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ABSTRACT
The real world is awash with multi-agent problems that require col-
lective action by self-interested agents, from the routing of packets
across a computer network [14] to the management of irrigation
systems [10]. Such systems have local incentives for individuals,
whose behavior has an impact on the global outcome for the group.
Given appropriate mechanisms describing agent interaction, groups
may achieve socially beneficial outcomes, even in the face of short-
term selfish incentives. In many cases, collective action problems
possess an underlying graph structure, whose topology crucially
determines the relationship between local decisions and emergent
global effects. Such scenarios have received great attention through
the lens of network games. However, this abstraction typically col-
lapses important dimensions, such as geometry and time, relevant
to the design of mechanisms promoting cooperation. In parallel
work, multi-agent deep reinforcement learning has shown great
promise in modelling the emergence of self-organized coopera-
tion in complex gridworld domains [5, 7, 11]. Here we apply this
paradigm in graph-structured collective action problems.
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1 OUR CONTRIBUTIONS
The aims of this paper are (1) to introduce a new method for mod-
elling the behavior of self-interested agents in collective action
problems with topological, geometrical and temporal structure, and
(2) to use this method to draw conclusions relevant for mechanism
design that promotes cooperative behavior. Our method comprises
a protocol for intervening on a spatio-temporally complex envi-
ronment, and modelling the effects on social outcomes for rational
agents via multi-agent deep reinforcement learning. To illustrate
this general method, we introduce a new gridworld domain called
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Supply Chain, in which agents are rewarded for processing goods
according to a given network structure. For environmental inter-
ventions, we take the perspective of a system designer and ask:
what mechanisms might we introduce to the world, and how do
these affect the cooperation of agents? We not only vary the topol-
ogy of the world, as in traditional network games, but also the
geometry, maintenance cost, and agent specialization. In all cases
we find an intricate interplay between incentive structure, multi-
agent interaction and learnability affecting the nature of emergent
cooperation. More precisely, we introduce a metric of care in order
to understand these dynamics [13]. We find that reciprocal care is
diminished when the maintenance burden is lower, and that reci-
procity is promoted by training generalist agents that can operate
any station in the supply chain, rather than specialists. We do not
expect the conclusions we draw to have general applicability; rather
we argue that this case study demonstrates the power and insight
provided by our new method.

Figure 1: The Supply Chain environment, visualized with a
circular layout mid-episode.

2 METHODS
The Supply Chain environment (Figure 1) is a 2-dimensional grid-
world in which agents must maintain their own individual process-
ing centers with the help of other agents, in order to process units
passing through the supply chain. Units enter the environment via
the source tile and are removed at the the sink tile. Importantly,
units stop next to each processing center and do not continue along
the supply chain until they have been processed by that processing
center’s owner. This is achieved by the agent standing on their
processing tile, thereby processing the unit allowing it to continue
and giving +1 reward to that agent. Upon processing a unit, there is
a 25% chance that the agent’s processing center breaks down which
stops units from passing through the supply chain. The center can
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(a) After ≈ 2 · 107 training steps. (b) After ≈ 4 · 107 training steps. (c) After ≈ 1.2 · 108 training steps. (d) After ≈ 1.45 · 108 training steps.

Figure 2: Carematrices at the end of the four distinct learning phases. For improved readability, values below 0.01 are omitted.

be repaired by two agents standing on both the processing tile and
associated repair tile. In the full paper we also present experiments
that explore delayed automatic repair [2]. An episode lasts 1000
steps. On each step, there is a 10% chance of a unit entering the
environment, and all other units in the supply chain move once if
the next space in the supply chain is unoccupied. If the next space
is occupied by another unit, the moving unit is discarded from the
supply chain and cannot be processed by any agent, leading to a
lost opportunity to obtain reward. Collective action is required to
maintain the processing centers. Each agent would prefer that oth-
ers took on the responsibility for fixing broken processing centers,
since this comes at the opportunity cost of processing units them-
selves. However, if all agents refuse to cooperate, they receive low
group reward. Depending on the environment properties we see
different patterns of “care” between agents, understood in terms of
help provided to others when repairing broken processing centers.

Consider an instance of the Supply Chain game with episode
length 𝑇 and 𝑁 agents, uniquely assigned to 𝑁 processing centers
such that agent 𝑖 always processes units at center 𝑖 . Let 𝑅𝑖 , 𝐵𝑖 , and
𝐶𝑖 𝑗 , be integer variables that specify, aggregated over one episode,
how many times agent 𝑖 respectively processes a unit, breaks its
processing center, or repairs a processing center of agent 𝑗 . The care
matrix (𝐶) with elements 𝐶𝑖 𝑗 tracks the care (repairs) each agent
has received from each other agent, relative to the total number
of breakages

∑
𝑖 𝐵

𝑖 . We introduce a more elaborate set of social
outcome metrics in the full version of the manuscript [2].

We train agents using advantage actor-critic (A3C) [8] with 400
parallel environments to generate experience for each learner. At
each step, agents receive 13x13 RGB pixels as state information.
Episodes contain 4 agents which are sampled without replacement
from a population of 8 and assigned to random processing centers
in the environment [6]. Every agent uses their own neural network
and is trained for 109 steps by receiving importance-weighted policy
updates [4]. For additional details, please refer to the full paper [2].

3 THE EMERGENCE OF CARE
In this section, we analyze the learning dynamics of a single run
in the environment with a circular layout (Figure 1). In the full
version of the paper [2], we study, at convergence, the effect of
changing if and how fast processing centers can repair themselves
autonomously, we increase the inter-center distance to study the

influence of geometry, we compare specialist with generalist agents,
and we discuss how subtle changes in the environment’s underlying
graph structure can drastically change social outcomes.

Learning to care for others only benefits agents indirectly which
makes it a more complex behavior to learn than processing units.
Learning happens in distinct phases, each characterized by different
behaviors and social outcomes. Each phase features a rather abrupt
change in the individual reward received: once an agent has found
an improved strategy via exploration, it is quickly able to exploit
this, shifting the equilibrium dramatically. Accordingly, each phase
can last shorter or longer depending on when the agents “discover”
the new behavior. We therefore analyze the outcomes after each
phase, similarly to [1, 11], and analyze one archetypical run. De-
tailed social outcome metrics, averages over multiple runs, and a
second typical run can be found in the full version [2].

In Figure 2 we find the care matrix after each phase. Phase 1
begins at the start and is characterized by agents learning how
to navigate the environment, process units and explore repairing.
Agents have yet to learn when repairing is beneficial, and we thus
find the highest average reward for the agent that is closest to the
source. Phase 2 is characterized by a drastic increase in care. The
second agent (and to a lesser extent the third and fourth) learn that
they can earn more reward by repairing the first processing center.
In phase 3, agent 2 learns that repairing center 1 only results in
more reward when it can process units at its own center. To keep
this incentive for agent 2, agent 1 thus learns to reciprocate the
care received by agent 2 resulting in a drastic increase in reward for
agent 2. Finally, during phase 4, reciprocity emerges between agents
3 and 4 as agent 3 learns that agent 4 only repairs when its own
processing center is fixed. In a sense, it is surprising that reciprocity
emerges in this environment. Naïvely, one might expect that the
collective action problem is dominated by selfish incentives, and
an explicit model-based intervention may be required to solve the
social dilemma, as in [3, 12]. However, in our case, the underlying
graph structure organizes agent interactions in such a way as to
promote the emergence of reciprocity. This is exactly in line with
previous work in abstract network games [9], extending it to a
setting where we can examine mechanism design in detail.
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