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ABSTRACT
Green Security Games (GSGs) have been successfully used in the
protection of valuable resources such as fisheries, forests, and
wildlife. Real-world deployment involves both resource allocation
and subsequent coordinated patrolling with communication in the
presence real-time, uncertain information. Previous game models
do not address both of these stages simultaneously. Furthermore,
adopting existing solution strategies is difficult since they do not
scale well for larger, more complex variants of the game models.
We propose a novel GSG model to address these challenges. We
also present a novel algorithm, CombSGPO, to compute a defender
strategy for this game model. CombSGPO performs policy search
over a multidimensional, discrete action space to compute an al-
location strategy that is best suited to a best-response patrolling
strategy for the defender, learnt by training a multi-agent Deep Q-
Network. We show via experiments that CombSGPO converges to
better strategies and is more scalable than comparable approaches.
From a detailed analysis of the coordination and signaling behavior
learnt by CombSGPO, we find that strategic signaling emerges in
the final learnt strategy.
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1 INTRODUCTION
Conservation of natural areas, forests, fisheries and wildlife (“green
domains”) is increasingly important in the face of climate change
and biodiversity loss. In order to model the protection of these
resources, researchers have turned to game theory. Stackelberg Se-
curity Games (SSGs) have found extensive use in resource allocation
and patrolling in domains such as airport security, transportation,
and protection of critical infrastructure [18, 24, 29]. Green Security
Games (GSGs), a sub-class of SSGs, have been used to model re-
peated interactions between defenders and adversaries specifically
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in green domains. In these domains, defenders protect a finite set
of targets (e.g., wildlife) with limited resources, while adversaries
plan attacks with knowledge about the defender’s strategy.

Traditional approaches to compute optimal defender strategies
for resource allocation or patrolling rely on linear programming
(LP) and mixed integer linear programming (MILP) [6, 7, 27]. While
a number of such approaches have been developed for GSGs with
real-time information [2, 4, 28], these techniques do not scale well
with large complex GSGs such as GSG-I [26]. [11] and [12] scale
better given their use of deep reinforcement learning algorithms,
but they focus only on resource allocation and not on comput-
ing patrolling strategies. On the other hand, [26] focuses only on
computing patrolling strategies in a game model that involves a
single defender and a single adversary. None of [11, 12, 26] consider
uncertainty in real-time observation information of the agents or
on learning communication strategies between multiple defender
agents. Although [4] also incorporates allocation and signaling
recommendations for a team of defender resources with uncertain,
real-time information, it does not scale effectively to larger areas,
multiple adversaries or fine-grained patrols.

We therefore introduce a unified approach for strategic defender
allocation and patrolling with inter-resource communication and
signaling, given uncertain real-time information. We list our contri-
butions as follows: (1) We propose a game model with two stages
that captures real-time information through signaling and com-
munication within a team of players; the first stage for handling
resource allocation, and the second stage for patrolling once the allo-
cation decision has been made. This is an imperfect-information Ex-
tensive FormGame (EFG) capable of representing real-world scenar-
ios with multiple types of defender agents and multiple adversaries.
(2) We present Combined Security Game Policy Optimization
(CombSGPO), a novel solution strategy combining resource allo-
cation with patrolling. Our key algorithmic innovations include:
(i) The first use of Competitive Policy Optimization (coPO) [19] in
solving GSGs, (ii) Combining action representation learning with
coPO to efficiently handle huge, discrete action spaces in GSGs, and
(iii) A scalable training scheme combining coPO with multi-agent
reinforcement learning, enabling us to solve our novel game model.
We also provide extensive experimental results showing the effec-
tiveness of our solution strategy in different types of environments
and in the presence of different levels of uncertainty. Our approach
ensures very fast convergence to better strategies compared to Opt-
GradFP [11], a fictitious play-based approach and to GUARDSS [4],
a LP and MILP-based approach for computing optimal defender
strategies. (3) Finally, we analyze the signaling behaviors learnt
by CombSGPO, illustrating group formation and communication

Main Track AAMAS 2021, May 3-7, 2021, Online

1353



among defender resources, including signaling and notifications.
We find that strategic signaling in fact emerges in the final learnt
strategy, including a behavior in which drones start signaling or
notifying more if they do not see adversaries for some time.

2 PRELIMINARIES
2.1 Green Security Games
GSGs [1, 7], belonging to the larger class of SSGs [14, 23], feature
repeated interactions between two players, a leader (defender) and
a (boundedly rational) follower (adversary). The two players may
consist of multiple individual agents, who may or may not coordi-
nate. A pure strategy is a deterministic mapping from a player’s
observation space to its strategy space. Throughout this paper, we
use the words strategy and policy interchangeably. Each player can
play a pure strategy or a mixed strategy, a probability distribution
over pure strategies. The leader first commits to a strategy, and
then the follower optimizes its reward given the leader’s strategy.
GSGs can be zero-sum or non-zero-sum.

