝛼

2𝛼+1
-PMMS, and this guarantee is tight.

Proposition 3.7. For any 𝛼 ≥ 1, an 𝛼-EF1 allocation is also
2𝛼+1

𝛼+1
-PMMS, and this guarantee is tight.

In addition to the approximation guarantee for PMMS, Propo-

sition 3.7 also has a direct implication in approximating PMMS

algorithmically. It is known that an EF1 allocation can be found

efficiently by allocating chores in a round-robin fashion — agents in

turn pick their most preferred chores from the remaining [4]. There-

fore, Proposition 3.7 with 𝛼 = 1 leads to the following corollary,

which is the only algorithmic result for PMMS (in chores allocation),

to the best of our knowledge.

Corollary 3.8. The round-robin algorithm outputs a 3

2
-PMMS

allocation in polynomial time.

4 PERFORMANCE BOUNDS ON PMMS AND
MMS

Note that PMMS implies EFX in goods allocation according to

Caragiannis et al. [21]. This implication also holds in allocating

chores as stated in our proposition below.

Proposition 4.1. A PMMS allocation is also EFX.

Since EFX implies EF1, Proposition 4.1 directly leads to the fol-

lowing corollary.

Corollary 4.2. A PMMS allocation is also EF1.

For approximate version of PMMS, when allocating goods it is

shown in Amanatidis et al. [2] that for any 𝛼 , 𝛼-PMMS can imply

𝛼
2−𝛼 -EF1. However, in the case of chores, our results indicate that

𝛼-PMMS has no bounded guarantee for EF1.

Proposition 4.3. For 𝑛 ≥ 2, an 𝛼-PMMS allocation with 𝛼 > 1 is
not necessarily 𝛽-EF1 for any 𝛽 ≥ 1.

Proof. First note according to Lemma 2.9 that we can assume

without loss of generality that 1 < 𝛼 < 2. Consider an instance

with 𝑛 agents and 𝑛 + 1 chores 𝑒1 . . . , 𝑒𝑛+1. Agents have identical

cost profile. For any agent 𝑖 , the cost function is as follow: 𝑐𝑖 (𝑒1) =
1

𝛼−1
, 𝑐𝑖 (𝑒2) = 1 and 𝑐𝑖 (𝑒 𝑗 ) = 𝜖,∀𝑗 ≥ 3 where 𝜖 takes any arbitrarily

small positive value. Then, consider an allocation B = (𝐵1, . . . , 𝐵𝑛)
with 𝐵1 = {𝑒1, 𝑒2} and 𝐵 𝑗 = {𝑒 𝑗+1},∀𝑗 ≥ 2. Consequently, except

for agent 1, no one else will violate the condition of EF1 and 𝛼-

PMMS. As for agent 1, notice that
1

𝛼−1
> 1+𝜖 and thus, for any 𝑗 ≥ 2,

the combined bundle 𝐵1 ∪ 𝐵 𝑗 admits MMS1 (2, 𝐵1 ∪ 𝐵 𝑗 ) = 1

𝛼−1
that

implies
𝑐1 (𝐵1)

MMS1 (2,𝐵1∪𝐵 𝑗 ) = 𝛼 . Thus, allocation B is 𝛼-PMMS. For the

guarantee on EF1, as 𝑐1 (𝐵 𝑗 ) = 𝜖 for any 𝑗 ≥ 2, then removing the

chorewith the largest cost from𝐵2 still yields the ratio
𝑐1 (𝐵1\{𝑒1 })

𝑐1 (𝐵 𝑗 ) =

1

𝜖 → ∞ as 𝜖 → 0, completing the proof. □

Since for any 𝛼 ≥ 1, 𝛼-EFX is stricter than 𝛼-EF1, the impossibil-

ity result on EF1 in Proposition 4.3 is also true for EFX.

Proposition 4.4. For 𝑛 ≥ 2, an 𝛼-PMMS allocation with 𝛼 > 1 is
not necessarily a 𝛽-EFX allocation for any 𝛽 ≥ 1.
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We now study the approximation guarantee of PMMS for MMS.

Since these two notions coincide when there are only two agents,

we assume there are at least three agents. We first provide a tight

bound for 𝑛 = 3 and then give an almost tight bound for general 𝑛.

