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ABSTRACT
We present a methodology to robustly estimate the competitive

equilibria (CE) of combinatorial markets under the assumption that

buyers do not know their precise valuations for bundles of goods,

but instead can only provide noisy estimates. We first show tight

lower- and upper-bounds on the buyers’ utility loss, and hence the

set of CE, given a uniform approximation of one market by another.

We then present two probably-approximately-correct algorithms

for learning CE with finite-sample guarantees. The first is a baseline

and the second leverages a connection between the first welfare

theorem of economics and uniform approximations to adaptively

prune value queries when it is determined that they are provably

not part of a CE. Extensive experimentation shows that pruning

achieves better estimates than the baseline with far fewer samples.
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1 OVERVIEW
Combinatorial Markets (CMs) are a class of markets in which buyers

are interested in acquiring bundles of goods for which their values

can be arbitrary. Real-world examples of CMs include: spectrum

auctions [5] allocation of landing and take-off slots at airports [2];

internet ad placement [6]; and procurement of bus routes [4]. An

outcome of a CM is an assignment of bundles to buyers together

with prices for the goods. A competitive equilibrium (CE) is an

outcome of particular interest in CMs and other well-studied eco-

nomic models [3, 13]. In a CE, buyers are utility-maximizing (i.e.,

they maximize their utilities among all feasible allocations at the

posted prices) and the seller maximizes its revenue (again, over all

allocations at the posted prices).

One of the defining features of CMs is that they afford buyers

the flexibility to express complex preferences, which in turn has

the potential to increase market efficiency. However, the extensive
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expressivity of these markets presents challenges for both the mar-

ket maker and the buyers. With an exponential number of bundles

in general, it is infeasible for a buyer to evaluate them all. We thus

present a model of noisy buyer valuations: e.g., buyers might use

approximate or heuristic methods to obtain value estimates [7]. In

turn, the market maker chooses an outcome in the face of uncer-

tainty about the buyers’ valuations. We call the objects of study

in this work noisy combinatorial markets (NCM) to emphasize that

buyers do not have direct access to their values for bundles, but

instead can only noisily estimate them.
1

In this work,
2
we formulate a mathematical model of NCMs.

Our goal is then to design learning algorithms with rigorous finite-

sample guarantees that approximate the competitive equilibria of

NCMs. First, we present tight lower- and upper-bounds on the set

of CE, given uniform approximations of buyers’ valuations. We

then present two learning algorithms. The first one—Elicitation Al-

gorithm; EA—serves as a baseline. It uses Hoeffding’s inequality [9]

to produce said uniform approximations. Our second algorithm—

Elicitation Algorithm with Pruning; EAP—leverages the first wel-

fare theorem of economics to adaptively prune value queries when

it determines that they are provably not part of a CE.

An interesting tradeoff arises between computational and sample

efficiency. To prune a value query and retain rigorous guarantees on

the quality of the learned CE, we must solve a welfare-maximizing

problem whose complexity grows with the size of the market. Con-

sequently, at each iteration of EAP, for each value query, we face a

choice. Either solve said welfare-maximizing problem and poten-

tially prune the value query (thereby saving on future samples),

or defer attempts to prune the value query, until more is known

about the market. To combat this problem, we show that an upper

bound on the optimal welfare’s value (rather than the precise value)

suffices to obtain rigorous guarantees on the learned CE’s quality.

Such upper bounds can be found easily, by solving a relaxation

of the welfare-maximization problem. Reminiscent of designing

admissible heuristics in classical search problems, this methodology

applies to any combinatorial market, but at the same time allows for

the application of domain-dependent knowledge to compute these

upper bounds, when available. Empirically, we show that solving

a computationally cheap relaxation of the welfare-maximization

problem instead of the exact welfare-maximization problem yields

substantial sample and computational savings in a large market.

1
Our setup generalizes the standard model of combinatorial markets by allowing

buyers’ values to be drawn from (possibly unknown) probability distributions. In the

standard model, these distributions would be known and degenerate.