2.2 Competitive Policy Optimization
In a zero-sum game with two players, the policy gradient algo-
rithm [22] derives policy updates for each agent by maximizing
(or minimizing) the linear approximation of the game objective.
This does not take the interaction between players into account
and therefore, updates the policy of each agent assuming that the
other agent is stationary. This generally leads to poor results and
non-convergence to Nash Equilibrium (NE).

In contrast, coPO derives policy updates for each agent by com-
puting the NE of the bilinear approximation of the game objective:

\1 ← \1 + arg max
Δ\ 1:Δ\ 1+\ 1

Δ\1⊤𝐷\ 1[ + Δ\1⊤𝐷\ 1\ 2[Δ\2 − 1
2𝛼 ∥ Δ\

1 ∥2

(1)

\2 ← \2 + arg min
Δ\ 2:Δ\ 2+\ 2

Δ\2⊤𝐷\ 2[ + Δ\2⊤𝐷\ 2\ 1[Δ\1 + 1
2𝛼 ∥ Δ\

2 ∥2

(2)
where⊤means transpose; [ represents the game objective, which is
the expected utility given the players’ policies, parameterized by \1

and \2 for players 1 and 2, respectively; 𝐷\𝑖[ and 𝐷\𝑖\ 𝑗[ represent
the first order derivative and mixed second order derivative of [,
with respect to \𝑖 and \ 𝑗 ; 𝛼 represents the stepsize. As a result of
these updates, each agent updates its policy considering what its
opponent’s move will be at the current timestep and in the future. In
a two-player, zero-sum game, this greatly reduces non-stationarity
in the environment and leads to stable convergence to NE.

3 GAME MODEL
Our environment is a gridworld, which represents a protected area
where, e.g., wildlife, must be protected from illegal poaching. Each
cell in the gridworld represents a region in this area with a certain
natural resource, e.g., an animal density. We will use animal density
throughout the remainder of the paper, but this could also apply
to tree density in the case of logging, for example. Details about
animal density calculation are provided in Supplementary Material.
The defender has 𝑛 resources to protect the area, of which 𝑛𝑟 are
rangers (human patrollers) and 𝑛𝜌 are conservation drones. There

are 𝑛𝑎 adversaries. We collectively refer to the drones, rangers and
adversaries as agents.

Approaching the problem of combined allocation and patrolling
as a single large game leads to an acutely deep game tree, even more
complex than that of GSG-I introduced in [26]. By using a game
model with two stages, we essentially break up the complex problem
of combined allocation and patrolling into two stages which can be
solved separately. The game is played out in two stages (illustrated
in Fig.1) as an EFG featuring sequential interactions between the
agents, starting with resource allocation followed by patrolling:

(1) Allocation Stage: The defender allocates 𝑛𝜌 drones and 𝑛𝑟
rangers to different cells in the environment, which represent
the initial locations from which they should start patrolling.
In response, 𝑛𝑎 adversary allocations are made to target cells
from which to start attacking. We assume the adversary has
knowledge of the defender’s mixed strategy for allocation.
We formulate this stage as a single step, two-player, zero-sum
game between the defender and adversary (𝑛𝑎 adversary
agents collectively) where the payoff from choosing any
allocation is equal to the payoff from the patrolling stage
that follows it, as we explain next.

(2) Patrolling Stage: The defender agents (drones and rangers)
execute a coordinated patrolling strategy to protect targets,
while the adversaries execute a heuristic strategy based on
knowledge of the allocations of the defender and the animal
densities. Adversaries do not specifically knowwhether each
of these allocations contains a drone or a ranger. This stage
ends and the game is terminated when the adversaries flee
the grid, are captured, or when the time exceeds 𝑇 steps,
whichever comes first. We formulate this stage as a Partially
Observable Stochastic Game (POSG) [9].

In the patrolling stage, each drone is equipped with an object
detector [3] that detects an adversary if it is in the current cell of the
drone. Drones cannot apprehend an adversary, but can either notify
a ranger of the detection and current position, or send a warning
signal to an adversary (e.g., turning on lights) to deter an attack
and lead him to flee. A drone can warn irrespective of whether
the adversary is detected by it or not. An adversary does not do
damage to the cells he visits while fleeing, and has fled successfully
once he reaches a cell on any edge of the grid. While an adversary
can observe a drone signal, he cannot observe notifications sent by
drones to rangers. Rangers can apprehend an adversary if they are
in the same cell, including while the adversary flees.