Proposition 4.5. For 𝑛 = 3, a PMMS allocation is also 4

3
-MMS,

and moreover, this bound is tight.

For general 𝑛, we use the connections between PMMS, EFX

and MMS to find the approximation guarantee of PMMS for MMS.

According to Proposition 4.1, a PMMS allocation is also EFX, and by

Proposition 3.5, EFX implies
2𝑛
𝑛+1

-MMS. As a result, we can claim

that PMMS also implies
2𝑛
𝑛+1

-MMS. With the following proposition

we show that this guarantee is almost tight.

Proposition 4.6. For 𝑛 ≥ 4, a PMMS allocation is 2𝑛
𝑛+1

-MMS but
not necessarily ( 2𝑛+2

𝑛+3
− 𝜖)-MMS for any 𝜖 > 0.

Next, we investigate the approximation guarantee of approxi-

mate PMMS for MMS. Let us start with an example of six chores

𝐸 = {𝑒1, . . . , 𝑒6} and three agents. We focus on agent 1 and the cost

function of agent 1 is 𝑐1 (𝑒 𝑗 ) = 1 for 𝑗 = 1, 2, 3 and 𝑐1 (𝑒 𝑗 ) = 0 for

𝑗 = 4, 5, 6, thus clearly, MMS1 (3, 𝐸) = 1. Consider an allocation

A = (𝐴1, 𝐴2, 𝐴3) with 𝐴1 = {𝑒1, 𝑒2, 𝑒3}. It is not hard to verify that

allocation A is a
3

2
-PMMS allocation and also a 3-MMS allocation.

Combining the result in Lemma 2.9, we observe that allocation A
only has a trivial guarantee on the notion of MMS. Motivated by

this example, we focus on 𝛼-PMMS allocations with 𝛼 < 3

2
.

Proposition 4.7. For any 𝑛 ≥ 3 and 1 < 𝛼 < 3

2
, an 𝛼-PMMS allo-

cation is 𝑛𝛼
𝛼+(𝑛−1) (1−𝛼

2
) -MMS, but not necessarily ( 𝑛𝛼

𝛼+(𝑛−1) (2−𝛼) −𝜖)-
MMS for any 𝜖 > 0.

Before we can prove the above proposition, we need the follow-

ing two lemmas.

Lemma 4.8. For any 𝑖 ∈ 𝑁 and bundle 𝑆 ⊆ 𝐸, supposeMMS𝑖 (2, 𝑆)
is defined by a 2-partition T = (𝑇1,𝑇2) with 𝑐𝑖 (𝑇1) = MMS𝑖 (2, 𝑆). If
the number of chores in 𝑇1 is at least two, then 𝑐𝑖 (𝑆)

MMS𝑖 (2,𝑆) ≥ 3

2
.

Lemma 4.9. For any 𝑖 ∈ 𝑁 and bundles 𝑆1, 𝑆2 ⊆ 𝐸, ifMMS𝑖 (2, 𝑆1∪
𝑆2) > MMS𝑖 (2, 𝑆1), then MMS𝑖 (2, 𝑆1 ∪ 𝑆2) ≤ 1

2
𝑐𝑖 (𝑆1) + 𝑐𝑖 (𝑆2).

Proof of Proposition 4.7. We first prove the upper bound. Let

A = (𝐴1, ..., 𝐴𝑛) be an 𝛼-PMMS allocation and we focus our analysis

on agent 𝑖 . Let 𝛼 (𝑖) = max𝑗≠𝑖
𝑐𝑖 (𝐴𝑖 )

MMS𝑖 (2,𝐴𝑖∪𝐴 𝑗 ) and 𝑗 (𝑖) be the index

such thatMMS𝑖 (2, 𝐴𝑖∪𝐴 𝑗 (𝑖 ) ) ≤ MMS𝑖 (2, 𝐴𝑖∪𝐴 𝑗 ) for any 𝑗 ∈ 𝑁 (tie

breaks arbitrarily). By these constructions, clearly, 𝛼 = max𝑖∈𝑁 𝛼 (𝑖)

and 𝑐𝑖 (𝐴𝑖 ) = 𝛼 (𝑖) · MMS𝑖 (2, 𝐴𝑖 ∪ 𝐴 𝑗 (𝑖 ) ). Then, we split our proof
into two different cases.