2
An earlier version of this paper was presented at the 2nd Games, Agents, and Incen-

tives Workshop [1]. An extended version of this paper can be found on arXiv [12].
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2 THEORETICAL CONTRIBUTIONS
In this extended abstract, we introduce the minimum mathematical

notation needed to convey our work’s main ideas. For a detailed

mathematical treatment, please see the arXiv version [12].

A combinatorial market 𝑀 is defined by a set of goods 𝐺 = [𝑚]
and a set of buyers 𝑁 = [𝑛]. A bundle of goods is a set of goods
𝑆 ⊆ 𝐺 . Each buyer 𝑖 is characterized by their preferences over

bundles, represented as a valuation function 𝑣𝑖 : 2
𝐺 → R+, where

𝑣𝑖 (𝑆) ∈ R+ is buyer 𝑖’s value for bundle 𝑆 .
Given a market 𝑀 , an allocation S = (𝑆1, . . . , 𝑆𝑛) denotes an

assignment of goods to buyers, where 𝑆𝑖 ⊆ 𝐺 is the bundle assigned

to buyer 𝑖 . A pricing profile P = (𝑃1, . . . , 𝑃𝑛) is a vector of 𝑛 pricing

functions, one function 𝑃𝑖 : 2
𝐺 → R+ per buyer, each mapping

bundles to prices, 𝑃𝑖 (𝑆) ∈ R+. A pair (S,P) is an outcome. We

study approximations of CE, a fundamental outcome class.

Definition 2.1 (Approximate Competitive Equilibria). Let Y > 0.

An outcome (S,P) is a Y-competitive equilibrium (Y-CE) if:

(RM) for any allocation S′: ∑𝑖∈𝑁 𝑃𝑖 (𝑆𝑖 ) ≥
∑
𝑖∈𝑁 𝑃𝑖 (𝑆 ′𝑖 )

(Y-UM) ∀𝑖 ∈ 𝑁,𝑇 ⊆ 𝐺 : 𝑣𝑖 (𝑆𝑖 ) − 𝑃𝑖 (𝑆𝑖 ) + Y ≥ 𝑣𝑖 (𝑇 ) − 𝑃𝑖 (𝑇 )
Revenue-maximization (RM) ensures the seller maximizes its

revenue over all possible allocations under the outcome’s pricing. Y-

Utility maximization (Y−UM) ensures that buyers maximize (almost,

up to additive error Y) their utility (value minus prices) for their

allocation under the outcome’s pricing. For 𝛼 ≥ 0, we denote by

CE𝛼 (𝑀) the set of all 𝛼-approximate CE of𝑀 .

𝑀 ′ is called an Y-uniform approximation of𝑀 if ∥𝑀 −𝑀 ′∥∞ =

max(𝑖,𝑆) ∈𝑁×𝐺 |𝑣𝑖 (𝑆)−𝑣 ′𝑖 (𝑆) | ≤ Y. Ourmain theoretical contribution

is to show that an Y-uniform approximation 𝑀 ′ of a market 𝑀

preserves the set of CE, up to an additive error:

Theorem 2.2 (Competitive Eqilibrium Approximation).

Let Y > 0. If𝑀 and𝑀 ′ are markets such that ∥𝑀 −𝑀 ′∥∞ ≤ Y, then
CE(𝑀) ⊆ CE2Y (𝑀 ′) ⊆ CE4Y (𝑀).

In Theorem 2.2, consider 𝑀 as an unobservable market of in-

terest and 𝑀 ′ as an approximation of 𝑀 learned by constructing

confidence intervals around buyers’ values. Then, Theorem 2.2 es-

tablishes that the unobservable set of CE of𝑀 are well preserved by

the observable set of CE of 𝑀 ′. Moreover, the approximation error

can be as low as desired provided Y is a user-controlled parameter

(e.g., using Hoeffding’s inequality [9]).

Next, we summarize our model of noisy combinatorial markets,

our elicitation and pruning algorithm, and experimental results.