We incorporate uncertainty in real-time information during the
patrolling stage. We focus on two types of uncertainties: detection
and observational. Detection uncertainty is due to uncertainty in
object detection [3], e.g., due to occlusion by trees. As in [4], we
consider false negative detections specifically, which we denote by
𝛽 . This means the drones may not always observe an adversary
in the same cell. Observational uncertainty is on the side of the
adversary, where a drone signals to the adversary but the adversary
might not see it, e.g., signals may be blocked by trees. As a result, an
adversary may not behave as expected and might not be deterred
even by signals from drones. We denote this uncertainty, which is
due to false negative observations by the adversary, by ^.
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Finally, during patrolling, each defender agent can only observe
its current cell, and thus has only local observations, such that even
if the observations of all defender agents were pooled together, the
environment would still be only collectively partially observable
[20]. We also assume that agents can keep track of the cells they
have visited from the start of a patrolling episode, which progresses
in discrete timesteps. An agent can move only to one of its neigh-
bouring cells at each timestep (and drones may also signal or notify
simultaneously). Agent action spaces are as follows:

• Drone (𝐴𝜌 ) : [ up, down, left, right, stay ] × [ Signal Adversary,
Notify Ranger, NoOp ]
• Ranger (𝐴𝑟 ) : [ up, down, left, right, stay ]
• Adversary (𝐴𝑎) : [ up, down, left, right, stay ]

Thus, the patrolling stage POSG consists of 𝑆 , the set of states;
𝐴→ 𝐴𝑟 ×𝐴𝜌 ×𝐴𝑎 , the set of all actions; O → O𝑟 ×O𝜌 ×O𝑎 , the set
of all observations where O𝑟 → O1

𝑟 ×...× O
𝑛𝑟
𝑟 is the set of observa-

tions of all rangers, O𝜌 → O1
𝜌 ×...× O

𝑛𝜌

𝜌 is the set of observations
of all drones, O𝑎 → O1

𝑎 ×...× O
𝑛𝑎
𝑎 is the set of observations of all

adversaries; T → 𝑆 ×𝐴, the state transition function; 𝑅 : 𝑆 ×𝐴→
R, the reward function; discount factor 𝛾 ∈ [0, 1].

Now, we describe the rewards. At each timestep in the patrolling
stage, defender agents collectively receive a positive reward 𝑟+ if
an adversary is caught, and a zero reward if the adversary flees. If
the adversary is not caught or deterred in the current timestep, the
defender agents receive a penalty 𝑟− for each target attacked by
each adversary, which is proportional to the animal density of the
attacked target. In addition to this, a drone agent can receive 𝑟𝑐 for
notifying or signaling when it detects an adversary and 𝑟𝑐 , a penalty
for notifying or signaling without detecting an adversary. We keep
the magnitudes of these additional individual rewards much lower
than the collective rewards, as they are meant to ensure efficient
communication by penalizing false and redundant notifications or
signaling. The sum of rewards of all defender agents at any timestep
𝑡 is given by 𝑟𝑑𝑡 . We denote drone, ranger, and adversary strategies
for the patrolling stage by 𝜙𝜌 , 𝜙𝑟 and 𝜙𝑎 , respectively.

In the allocation stage, the payoff to the defender from choosing
an allocation is 𝑅𝑑 , given by

∑𝑇
𝑡=0 𝑟𝑑𝑡 , which is the cumulative

reward from playing out the patrolling stage from that allocation.
When the adversary chooses an allocation, it receives a payoff of
𝑅𝑎 , where 𝑅𝑎 = -𝑅𝑑 . We denote defender and adversary allocation
strategies by 𝜋𝑑 and 𝜋𝑎 , respectively.

4 METHODOLOGY
We introduce our algorithm, CombSGPO, for computing the opti-
mal defender strategy for the two-stage game model introduced in
Sec. 3. CombSGPO first computes a defender patrolling strategy for
the patrolling stage of our game and then chooses defender alloca-
tions that are best suited for this patrolling strategy. Throughout
this section, “allocation” refers to the cells to which defender or
adversary agents are deployed during the allocation stage. In this
section, we first describe the behavioral model we use for our adver-
sary. We then describe how we compute defender strategies for the
patrolling and allocation stages, and introduce CombSGPO, which
combines the patrolling and allocation strategy computations.

4.1 Adversary Behavioral Model
The adversary allocation strategy, 𝜋𝑎 , is parameterized by the
weights of a neural network, which are updated to maximize the
best response against the defender’s allocation strategy. Adversary
strategy for the patrolling stage, 𝜙𝑎 , is a heuristic strategy based
on the animal density of each cell in the grid and the distance of
the adversary from defender agent allocations. This is meant to
reflect that adversaries prefer to attack regions with more animals,
while trying to be as distant from the defender agents as possible.
An adversary ranks each cell based on its minimum distance from
the allocation of any defender agent, such that cells that are farther
away from defender agents are given higher ranks. It then assigns
a score to each cell, equal to the average of the animal density and
the normalized distance rank of that cell. Over subsequent episodes,
the score for a cell is updated:

𝑠𝑐𝑜𝑟𝑒𝑎𝑣 = 0.5𝑎𝑑 + 0.5𝑑𝑟 (3)

𝑠𝑐𝑜𝑟𝑒𝑒𝑝+1 = 𝑠𝑐𝑜𝑟𝑒𝑒𝑝 + 0.1(𝑠𝑐𝑜𝑟𝑒𝑎𝑣 − 𝑠𝑐𝑜𝑟𝑒𝑒𝑝 ) (4)
where 𝑎𝑑 , 𝑑𝑟 , and 𝑠𝑐𝑜𝑟𝑒𝑎𝑣 are the animal density, normalized dis-
tance rank, and average score of each cell. At each timestep, an
adversary chooses the neighbouring cell with the highest score to
attack next.