Case 1: ∃ 𝑗 ≠ 𝑖 such that MMS𝑖 (2, 𝐴𝑖 ∪ 𝐴 𝑗 ) = MMS𝑖 (2, 𝐴𝑖 ).
Then 𝛼 (𝑖) =

𝑐𝑖 (𝐴𝑖 )
MMS𝑖 (2,𝐴𝑖 ) holds. Suppose MMS𝑖 (2, 𝐴𝑖 ) is defined

by the 2-partition (𝑇1,𝑇2) with 𝑐𝑖 (𝑇1) = MMS𝑖 (2, 𝐴𝑖 ). If |𝑇1 | ≥ 2,

by Lemma 4.8, we have 𝛼 (𝑖) =
𝑐𝑖 (𝐴𝑖 )

MMS𝑖 (2,𝐴𝑖 ) ≥ 3

2
, contradicting to

𝛼 (𝑖) ≤ 𝛼 < 3

2
. As a result, we can further assume |𝑇1 | = 1. By

the first point of Lemma 2.8, we have MMS𝑖 (𝑛, 𝐸) ≥ 𝑐𝑖 (𝑇1) and
accordingly,

𝑐𝑖 (𝐴𝑖 )
MMS𝑖 (𝑛,𝐸) ≤ 𝑐𝑖 (𝐴𝑖 )

𝑐𝑖 (𝑇1) = 𝛼 (𝑖) ≤ 𝛼 . For 1 < 𝛼 < 3

2
and

𝑛 ≥ 3, it is not hard to verify that 𝛼 ≤ 𝑛𝛼
𝛼+(𝑛−1) (1−𝛼

2
) , completing

the proof for this case.

Case 2: ∀𝑗 ≠ 𝑖 , MMS𝑖 (2, 𝐴𝑖 ∪𝐴 𝑗 ) > MMS𝑖 (2, 𝐴𝑖 ) holds. Accord-
ing to Lemma 4.9, for any 𝑗 ≠ 𝑖 , the following holds

MMS𝑖 (2, 𝐴𝑖 ∪𝐴 𝑗 ) ≤
1

2

𝑐𝑖 (𝐴𝑖 ) + 𝑐𝑖 (𝐴 𝑗 ) . (5)

Due to the construction of 𝛼 (𝑖)
, for any 𝑗 ≠ 𝑖 , we have 𝑐𝑖 (𝐴𝑖 ) ≤

𝛼 (𝑖) ·MMS𝑖 (2, 𝐴𝑖∪𝐴 𝑗 ). Combining Inequality (5), we have 𝑐𝑖 (𝐴 𝑗 ) ≥
2−𝛼 (𝑖 )

2𝛼 (𝑖 ) 𝑐𝑖 (𝐴𝑖 ) for any 𝑗 ≠ 𝑖 . Thus, the following holds,

𝑐𝑖 (𝐴𝑖 )
MMS𝑖 (𝑛, 𝐸)

≤ 𝑛𝑐𝑖 (𝐴𝑖 )
𝑐𝑖 (𝐸)

≤ 𝑛𝑐𝑖 (𝐴𝑖 )
𝑐𝑖 (𝐴𝑖 ) + (𝑛 − 1) 2−𝛼 (𝑖 )

2𝛼 (𝑖 ) 𝑐𝑖 (𝐴𝑖 )
. (6)

The last expression in (6) is monotonically increasing in 𝛼 (𝑖)
, and

accordingly, we have

𝑐𝑖 (𝐴𝑖 )
MMS𝑖 (𝑛, 𝐸)

≤ 𝑛𝛼

𝛼 + (𝑛 − 1) (1 − 𝛼
2
) .