3 ELICITATION & PRUNING ALGORITHM
In a noisy combinatorial market, we have no access to a buyer 𝑖’s

valuation function 𝑣𝑖 . Instead, we pose the existence of an abstract

set of conditions X, whose elements 𝑥 ∈ X define a conditional

valuation function 𝑣𝑖 (𝑆, 𝑥). SetXmodels those unobservable factors

that influence 𝑖’s value for 𝑆 . Then, given a distribution D over X,
we define the expected combinatorial market as the market where

𝑖’s values are given by 𝑣𝑖 (𝑆,D) = E𝑥∼D [𝑣𝑖 (𝑆, 𝑥)]. Our goal is to
efficiently learn 𝑣𝑖 (𝑆,D). Intuitively, we deem a learning procedure

to be efficient if samples are concentrated only on those pairs (𝑖, 𝑆)
that a CE could comprise.

Algorithm 1 is an informal version of our elicitation with pruning

(EAP). The algorithm takes an oracle O that models the elicitation

Algorithm 1 Elicitation Algo. with Pruning (EAP) (Informal)

Input: Oracle O that takes 𝛿, 𝑡, {(𝑖, 𝑆)} ⊆ 𝑁 × 2𝐺 , and outputs for

each (𝑖, 𝑆), a 1− 𝛿-confidence interval around 𝑣𝑖 (𝑆) from 𝑡 samples.

A sampling schedule 𝒕 , a failure probability schedule 𝜹 , a pruning
budget schedule 𝝅 , and a target approximate error Y.

Output: Value estimates 𝑣𝑖 (𝑆), for all (𝑖, 𝑆), failure probability ˆ𝛿 ,

and CE error Ŷ.

1: I ← 𝑁 × 2𝐺 {Initially, all buyers-bundle pairs are active}

2: for 𝑘 ∈ 1, . . . , |𝒕 | do
3: ({𝑣𝑖 } (𝑖,𝑆) ∈I , Ŷ) ← O(I, 𝑡𝑘 , 𝛿𝑘 ) {Call oracle on active pairs.}

4: if Ŷ ≤ Y or 𝑘 = |𝒕 | or I = ∅, then
return ({𝑣𝑖 }𝑖∈𝑁 ,

∑𝑘
𝑙=1

𝛿𝑙 , Ŷ)
5: Iprune ← ∅
6: Icandidates ← a subset of I of size at most 𝜋𝑘
7: for (𝑖, 𝑆) ∈ Icandidates do
8: if (𝑖, 𝑆) is prunable, then Iprune ← Iprune ∪ (𝑖, 𝑆)
9: end for
10: I ← I \ Iprune
11: end for

of buyers’ values via noisy value queries (i.e., buyer–bundle pairs),

where the market maker eliciting 𝑖’s value for 𝑆 receives not full

information but only confidence intervals around 𝑣𝑖 (𝑆,D). The
algorithm progressively elicits buyers’ valuations via repeated calls

to O. Additionally, between calls to O, EAP searches for value

queries that provably no CE can comprise. All such queries then

cease to be part of the index set with which O is called in future

iterations. A technical contribution was to develop a connection

between Y-uniform approximations and the first welfare theorem

of economics that allows us to prune value queries and provably

preserve the guarantees of Theorem 2.2.

4 EXPERIMENTS
After establishing the correctness of EAP, we evaluated its em-

pirical performance using both synthetic unit-demand valuations

and two spectrum auction value models: the Global Synergy Value

Model (GSVM) [8] and the Local Synergy Value Model (LSVM) [11].

Unit-demand valuations are a class of valuations central to the lit-

erature on economics and computation [10] where buyers have no

complements in their valuation of goods, while GSVM and LSVM

model situations in which buyers’ valuations encode complements,

a considerably more challenging situation.

In all three models, we measure the average quality of learned CE

via our algorithms, compared to the CE of the corresponding certain

market (i.e., here, “certain” means lacking uncertainty), as a function

of the number of samples. We find that EAP consistently yields

better error guarantees than a baseline using far fewer samples,

because it successfully prunes buyers’ valuations (i.e., it ceases

querying for buyers’ values on bundles of goods that a CE provably

does not comprise), even without any a priori knowledge of the
market’s combinatorial structure.
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