4.2 Computing Patrolling Strategy
To compute coordinated patrolling strategies with communication
for a team of𝑛𝑟 rangers and𝑛𝜌 drones, we use a multi-agent Double
Deep Q Network (DDQN) [25].

We use the Centralized Training and Decentralised Execution
(CTDE) [16] framework for training the multi-agent DDQN. The
patrolling strategy for each drone 𝑖 , 𝜙𝑖

\𝜌 : O𝑖𝜌 x 𝐴𝜌 → [0, 1] is
learnt using a DDQN, where \𝜌 represents the parameters of the
DDQN shared by all drones. Similarly, a DDQN learns the patrolling
strategy for each ranger 𝑗 , 𝜙 𝑗

\𝑟
: O 𝑗

𝑟 x 𝐴𝑟 → [0, 1] with parame-
ters \𝑟 shared by all rangers. We thus use a centralized controller
for all drones and a centralized controller for all rangers, sharing
information with each other through the communication actions
of the drones. While each DDQN learns from the experiences of
all the drones/rangers that it controls (centralized learning), ac-
tions for each drone/ranger are taken independently (decentralized
execution).

The state representation used as input to the DDQN is a 3D
Tensor with 9 channels, each with the same width and height as
the grid: (1) The current position of the drone/ranger in the grid, (2)
Whether an adversary has been detected in the current cell, (3) Po-
sitions of all other drones, (4) Positions of all other rangers, (5) The
outputs of the object detectors on each drone (0 or 1), (6) Whether
each drone is currently notifying rangers or not, (7) Whether each
drone is currently signaling or not, (8) Animal density of the visited
cell, and (9) Visitation counts of each defender agent in the grid
since the beginning of the episode. More details about the neural
network architecture are described in Supplementary Material.

4.3 Computing Allocation Strategy
Because we formulate the allocation stage as a two-player, zero-
sum game, the Stackelberg Security Equilibrium (SSE) strategy
for the allocation stage is the same as a NE strategy [8]. Each
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Figure 1: CombSGPO algorithm. (The state information in the allocation stage represents the animal density distribution.
Green pentagons: Rangers, Blue triangles: Drones, Red dots: Adversaries)

defender allocation consists of initial cells for (𝑛𝑟 + 𝑛𝜌 ) defender
agents, while each adversary allocation consists of initial cells for
𝑛𝑎 adversaries. For a grid with 𝑁 cells, there are 𝑁 !

(𝑛𝜌+𝑛𝑟 )!𝑛𝜌 !𝑛𝑟 !
possible pure strategy allocations for the defender. Computing a
NE allocation strategy would involve searching in a huge, discrete
and multi-dimensional space of all possible allocation strategies.
For huge values of 𝑁 , this computation quickly becomes intractable
using traditional approaches based on LP and MILP. We therefore
propose a gradient-based approximation using the policy gradient
theorem and coPO.

However, the vanilla policy gradient algorithm [22] performs
poorly with large discrete action spaces. To address this, we can
instead decompose a policy into a component that acts in a latent
space of action representations (embeddings) and a component that
transforms these representations into actual actions, as shown in [5].
This allows generalization over allocations, as similar allocations
have similar action representations, and improves performance,
while speeding up learning. We therefore use learnt embeddings to
represent allocations.

We generate 100K allocations for the defender and adversary,
sampled from D𝑑 and D𝑎 , the set of possible allocations for each
player and train autoencoder neural networks 𝑓 𝑑 and 𝑓 𝑎 to learn
embeddings for these allocations. The network consists of two fully-
connected dense layers with a tanh activation after the first layer.
Once training is complete, we use the encoder part of the network
to obtain embeddings 𝑒𝑑 and 𝑒𝑎 of sizes 𝑘𝑑 and 𝑘𝑎 for the defender
and adversary.

The defender and adversary allocation policies, are 𝜋𝑑 , param-
eterized by w𝑑 and 𝜋𝑎 , parameterized by w𝑎 ; where w𝑑 and w𝑎

represent the weights of neural networks. 𝜋𝑑 and 𝜋𝑎 search over
the space of all possible 𝑒𝑑 and 𝑒𝑎 , respectively. Details about neural
network architecture are provided in Supplementary Material. Each
network outputs a mixed strategy over embeddings, out of which

one is sampled. The sampled embeddings are then mapped back to
the allocation that they represent most closely, and the patrolling
stage is simulated to receive payoffs 𝑅𝑑 and 𝑅𝑎 . The animal density
distribution of the grid, 𝑠 , represented by a 2D tensor, is fed as state
to 𝜋𝑑 and 𝜋𝑎 . The utilities of the defender and adversary (𝑈𝑑 and
𝑈 𝑎 = -𝑈𝑑 ) are the expected rewards, given 𝜋𝑑 and 𝜋𝑎 :