As for the lower bound, consider an instance of 𝑛 agents with

𝑛
2
∈ N+ and a set 𝐸 = {𝑒1, ..., 𝑒𝑛2 } of𝑛2

chores. Agents have identical

cost functions. The cost function of agent 1 is as follows: 𝑐1 (𝑒 𝑗 ) = 𝛼

for 𝑗 = 1, ..., 𝑛 and 𝑐1 (𝑒 𝑗 ) = 2 − 𝛼 for 𝑗 = 𝑛 + 1, ..., 𝑛2
. Now, consider

an allocation B = (𝐵1, ..., 𝐵𝑛) with 𝐵𝑖 = {𝑒 (𝑛−1)𝑖+1
, ..., 𝑒𝑛𝑖 } for 𝑖 =

1, ..., 𝑛. Since 𝛼 > 1, it is easy to see that, except for agent 1, no

one else will violate the condition of PMMS, and moreover, the

approximation guarantee on MMS is determined by agent 1. For

agent 1, since
𝑛
2
∈ N+, MMS1 (2, 𝐵1 ∪ 𝐵 𝑗 ) = 𝑛 holds for any 𝑗 ≥ 2,

and due to 𝑐1 (𝐵1) = 𝑛𝛼 , we can claim that the allocation B is 𝛼-

PMMS. It is not hard to verify that MMS1 (𝑛, 𝐸) = 𝛼 + (𝑛− 1) (2−𝛼),
yielding the ratio

𝑛𝛼
𝛼+(𝑛−1) (2−𝛼) , completing the proof. □

The motivating example right before Proposition 4.7, unfortu-

nately, only works for the case of 𝑛 = 3. When 𝑛 becomes larger,

an 𝛼-PMMS allocation with 𝛼 ≥ 3

2
is still possible to provide a

non-trivial approximation guarantee on the notion of MMS.

We remain to consider the approximation guarantee of MMS

for other fairness criteria. Notice that all of EFX, EF1 and PMMS

can have non-trivial guarantee for MMS (i.e., better than 𝑛-MMS).

However, the converse is not true and even the exact MMS does

not provide any substantial guarantee for the other three criteria.

Proposition 4.10. For any 𝑛 ≥ 3, there exists an MMS allocation
that is only 2-PMMS.

Proposition 4.11. AnMMS allocation is not necessarily 𝛽-EF1
or 𝛽-EFX for any 𝛽 ≥ 1.

5 PRICE OF FAIRNESS
After having compared the fairness criteria between themselves,

in this section we study the efficiency of these fairness criteria in

terms of the price of fairness with respect to social optimality of an

allocation.

5.1 Two Agents
We start with the case of two players. Our first result concerns EF1.

Proposition 5.1. The price of EF1 is 5/4 when there are two
agents.
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According to Propositions 3.4 and 3.6, EF1 implies 2-MMS and

3

2
-PMMS. The following two propositions confirm an intuition —

if one relaxes the fairness condition, then less efficiency will be

sacrificed.

Proposition 5.2. The price of 2-MMS is 1 when there are two
agents.

The above proposition is implied directly by Lemma 2.9.

Proposition 5.3. The price of 3

2
-PMMS is 7/6 when there are two

agents.

Proof. We first prove the upper bound. Given an instance 𝐼 , let

O = (𝑂1,𝑂2) be an optimal allocation of 𝐼 . If the allocation O is

already
3

2
-PMMS, we are done. For the sake of contradiction, we

assume that agent 1 violates the condition of
3

2
-PMMS in allocation

O, i.e., 𝑐1 (𝑂1) > 3

2
MMS1 (2, 𝐸). Suppose 𝑂1 = {𝑒1, . . . , 𝑒ℎ} and

the index satisfies the following rule;
𝑐1 (𝑒1)
𝑐2 (𝑒1) ≥ 𝑐1 (𝑒2)

𝑐2 (𝑒2) ≥ · · · ≥
𝑐1 (𝑒ℎ)
𝑐2 (𝑒ℎ) . In this proof, for simplicity, we write 𝐿(𝑘) := {𝑒1, ..., 𝑒𝑘 } for
any 1 ≤ 𝑘 ≤ ℎ and 𝐿(0) = ∅. Then, let 𝑠 be the index such that

𝑐1 (𝑂1 \𝐿(𝑠)) ≤ 3

2
MMS1 (2, 𝐸) and 𝑐1 (𝑂1 \𝐿(𝑠−1)) > 3

2
MMS1 (2, 𝐸).

In the following, we divide our proof into two cases.

