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ABSTRACT
A key problem in network analysis is the influence maximization

problem, which consists of finding a set S of at most k seed users

in a social network, such that the spread of information from S is

maximized. We investigate the problem of choosing the best set

of seeds when there exists an unknown pre-existing set of seed

nodes. Our work extends the one of Chen and Teng (WWW’17) who

introduced the so-called Shapley centrality of a node to measure

the efficiency of nodes acting as seeds within a pre-existing but

unknown set of seeds. We instead consider the question: Which

set of cardinality k to target in this kind of scenario? The resulting

optimization problem reveals very challenging, that is, assuming

common computational complexity conjectures, we obtain strong

hardness of approximation results. Nevertheless, we design a greedy

algorithm which achieves an approximation factor of
1−1/e
k − ϵ for

any ϵ > 0, showing that not all is lost in settings where k is bounded.
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1 MOTIVATION
Node centrality and spread of information or influence are two

main topics in network analysis. The former regards the problem

of determining the most important nodes in a network according to

some measure of importance, while the latter studies mathematical

models to represent how information spreads in a Social Network

(SN) in which nodes are able to communicate with each other.

In order to measure the centrality of nodes in a network a real-

valued function, called centrality index, associates a real number

with each node that reflects its importance or criticality within the

network. Chen and Teng [4] initiated the study of the interplay be-

tween spreading dynamics and network centrality by defining two

centrality indices based on dynamic models for influence diffusion:

the single node influence centrality, which measures the centrality

of a node by its capability of spreading information when acting

alone, and the Shapley centrality, which uses the Shapley value to

measure the capability of a node to increase the spreading capacity
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of a pre-existing but unknown group of nodes. The Shapley value

– a well-known concept from cooperative game theory – models

this scenario by assessing the expected relevance of each player

within a random subset of players (also called coalition), where the

expectation is taken over the possible coalitions. More formally,

given a characteristic function τ that maps each coalition to the

total payoff that this coalition receives, the Shapley value of a player

i is defined as the expected payoff that i adds to any coalition, w.r.t.

the function τ . The Shapley centrality index studied by Chen and

Teng [4] measures the centrality of a node by using the Shapley

value and the spreading function σ as characteristic function.

Most centrality indices neglect the relevance that coalitions of in-

dividuals and their coordination play in SNs. For this reason, many

centrality indices have been generalized to group centrality indices

which are real-valued functions over subsets of nodes instead of

single nodes. A group centrality index is fundamentally different

from a combination of the individual centrality indices of the nodes

in the group, as it captures the relevance of the set as a whole. This

work extends Chen and Teng’s notion of influence-based Shapley

centrality from single nodes to groups of nodes by using the concept

of the Group Shapley value. Our Influence-based Group Shapley

(IGS) centrality associates to a set S of nodes, the expected gain in

influence that S adds to a random pre-existing seed setT . We inves-

tigate the problem of finding a set S of cardinality k with highest

IGS value. We believe that this way of evaluating the importance

of a seed set is of high practical interest. Assume an entity wants to

spread a piece of news, while having a budget to influence k users,

at the same time knowing that already some users are aware of the

information and will spread it anyhow. The central entity, however,

may have no knowledge about who these users are. In this case, it

should target a set of seed users with large IGS value.
1

2 PRELIMINARIES
The Group Shapley Value. In cooperative game theory [3, 10], a

game on n ≥ 2 players is commonly formalized by a characteristic

function τ : 2
[n] → R that assigns to every subset S ⊆ [n] of

players, also called a coalition, a value τ (S). The Group Shapley

value [5, 9], for a subset S ⊆ [n] of players in a game τ is defined as

ϕShτ (S) :=
∑

T ⊆[n]\S

|T |!(n − |S | − |T |)!

(n − |S | + 1)!
· (τ (T ∪ S) − τ (T )),

i.e., the Group Shapley value quantifies how much S is able to add

in the game τ to a random subset T that is generated as follows:

We first sample an integer t ∈ {0, . . . ,n − |S |} uniformly at random

and then pick a set T of size t in [n] \ S uniformly at random.

1
See [1] for the complete proofs of all results reported on in this extended abstract.

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1461



Influence Maximization (IM). We are interested in the Group

Shapley value for functions that describe information propaga-

tion in SNs. Two of the most popular models for describing such

information propagation are the Independent Cascade (IC) and Lin-

ear Threshold (LT) models [7]. In both models, we are given a

directed graph G = (V ,E) where V is a set of n nodes, values

{puv ∈ [0, 1] : (u,v) ∈ E} and an initial node set A ⊆ V called seed

set. A spread of influence from A is defined as a randomly gener-

ated sequence of node sets (At )t ∈N, where A0 = A and At−1 ⊆ At .
These sets represent active users, i.e., a node v is active at time

step t if v ∈ At . We say that the sequence converges as soon as

At ∗ = At ∗+1, for some time step t∗ ≥ 0 called the time of quies-

cence. For a set A, we use σ (A) = E[|At ∗ |] to denote the expected
number of nodes activated at the time of quiescence when running

the process with seed set A. In IM, the standard objective is to find

a set A maximizing σ (A) under a cardinality constraint. Both the

IC and LT model are special cases of the more general Triggering

Model, see [7, Proofs of Theorem 4.5 and 4.6] that we consider in

this work.