𝑈𝑑 (w𝑑 ,w𝑎) = E𝑠,𝑒𝑑 ,𝑒𝑎 [𝑅
𝑑 (𝑠, 𝑒𝑑 , 𝑒𝑎)]

=

∫
𝑠

∫
𝑒𝑑

∫
𝑒𝑎

P(𝑠)𝜋𝑑 (𝑒𝑑 |𝑠;w𝑑 )𝜋𝑎 (𝑒𝑎 |𝑠;w𝑎)𝑅𝑑 (𝑠, 𝑒𝑑 , 𝑒𝑎) 𝑑𝑠 𝑑𝑒𝑑 𝑑𝑒𝑎

(5)

We must then compute the best-response weights, w𝑑∗ and w𝑎∗:

w𝑑∗𝜖 arg max
w𝑑

min
w𝑎

𝑈𝑑 (w𝑑 ,w𝑎) (6)

w𝑎∗𝜖 arg min
w𝑎

𝑈𝑑 (w𝑑∗,w𝑎) (7)

Theweights are updated by coPO [19] to arrive at an approximate
NE for w𝑑∗ and w𝑎∗, as follows:

w𝑑 ← w𝑑 + arg max
Δw𝑑 :Δw𝑑+w𝑑

Δw𝑑⊤𝐷w𝑑𝑈
𝑑+

Δw𝑑⊤𝐷w𝑑w𝑎𝑈
𝑑Δw𝑎 − 1

2𝛼 ∥ Δw
𝑑 ∥2

(8)

w𝑎 ← w𝑎 + arg min
Δw𝑎 :Δw𝑎+w𝑎

Δw𝑎⊤𝐷w𝑎𝑈𝑑+

Δw𝑎⊤𝐷w𝑎w𝑑𝑈
𝑑Δw𝑑 + 1

2𝛼 ∥ Δw
𝑎 ∥2

(9)

where 𝛼 represents the stepsize.

4.4 CombSGPO Algorithm
We describe CombSGPO, which combines computation of optimal
strategies for allocation and patrolling. The training steps are sum-
marized in Algorithm 1. Fig. 1 illustrates the CombSGPO pipeline.
First, we learn the defender patrolling strategy, choosing random
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allocations for the agents at the start of each training episode and
simulating the patrolling stage, to converge to patrolling strategies
𝜙𝜌 and 𝜙𝑟 in lines 1 to 5. Lines 6 and 7 describe how we learn
allocation embeddings.

For a given state 𝑠 of the grid and pre-trained allocation embed-
dings, our algorithm solves the allocation stage as follows. At each
episode, 𝑛𝑏 embeddings (𝑒𝑑

𝑖
and 𝑒𝑎

𝑖
) are sampled from 𝜋𝑑 and 𝜋𝑎 ,

as shown in line 12. Each embedding is then matched to the closest
allocation that it represents using a cosine similarity measure to
get 𝑛𝑏 defender and adversary allocations. These allocations are
then used as initial positions for the patrolling stage. The simu-
lator for the patrolling stage then runs 𝑛𝑏 patrols to completion,
returning payoffs 𝑅𝑑

𝑖
and 𝑅𝑎

𝑖
for each pair of defender and adversary

allocations, as described in line 13. The payoffs obtained are used
to update 𝜋𝑑 and 𝜋𝑎 using coPO in line 15. We use 𝑛𝑏=10 in our
experiments.

Self-play based approaches [10, 11, 15] store the game state and
sampled actions at each episode in a replay memory. They update
each player’s policy towards the best response to the other player’s
average policy using linear approximation during optimization.
This leads to large memory requirements and requires a huge num-
ber of sampled trajectories to approach equilibrium. Our approach
directly updates each player’s policy towards an approximate NE by
using a bilinear approximation during its optimization step. There-
fore, it is more sample efficient and also eliminates the need for
using a replay memory.

5 EXPERIMENTS AND RESULTS
We now present several experiments evaluating CombSGPO on the
game model in Sec. 3. For the game, we present results for 𝑛𝜌 = 3
drones, 𝑛𝑟 = 2 rangers and gridsizes of 15x15 and 10x10. We ran ex-
periments with 𝑛𝑎 = 1 as well as 𝑛𝑎 = 2, to show how the allocation
and patrolling behavior changes when there is just one adversary
compared to when there are multiple adversaries, which requires
splitting the team into sub-teams. We did this for random as well
as spatial animal densities (based on distance to the border and
other real-world features like roads and rivers). For convenience,
we denote the experiments by: SS (single adversary, spatial ani-
mal densities), SR (single adversary, random animal densities), MS
(multiple adversaries, spatial animal densities) and MR (multiple ad-
versaries, random animal densities). Since we focused on real-world
applicability, we focus primarily on SS and MS experiments in this
section performed at different levels of uncertainty (𝛽 and ^), while
we defer SR and MR results to Supplementary Material. All results
are averaged over five runs. Hyperparameters used for training
the neural networks are detailed in Supplementary Material. We
compared CombSGPO against the following baselines, all of which
used a multi-agent DDQN for patrolling:

(1) Random: The defender allocations were assigned at random.
(2) Policy Gradient (PG) [22]: We used this algorithm to make

players learn best responses to each other’s strategies via
policy gradient updates.