Case 1: 𝑐1 (𝐿(𝑠)) ≤ 1

2
𝑐1 (𝑂1). Consider allocation A = (𝐴1, 𝐴2)

with 𝐴1 = 𝑂1 \ 𝐿(𝑠) and 𝐴2 = 𝑂2 ∪ 𝐿(𝑠). We first show allocation

A is
3

2
-PMMS. For agent 1, due to the construction of index 𝑠 , he

does not violate the condition of
3

2
-PMMS. As for agent 2, we

claim that 𝑐2 (𝐴2) = 1 − 𝑐2 (𝑂1 \ 𝐿(𝑠 − 1)) + 𝑐2 (𝑒𝑠 ) < 1

4
+ 𝑐2 (𝑒𝑠 )

because 𝑐2 (𝑂1 \ 𝐿(𝑠 − 1)) ≥ 𝑐1 (𝑂1 \ 𝐿(𝑠 − 1)) > 3

2
MMS1 (2, 𝐸) ≥ 3

4

where the first inequality transition is due to the fact that 𝑂1 is the

bundle assigned to agent 1 in the optimal allocation. If 𝑐2 (𝑒𝑠 ) < 1

2
,

then clearly, 𝑐2 (𝐴2) < 3

4
≤ 3

2
MMS2 (2, 𝐸). If 𝑐2 (𝑒𝑠 ) ≥ 1

2
, then

𝑐2 (𝑒𝑠 ) = MMS1 (2, 𝐸) and accordingly, it is not hard to verify that

𝑐2 (𝐴2) ≤ 3

2
MMS1 (2, 𝐸). Thus, A is a

3

2
-PMMS allocation.

Next, based on allocation A, we derive an upper bound on the

price of
3

2
-PMMS. First, by the order of index,

𝑐1 (𝐿 (𝑠))
𝑐2 (𝐿 (𝑠)) ≥ 𝑐1 (𝑂1)

𝑐2 (𝑂1)
holds, implying 𝑐2 (𝐿(𝑠)) ≤ 𝑐2 (𝑂1)

𝑐1 (𝑂1) 𝑐1 (𝐿(𝑠)). Since𝐴1 = 𝑂 \𝐿(𝑠) and
𝐴2 = 𝑂2 ∪ 𝐿(𝑠), we have the following:

Price of

3

2

-PMMS ≤ 1 + 𝑐2 (𝐿(𝑠)) − 𝑐1 (𝐿(𝑠))
𝑐1 (𝑂1) + 𝑐2 (𝑂2)

≤ 1 +
𝑐1 (𝐿(𝑠)) ( 𝑐2 (𝑂1)

𝑐1 (𝑂1) − 1)
𝑐1 (𝑂1) + 𝑐2 (𝑂2)

= 1 +
𝑐1 (𝐿 (𝑠))
𝑐1 (𝑂1) (1 − 𝑐2 (𝑂2) − 𝑐1 (𝑂1))

𝑐1 (𝑂1) + 𝑐2 (𝑂2)

≤ 1 +
1

2
− 1

2
(𝑐1 (𝑂1) + 𝑐2 (𝑂2))

𝑐1 (𝑂1) + 𝑐2 (𝑂2)

≤ 1 − 1

2

+ 1

2

× 4

3

=
7

6

,

where the second inequality due to 𝑐2 (𝐿(𝑠)) ≤ 𝑐2 (𝑂1)
𝑐1 (𝑂1) 𝑐1 (𝐿(𝑠));

the third inequality due to the condition of Case 1; and the last

inequality is because 𝑐1 (𝑂1) > 3

2
MMS1 (2, 𝐸) ≥ 3

4
.

Case 2: 𝑐1 (𝐿(𝑠)) > 1

2
𝑐1 (𝑂1). We first derive a lower bound on

𝑐1 (𝑒𝑠 ). Since 𝑐1 (𝑒𝑠 ) = 𝑐1 (𝑂1 \ 𝐿(𝑠 − 1)) + 𝑐1 (𝐿𝑠 ) − 𝑐1 (𝑂1), combine

which with the condition of Case 2 implying 𝑐1 (𝑒𝑠 ) > 𝑐1 (𝑂1 \𝐿(𝑠 −
1)) − 1

2
𝑐1 (𝑂1), and consequently we have 𝑐1 (𝑒𝑠 ) > 3

2
MMS1 (2, 𝐸) −

1

2
𝑐1 (𝑂1) ≥ 1

4
where the last transition is due to MMS1 (2, 𝐸) ≥ 1

2

and 𝑐1 (𝑂1) ≤ 1. Then, we consider two subcases.