Influence-based Group Shapley Centrality. Chen and Teng [4]

consider the Shapley value of nodes w.r.t. the influence spread

function σ in a SN modeled by the Triggering Model. They use

the resulting Shapley centrality ϕShσ (i) as a measure of centrality of

node i . In this work, we consider ϕShσ , i.e., the Group Shapley value

w.r.t. σ . We call this value the Influence-based Group Shapley (IGS)

centrality of S . We refer to it as ϕSh(S) omitting σ as an index.

The central problem of this paper consists in finding sets S of

size at most k that have large IGS centrality among all such sets. We

call this the Max-Shapley-Group problem. The most important

tool for studying this problem are so-called RR sets [2, 12]. In fact,

there exists a concise formulation of ϕSh in terms of RR sets:

Lemma 2.1 (IGS centrality via RR sets). For any S ⊆ V ,

ϕSh(S) = n · ER

[ 1R∩S,∅
|R \ S | + 1

]
.

3 HARDNESS OF APPROXIMATION
Unfortunately, Max-Shapley-Group in the IC model is, up to a

constant factor, as hard to approximate as Densest-k-Subgraph.

Theorem 3.1. Let α ∈ (0, 1]. If there is an α-approximation algo-

rithm for Max-Shapley-Group, then there is an α/8-approximation

algorithm for Densest-k-Subgraph.

Anumber of strong hardness of approximation results are known

for Densest-k-Subgraph: (1) Densest-k-Subgraph cannot be ap-

proximated within 1/no(1) if the Gap Exponential Time Hypothesis

holds [8]. (2) Densest-k-Subgraph cannot be approximated within

any constant if the Unique Games with Small Set Expansion conjec-

ture holds [11]. (3) Densest-k-Subgraph cannot be approximated

within n−(log logn)
−c

for some constant c if the Exponential Time

Hypothesis holds [8]. We provide a reduction which yields the same

hardness results for Max-Shapley-Group. In particular, accord-

ing to (1) and our reduction, it is unlikely to find anything better

than an (n−c )-approximation for Max-Shapley-Group, where c is
a constant. Furthermore, for all settings where k = O(nc ), such an

algorithm is implied by our result in Section 4.

4 A SIMPLE APPROXIMATION ALGORITHM
A good approximation result, as for example a constant-factor ap-

proximation, is unlikely for the Max-Shapley-Group problem. We

however obtain a positive result for small values of k .

Approximating ϕSh through RR sets. By sampling a sufficient

number of RR sets, we can give a set function
ˆϕSh that with high

probability approximates ϕSh to within a factor of 1 ± ϵ . The idea
is to approximate the expected value in Lemma 2.1 via a Chernoff

bound. This is captured by the following lemma.

Lemma 4.1. Let ϵ ∈ (0, 1) and let R1, . . . ,Rt be a sequence of t RR
sets. For a value of t that is polynomial in n and ϵ−1, w.h.pr.,

ˆϕSh(S) :=
n

t

t∑
i=1

1Ri∩S,∅

|Ri \ S | + 1

is a (1 ± ϵ)-approximation of ϕSh.

The Harmonic-Max-Hitting-Set problem. Lemma 4.1 suggests

to sample a near-linear number t of RR sets and compute a set of

nodes S that maximizes
ˆϕSh(S). We call the resulting problem the

Harmonic-Max-Hitting-Set problem: the input consists of a set

X = {x1, . . . ,xn }, a set Z = {Z1, . . . ,Zm } of subsets of X , and an

integer k . The task is to find a subset S ⊆ X s.t. |S | ≤ k maximizing

fZ (S) :=
m∑
i=1

1Zi∩S,∅

|Zi \ S | + 1
.

This is a non-linear variant of the well-known Max-Hitting-

Set problem (itself equivalent to the Max-Set-Cover problem [6])

in which the objective function is

∑m
i=1 1Zi∩S,∅ . The problem of

maximizing
ˆϕSh can be stated as a Harmonic-Max-Hitting-Set

problem by letting X = V and Z be the set of generated RR sets.

Approximation Algorithm. Consider an instance (X ,Z ,k) and de-
fine the following set function hZ (S) :=

∑m
i=1 1Zi∩S,∅/|Zi |. Note

the similarity between hZ and fZ . The approximation algorithm

that we propose is to greedily maximize hZ instead of fZ . Why

would this be a good idea? (1) The set function hZ is monotone

and submodular; thus the greedy algorithm will yield a 1 − 1/e ap-
proximation to maximizing hZ . (2) Given a set S ⊆ X with |S | ≤ k ,
it holds that fZ (S) ≥ hZ (S) ≥ fZ (S)/k , that is, the error when

passing from hZ to fZ is at most k . Hence, if we denote by S∗f (resp.

S∗h ) an optimal solution of size k for maximizing fZ (resp. hZ ), we

have that hZ (S
∗
h ) ≥ hZ (S

∗
f ) ≥ fZ (S

∗
f )/k . Now let S be the solution

of size k returned by the greedy algorithm. Then, S is a (1 − 1/e)/k
approximation to maximizing fZ as

fZ (S) ≥ hZ (S) ≥
(
1 −

1

e

)
· hZ (S

∗
h ) ≥

1 − 1/e

k
· fZ (S

∗
f ).

Theorem 4.2. Let ϵ ∈ (0, 1). There is an algorithm with running

time polynomial in n and ϵ−1 that, with high probability, returns a

1−1/e
k − ϵ-approximation for the Max-Shapley-Group problem.
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