(3) OptGradFP [11]: While this also uses policy gradient up-
dates to learn best responses, the Fictitious Play [15] training
framework is used to make both players converge to NE.

Algorithm 1: CombSGPO
/* Train the DDQNs for drones and rangers to get

patrolling strategies */

1 repeat
2 Sample a random allocation for defenders and

adversaries;
3 Run the episode and add experiences to DDQNs’ replay

memory;
4 Update parameters \𝜌 and \𝑟 for DDQNs for 𝜙𝜌 and 𝜙𝑟 ;
5 until convergence;
/* Train defender and adversary allocation

strategies */

6 Sample 100000 random allocations each for defenders and
adversaries in D𝑑 and D𝑎 respectively;

7 Train autoencoders 𝑓𝑑 : D𝑑 → R𝑘𝑑 and 𝑓𝑎 : D𝑎 → R𝑘𝑎 ;
8 Initialize w𝑑 and w𝑎 ;
9 repeat
10 Obtain allocation stage state = 𝑠;
11 for i = 1 to 𝑛𝑏 do
12 Sample 𝑒𝑑

𝑖
from 𝜋𝑑 and 𝑒𝑎

𝑖
from 𝜋𝑎 ; Get allocations

𝑎𝑙𝑙𝑜𝑐𝑑
𝑖
= arg min

𝑎𝑙𝑙𝑜𝑐∈D𝑑

| |𝑓𝑑 (𝑎𝑙𝑙𝑜𝑐) − 𝑒𝑑𝑖 | |
2 and

𝑎𝑙𝑙𝑜𝑐𝑎
𝑖
= arg min

𝑎𝑙𝑙𝑜𝑐∈D𝑎

| |𝑓𝑎 (𝑎𝑙𝑙𝑜𝑐) − 𝑒𝑎𝑖 | |
2;

13 Simulate patrolling stage with allocations 𝑎𝑙𝑙𝑜𝑐𝑑
𝑖
,

𝑎𝑙𝑙𝑜𝑐𝑎
𝑖
, patrolling stage strategies 𝜙𝜌 , 𝜙𝑟 , 𝜙𝑎 and

receive rewards 𝑅𝑑
𝑖
, 𝑅𝑎

𝑖
;

14 end
15 Update parameters w𝑑 and w𝑎 by coPO;
16 until convergence;

(4) GUARDSS [4]: We replaced CombSGPO allocation with a
GUARDSS allocation, then ran our patrolling strategy for di-
rect utility comparison. Specifically, we used the initial drone,
ranger, and adversary locations (no signaling) from all pure
strategies in the optimal mixed strategy for the GUARDSS
model. GUARDSS only considers a single adversary, so MR
and MS are left blank.

First, we evaluated the performance of CombSGPO with differ-
ent gridsizes, animal densities, and number of adversaries, with
no uncertainty (𝛽 = 0, ^ = 0). We sampled 150 episodes once the
policies converged and averaged the defender utilities from these
episodes. Allocation stage training curves for SS and MS on a 15x15
grid are shown in Fig. 2. Average utilities for different experiments
are shown in Tables 1 and 2. CombSGPO significantly outperformed
the baselines, converging faster and towards strategies with greater
expected utility for the defender. The variance of rewards in Comb-
SGPO is much lower, indicating robust strategies.

Next, we evaluated how the perfomance of CombSGPO varied
with detection and observational uncertainty. We performed exper-
iments with three sets of values for 𝛽 and ^: [0,0], [0.25,0.25] and
[0.75,0.75], to simulate increasing levels of uncertainty. Defender

Main Track AAMAS 2021, May 3-7, 2021, Online

1357



Figure 2: Allocation stage training curves for a 15x15 grid (𝛽=0,̂ =0): SS (left) and MS (right). (GUARDSS not trained)

Random PG OptGradFP GUARDSS CombSGPO
SR -22.54 -16.84 -19.72 -24.34 -9.25
MR -39.23 -51.97 -41.55 - -24.49
SS -15.35 -14.99 -14.49 -14.11 -5.53
MS -27.95 -21.42 -15.41 - -10.39

Table 1: Average defender utilities for a 15x15 grid

Random PG OptGradFP GUARDSS CombSGPO
SR -6.25 -7.12 -5.83 -7.51 -2.29
MR -13.93 -12.51 -16.92 - -7.72
SS -5.37 -4.55 -3.47 -6.03 -1.63
MS -12.41 -9.69 -7.85 - -4.65

Table 2: Average defender utilities for a 10x10 grid

Figure 3: Average defender utilities under varying [𝛽 , ^]

utilities were calculated from 150 episodes sampled once the poli-
cies converged for SS and MS on a 15x15 grid. Only OptGradFP
and GUARDSS have been considered, as the other baselines did not
converge to an equilibrium. Results are shown in Fig. 3, with Comb-
SGPO having the best performance, as it is most positive. In general,
defender utility decreases with an increase in uncertainty. We also
compared the patrolling strategy learnt by our algorithm against
MADDPG (Multi Agent Deep Deterministic Policy Gradient)[16]
in Supplementary Material.