If 0 ≤ 𝑐2 (𝑒𝑠 ) − 𝑐1 (𝑒𝑠 ) ≤ 1

8
, consider an allocation A = (𝐴1, 𝐴2)

with𝐴1 = 𝑂1\{𝑒𝑠 } and𝐴2 = 𝑂2∪{𝑒𝑠 }. We first show the allocation

A is
3

2
-PMMS. For agent 1, since 𝑐1 (𝑒𝑠 ) > 1

4
, 𝑐1 (𝐴1) = 𝑐1 (𝑂1) −

𝑐1 (𝑒𝑠 ) < 3

4
≤ 3

2
MMS1 (2, 𝐸). As for agent 2, 𝑐2 (𝐴2) = 𝑐2 (𝑂2) +

𝑐2 (𝑒𝑠 ) ≤ 1 − 𝑐1 (𝑂1) + 𝑐2 (𝑒𝑠 ) < 1

4
+ 𝑐2 (𝑒𝑠 ). If 𝑐2 (𝑒𝑠 ) < 1

2
, then

clearly, 𝑐2 (𝐴2) ≤ 3

4
< 3

2
MMS2 (2, 𝐸) holds. If 𝑐2 (𝑒𝑠 ) ≥ 1

2
, we have

𝑐2 (𝑒𝑠 ) = MMS2 (2, 𝐸) and accordingly, it is not hard to verify that

𝑐2 (𝐴2) ≤ 3

2
MMS2 (2, 𝐸). Thus, the allocation A is

3

2
-PMMS. Next,

based on the allocation A, we derive an upper bound regarding the

price of
3

2
-PMMS,

Price of

3

2

-PMMS ≤ 𝑐1 (𝑂1) − 𝑐1 (𝑒𝑠 ) + 𝑐2 (𝑂2) + 𝑐2 (𝑒𝑠 )
𝑐1 (𝑂1) + 𝑐2 (𝑂2)

≤ 1 + 1

8

× 4

3

=
7

6

,

where the second inequality due to 0 ≤ 𝑐2 (𝑒𝑠 ) − 𝑐1 (𝑒𝑠 ) ≤ 1

8
and

𝑐1 (𝑂1) > 3

4
.

If 𝑐2 (𝑒𝑠 ) − 𝑐1 (𝑒𝑠 ) > 1

8
, consider an allocation A′ = (𝐴′

1
, 𝐴′

2
) with

𝐴′
1
= {𝑒𝑠 } and 𝐴′

2
= 𝐸 \ {𝑒𝑠 }. We first show that the allocation A′

is
3

2
-PMMS. For agent 1, due to Lemma 2.8, 𝑐1 (𝑒𝑠 ) ≤ MMS1 (2, 𝐸)

holds. As for agent 2, since 𝑐2 (𝑒𝑠 ) ≥ 𝑐1 (𝑒𝑠 ) > 1

4
, we have 𝑐2 (𝐴′

2
) =

𝑐2 (𝐸) − 𝑐2 (𝑒𝑠 ) < 3

4
≤ 3

2
MMS2 (2, 𝐸). Thus, the allocation A′

is

3

2
-PMMS. In the following, we first derive an upper bound for

𝑐2 (𝑂1 \ {𝑒𝑠 }) − 𝑐1 (𝑂1 \ {𝑒𝑠 }), then based on the bound, we provide

the target upper bound for the price of fairness. Since 𝑐1 (𝑂1) > 3

4

and 𝑐2 (𝑒𝑠 ) − 𝑐1 (𝑒𝑠 ) > 1

8
, we have 𝑐2 (𝑂1 \ {𝑒𝑠 }) − 𝑐1 (𝑂1 \ {𝑒𝑠 }) =

𝑐2 (𝑂1) − 𝑐1 (𝑂1) − (𝑐2 (𝑒𝑠 ) − 𝑐1 (𝑒𝑠 )) < 1

8
, and then, the following

holds,

Price of

3

2

-PMMS ≤ 1 + 𝑐2 (𝑂1 \ {𝑒𝑠 }) − 𝑐1 (𝑂1 \ {𝑒𝑠 })
𝑐1 (𝑂1) + 𝑐2 (𝑂2)

≤ 1 + 1

8

× 4

3

=
7

6

.

Up to here, we complete the proof of upper bound.