For a 15x15 grid with SS, we show heatmaps of target cells at-
tacked by sampling 100 adversary allocations and simulating the

Figure 4: Animal density (a) & heatmaps of sampled attacks
for: (b) CombSGPO, (c) GUARDSS, (d) OptGradFP, (e) PG.

game, from the final strategies of the adversary for each algorithm,
in Fig. 4. This is a direct measure of how effective the final learnt de-
fender strategies of each algorithm are, as better defender strategies
limit attacks to smaller regions of the grid and regions with lower
animal densities. The animal density distribution is also shown
alongside for comparison. In all results, there was a clear tendency
for the adversary to attack cells that were closer to the boundaries
of the grid. While adversaries in both OptGradFP and PG attacked
multiple quadrants and larger regions overall, both CombSGPO
and GUARDSS defenders were able to limit attacks mainly to one
quadrant, with CombSGPO reducing attacks to a smaller region.

Having shown that CombSGPO outperformed all considered
baselines quantitatively in terms of faster convergence, lesser vari-
ance, greater defender utilities, and qualitatively in terms of greater
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Gridsize OptGradFP GUARDSS CombSGPO
10x10 11.11±0.006 65.09±15.45 4.19±0.001
15x15 24.62±0.029 79.60±20.65 9.92±0.008

Table 3: Timing results (minutes) for 15x15 and 10x10 grids

protection to target cells, we evaluated the time taken to converge
to equilibrium for CombSGPO, OptGradFP, and GUARDSS on a sin-
gle core of Intel(R) Xeon(R) Platinum 8268 CPU@ 2.90GHz. Table 3
shows the results for SS on 15x15 and 10x10 grids, averaged over 5
runs, with CombSGPO performing best. We maintained a time-out
period of 60 minutes in all experiments. GUARDSS timed out in 4
out of 5 runs with the 10x10 grid and 2 out of 5 runs with the 15x15
grid.

6 ANALYSIS OF POLICIES LEARNT BY
COMBSGPO

In this section, we provide a detailed qualitative analysis of the
final strategies learnt by CombSGPO, over multiple 𝛽 and ^. For
better insight, we show snapshots taken from sampled episodes,
illustrating interesting strategic behavior. In all snapshots, red dots
represent adversaries, green pentagons represent rangers, blue tri-
angles represent drones, and grey/yellow triangles represent signal-
ing/notifying drones, respectively. Signaling and notifying actions
are emphasized with a black box around the snapshot. The animal
density of each cell is shown by the shade; darker shades have
higher animal density.

Throughout all experiments, we observed that CombSGPO learnt
to deploy all drones together in one group and all rangers together
in another group, as this allowed a greater area to be patrolled by
the defender agents. We also observed that often, when a ranger was
too far away from the drones to apprehend an adversary if the drone
notified her, the drones learnt to signal the adversary and make him

Figure 5: Sampled SS episode(𝛽=0,̂ =0).

Figure 6: Sampled SR episode(𝛽=0,̂ =0).

Figure 7: Sampled MS episode(𝛽=0.25,̂ =0.25).

Figure 8: Sampled SR episode(𝛽=0.75,̂ =0.75).

flee instead of notifying, similar to the strategic signaling modeled
by GUARDSS. This is illustrated in Fig. 5, which shows a sampled
SS episode under 𝛽=0, ^=0. At t=0, the drones and rangers are
deployed as separate groups, with the adversary deployed closer
to the drones. At t=7, we can see the drones moving closer to the
adversary, while signaling at the same time. The arrow indicates
that the rangers are far away from the adversary. The next frame
at t=8 shows that the adversary is signalled by a drone in the same
cell (indicated by a star symbol), causing him to flee.

In some cases, we observed that defender agents allocated in a
web-like manner around the adversary and closed in on the adver-
sary, cornering him. The attractiveness of a cell to an adversary
also depends on his distance from initial allocations of defender
agents (as described in Sec. 4.1). Through this allocation pattern,
the adversary was deliberately forced away from the areas of greater
animal density and towards the corners and edges. Fig 6 shows such
a pattern for a sampled SR episode under 𝛽=0, ^=0, where defender
agents deploy in a web-like formation (indicated by the black lines).

The allocation and signaling strategies were even clearer in the
MR and MS experiments, as illustrated in Fig. 7, a sampled MS
episode under 𝛽=0.25, ^=0.25. While one adversary is caught by
the rangers (capture indicated by X), the other one, deployed in a
completely different region, is forced to flee by the drones.

Figure 9: Sampled SS episode(𝛽=0.25,̂ =0.25).