Regarding lower bound, consider an instance 𝐼 with two agents

and a set 𝐸 = {𝑒1, 𝑒2, 𝑒3, 𝑒4} of four chores. The cost function for

agent 1 is: 𝑐1 (𝑒1) = 3

8
, 𝑐1 (𝑒2) = 3

8
+ 𝜖, 𝑐1 (𝑒3) = 1

8
− 𝜖, 𝑐1 (𝑒4) = 1

8

where 𝜖 > 0 takes arbitrarily small value. For agent 2, here cost

function is: 𝑐2 (𝑒1) = 𝑐2 (𝑒2) = 1

2
, 𝑐2 (𝑒3) = 𝑐2 (𝑒4) = 0. It is not

hard to verify that MMS𝑖 (2, 𝐸) = 1

2
for any 𝑖 = 1, 2. In the optimal

allocation, the assignment is; 𝑒1, 𝑒2 to agent 1 and 𝑒3, 𝑒4 to agent 2,

resulting in OPT(𝐼 ) = 3

4
+𝜖 . Observe that to satisfy 3

2
-PMMS, agent

1 cannot receive both chores 𝑒1, 𝑒2, and accordingly, the minimum

social cost of a
3

2
-PMMS allocation is

7

8
by assigning 𝑒1 to agent 1

and the rest chores to agent 2. Based on this instance, when 𝑛 = 2,

the price of
3

2
-PMMS is at least

7

8

6

8
+𝜖 → 7

6
as 𝜖 → 0. □

We remark that if we have an oracle for the maximin share, then

our constructive proof of Proposition 5.3 can be transformed into

an efficient algorithm for finding a 3/2-PMMS allocation whose

cost is at most
7

6
times the optimal social cost. Moving to other

fairness criteria, we have the following uniform bound.
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Proposition 5.4. The price of PMMS, MMS, and EFX are all 2
when there are two agents.

5.2 More than Two Agents
Note that the existence of an MMS allocation is not guaranteed in

general [7, 31] and the existence of PMMS or EFX allocation is still

open when 𝑛 ≥ 3. Nonetheless, we are still interested in the prices

of fairness in case such a fair allocation does exist. Observe that

when the number of chore𝑚 ≤ 2, the price of EF1, EFX, PMMS is

trivially 1. If𝑚 = 1, assigning the unique chore to any agent satisfies

all these three fairness criteria, so does the optimal allocation. If

𝑚 = 2, in an optimal allocation, it never happens that both of

the two chores are assigned to the same agent. The reason is that

if an agent has the smallest cost on one chore, then his cost on

another chore is higher than someone else due to the normalized

cost function. In the following, we settle down the case of𝑚 ≥ 3.

Proposition 5.5. For 𝑛 ≥ 3 and𝑚 ≥ 3, the price of EF1, EFX

and PMMS are all infinite.

In the context of goods allocation, Barman et al. [8] present an

asymptotically tight price of EF1, 𝑂 (
√
𝑛). However, as shown by

Proposition 5.5, when allocating chores, the price of EF1 is infinite,

which shows a sharp contrast between goods and chores allocation.

By using a similar construction to the one in the proof of Propo-

sition 5.5, we can establish the following proposition.

Proposition 5.6. For 𝑛 ≥ 3, the price of 3

2
-PMMS is infinite.

We are now left with MMS fairness. Let us first provide upper

and lower bounds on the price of MMS.

Proposition 5.7. For 𝑛 ≥ 3, the price of MMS is at most 𝑛2 and
at least 𝑛

2
.

As mentioned earlier, the existence of MMS allocation is not

guaranteed. So we also provide an asymptotically tight price of

2-MMS.

Proposition 5.8. For 𝑛 ≥ 3, the price of 2-MMS is Θ(𝑛)

6 CONCLUSIONS
In this paper, we are concerned with fair allocations of indivisible

chores among agents under the setting that the cost functions are

additive. First we have established pairwise connections between

several relaxations of the envy-free fairness in allocating, which

look at how an allocation under one fairness criterion provides

an approximation guarantee for fairness under another criterion.

Some of our results have shown a sharp contrast to what is known

in allocating indivisible goods, reflecting the difference between

goods and chores allocation. Then we have studied the trade-off

between fairness and efficiency, for which we have established the

price of fairness for all these fairness notions. We hope our results

have provided an almost complete picture for the connections be-

tween these chores fairness criteria together with their individual

efficiencies relative to social optimum.
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