Main Track AAMAS 2021, May 3-7, 2021, Online

1359



Apart from signaling adversaries, notifications from drones to
rangers were also observed. Interestingly, in a lot of cases where
the adversary was allocated closer to the rangers than the drones,
we saw spurts of notification activity from the drones in the steps
just before the adversary was caught, as illustrated in Fig. 8, a sam-
pled SR episode under 𝛽=0.75, ^=0.75. This may indicate strategic
notifications to suggest to the rangers that adversaries are probably
closer to them, rather than the drones’ current region.

In addition to this, whenever the drones failed to detect the ad-
versary even after many timesteps of patrolling, they responded with
signaling and notifications. In particular, they went into a state of
constant signaling activity in the SS, MS, and MR experiments, and
into a state of constant notification activity in SR experiments. Fig. 9
shows a sampled SS episode 𝛽=0.25, ^=0.25 where the drones signal
after 13 timesteps. This is similar in spirit to the ranger moving
in the GUARDSS model when an adversary is not seen for some
time. In our model, this could also indicate that drones are trying to
compensate for possible false negative detections, or possibly that
drones are suggesting that adversaries are near rangers instead.

As uncertainty increases from 𝛽=0, ^=0 to 𝛽=0.75, ^=0.75, we
see a marked decrease in the amount of signaling and notifica-
tion activity in SR experiments while the amount of signaling and
notification activity stays the same in SS, MS, and MR experiments.

7 RELATEDWORK
In RL for GSGs, [11, 12] use policy gradient learning for resource
allocation, and [26] uses an algorithm based on Deep Q-Learning
[17] for computing patrolling strategies with the starting cell cho-
sen randomly from a set of four possible allocations. While [26]
models real-time information, it does not incorporate uncertainty,
signaling, or multiple defender/adversary agents. [13] also uses RL
for GSGs, but with a model-based approach and assuming periodic
observability of the adversary’s location.

Our work is also similar to previous models for sequential team
decision-making under uncertainty. Earlier [21] presented a model
of sequential decision making of teams of agents against an adver-
sary, combining security games with dec-MDPs. There is a rich
literature of algorithms for dec-MDPs, including early work on dis-
tributed POMDPs to model multiagent teamwork [20]. [21] did not
focus on signaling games, which bring in significant complexities,
and limited scale up of 10 targets. This paper explores signaling
games with a complementary approach using RL, with a significant
scale up allowing for a 15x15 grid.

[4] also models uncertainty in real-time information in an ap-
plication that uses conservation drones to prevent illegal wildlife
poaching. Drones fittedwith an object detection system called SPOT
[3] provide (uncertain) automatic detection of potential poachers
(adversaries) and animals. If suspicious activity is detected, nearby
park rangers (defenders) can be mobilized to respond. Warning
signals may also be deployed by the drones to deter poachers. Sig-
naling can be done deceptively in order to lead poachers to believe
that park rangers may respond, even when rangers are unable to do
so. While this approach models allocation and signaling decisions,
it does not model patrolling strategies or multiple adversaries, and
is not efficiently scalable to larger protected areas.

In contrast, our work proposes a unified solution to resource
allocation and patrolling. We also focus on strategic signaling and
communication between agents for coordinated patrolling in the
presence of uncertain, real-time information, which is an area that
is yet to be addressed in complex GSGs by using RL methods.

8 DISCUSSION AND CONCLUSION
We introduce a novel solution approach based on reinforcement
learning for computing defender strategies in a two-stage GSG, that
combines resource allocation, patrolling, communication between
resources, and signaling in the presence of uncertain real-time infor-
mation. We showed that our approach outperforms comparable ap-
proaches over different types of environments that simulate green
security domains, including protection of animals from wildlife
poaching. We also showed that our trained models learn strategic
behavior such as formation of sub-teams within a team of drones
and rangers, coordinated patrolling formations, and strategic sig-
naling in the presence of uncertainty to ward off and/or apprehend
poachers.

An interesting future direction would be the replacement of
the binary object detectors with real-time image input from object
detectors on drone cameras. This would introduce intrinsic uncer-
tainty into the model and also take us a step closer to deploying
such an application in real-world scenarios.

Broader Impacts: The idea for strategic signaling came from
discussionswith domain experts at Air Shepherd (https://airshepherd.
org/), who tried illuminating the lights on conservation drones to
deter poachers. However, to our knowledge, no strategic signaling
system has been deployed. Our system could aid in deployment
by providing fine-grained patrolling suggestions and strategies to
minimize errors due to uncertainty. CombSGPO depends on knowl-
edge of an underlying animal density and on assumptions of certain
knowledge by poachers, such as the poacher knowing an initial
allocation in the patrolling stage. If a poacher knew the defender’s
location at all times, he may be able to evade the rangers, and a bet-
ter strategy for the defender may be to simply protect high-valued
targets. We also assume that poachers know that signaling implies
rangers are responding to prevent poaching from occurring. In the
real world, it is possible that poachers would not know this is the
case and may fear worse, such as the drone being armed. There may
also be adverse effects of signaling on animals. Any deployment
must therefore be done with transparency and collaboration with
local stakeholders, especially including traditionally marginalized
communities. Depending on this local context, other interventions
may be better, or may be used together with strategic signaling and
CombSGPO.
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