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ABSTRACT
Policy gradient methods have become one of the most popular

classes of algorithms for multi-agent reinforcement learning. A

key challenge, however, that is not addressed by many of these

methods is multi-agent credit assignment: assessing an agent’s con-

tribution to the overall performance, which is crucial for learning

good policies. We propose a novel algorithm called Dr.Reinforce

that explicitly tackles this by combining difference rewards with

policy gradients to allow for learning decentralized policies when

the reward function is known. By differencing the reward function

directly, Dr.Reinforce avoids difficulties associated with learning

the 𝑄-function as done by Counterfactual Multiagent Policy Gra-

dients (COMA), a state-of-the-art difference rewards method. For

applications where the reward function is unknown, we show the

effectiveness of a version of Dr.Reinforce that learns a reward net-

work that is used to estimate the difference rewards.
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1 INTRODUCTION
Many real-world problems [23, 24, 27], can be naturally modelled as

cooperative multi-agent systems [4]. Such problems have commonly

been approached with (deep) multi-agent reinforcement learning
(MARL) [3, 12, 13, 15]. In the paradigm of centralized training with
decentralized execution (CTDE) [13, 19] agents use global informa-

tion during training, but then only rely on local sensing during

execution, thus avoiding the prohibitive complexity of a centralized

solution [2, 18]. Multi-agent policy gradients (MAPG) [20] methods

have become one of the most popular CTDE approaches [11, 14].
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However, one key problem that agents face with CDTE that

is not directly tackled by many MAPG methods is multi-agent
credit assignment [7, 17, 25, 28]. With a shared reward signal, an

agent cannot readily tell how its own actions affect the overall

performance. Difference rewards [9, 10, 21, 26] were proposed to

tackle this problem: agents learn from a shaped reward that allows

them to infer how their actions contributed to the shared reward.

Counterfactual Multiagent Policy Gradients (COMA) [11] is a

state-of-the-art algorithm that does this differencing with a learned

action-value function 𝑄 (𝑠, 𝑎). However, there are potential disad-
vantages to this approach: learning the 𝑄-function is a difficult

problem due to compounding factors of bootstrapping, the moving

target problem [16], and 𝑄 ’s dependence on the joint actions [6, 8].

To overcome these potential difficulties, we propose difference
rewards REINFORCE (Dr.Reinforce), a new MARL algorithm that

combines decentralized policy gradients directly with differencing

of the reward function. Additionally, we provide a practical variant,

called Dr.ReinforceR, that learns a centralized reward network dur-

ing training for settings where the reward function is not known

upfront. Although the dimensionality of the reward function is the

same as the 𝑄-function, and similarly depends on joint actions,

learning the reward function is a simple regression problem and it

does not suffer from the moving target problem.

2 DIFFERENCE REWARDS POLICY
GRADIENTS

If the reward function 𝑅(𝑠, 𝑎) is known, we can directly use differ-

ence rewards with policy gradients. We define the difference return
Δ𝐺𝑖

𝑡 for agent 𝑖 as the discounted sum of the difference rewards

Δ𝑅𝑖 (𝑎𝑖𝑡 |𝑠𝑡 , 𝑎−𝑖𝑡 ) from time step 𝑡 onward:

Δ𝐺𝑖
𝑡 (𝑎𝑖𝑡 :𝑡+𝑇 |𝑠𝑡 :𝑡+𝑇 , 𝑎

−𝑖
𝑡 :𝑡+𝑇 ) ≜

𝑇∑︁
𝑙=0

𝛾𝑙Δ𝑅𝑖 (𝑎𝑖
𝑡+𝑙 |𝑠𝑡+𝑙 , 𝑎

−𝑖
𝑡+𝑙 ), (1)

where Δ𝑅𝑖 (𝑎𝑖𝑡 |𝑠𝑡 , 𝑎−𝑖𝑡 ) is the difference rewards for agent 𝑖 , com-

puted using the aristocrat utility [26]:

Δ𝑅𝑖 (𝑎𝑖 |𝑠, 𝑎−𝑖 ) = 𝑅(𝑠, 𝑎) −
∑︁

𝑏𝑖 ∈𝐴𝑖

𝜋𝜃𝑖 (𝑏𝑖 |𝑠𝑡 )𝑅(𝑠, ⟨𝑎−𝑖 , 𝑏𝑖 ⟩) . (2)
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To learn the decentralized policies 𝜋𝜃 , we follow a modified ver-

sion of the distributed policy gradients [20] that uses our difference

return, optimizing each policy by using the update target:

𝜃𝑖 ← 𝜃𝑖 + 𝛼𝛾𝑡Δ𝐺𝑖
𝑡 (𝑎𝑖𝑡 :𝑡+𝑇 |𝑠𝑡 :𝑡+𝑇 , 𝑎

−𝑖
𝑡 :𝑡+𝑇 )∇𝜃𝑖 log𝜋𝜃𝑖 (𝑎

𝑖
𝑡 |𝑠𝑡 ). (3)

This way, each policy is guided by an update that takes into account

its individual contribution to the shared reward, and an agent thus

takes into account the real value of its own actions [1].

In many settings however, complete access to the reward func-

tion to compute the difference rewards is not available. Thus, we

propose Dr.ReinforceR, which is similar to Dr.Reinforce but addi-

tionally learns a centralized reward network 𝑅𝜓 , parametrized by

a vector𝜓 , that is used only during training to estimate the value

𝑅(𝑠, ⟨𝑎𝑖 , 𝑎−𝑖 ⟩) for every local action 𝑎𝑖 ∈ 𝐴𝑖
. The reward network

is trained to reproduce the sampled reward value 𝑟𝑡 ∼ 𝑅(𝑠𝑡 , 𝑎𝑡 ) by
minimizing a standard MSE regression loss:

L𝑡 (𝜓 ) =
1

2

(
𝑟𝑡 − 𝑅𝜓 (𝑠𝑡 , 𝑎𝑡 )

)
2

. (4)

Although the dimensionality of the function 𝑅(𝑠, 𝑎) that we are
learning with the reward network is the same as that of 𝑄 (𝑠, 𝑎)
learned by the COMAcritic, learning𝑅𝜓 is a regression problem that

does not involve bootstrapping or moving targets, thus avoiding

many of the problems faced with an action-value function critic.

We can now compute an estimated Δ𝑅𝑖
𝜓
to use in (1) as:

Δ𝑅𝑖
𝜓
(𝑎𝑖𝑡 |𝑠𝑡 , 𝑎−𝑖𝑡 ) ≜ 𝑟𝑡 −

∑︁
𝑏𝑖 ∈𝐴𝑖

𝜋𝜃𝑖 (𝑏𝑖 |𝑠𝑡 )𝑅𝜓 (𝑠𝑡 , ⟨𝑏𝑖 , 𝑎−𝑖𝑡 ⟩) . (5)

Lemma 1. Using difference return Δ𝐺𝑖
𝑡 as the learning signal for

policy gradients in (3) is equivalent to subtracting an unbiased baseline
𝑏𝑖 (𝑠𝑡 :𝑡+𝑇 , 𝑎−𝑖𝑡 :𝑡+𝑇 ) from the distributed policy gradients in [20].

Proofs of Lemma 1 and convergence are available in [5].

3 EXPERIMENTS
We are interested in investigating the following questions:

(1) How does Dr.Reinforce compare to existing approaches?

(2) How does the use of a learned reward network 𝑅𝜓 instead

of a known reward function affect performance?

(3) Is learning the 𝑄-function (as in COMA) more difficult than

learning the reward function 𝑅(𝑠, 𝑎) (as in Dr.ReinforceR)?

To investigate these questions, we tested our methods on the

multi-rover domain [10], in which agents have to spread across a

series of landmarks, and a variant of the classical predator-prey

problem with a randomly moving prey [22]. We compare to a range

of other policy gradients methods, including COMA [11] and an

adaptation of the algorithm proposed by Colby et al. [9]. Additional

results and analysis of the reward network are available in [5].

Multi-Rover Domain.While both COMA and Dr.ReinforceR

easily learn good policies with three agents, when the system gets

larger both begin to struggle, achieving sub-optimal performance.

On the other hand, Dr.Reinforce learns high return policies. Given

that this represents an upper bound to Dr.ReinforceR performance

in case the reward network 𝑅𝜓 learns a correct approximation, we

can hypothesize that the gap in performance are due to a reward

network: computing the difference rewards requires very accurate

reward estimates, but the reward network may end up overfitting
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(a) Multi-Rover, 𝑁 = 3
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(b) Multi-Rover, 𝑁 = 8
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(c) Predator-Prey, 𝑁 = 3
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(d) Predator-Prey, 𝑁 = 8

Figure 1: Training curves on the two problems, showing the
mean reward and 90% confidence interval across 10 seeds.

to the training reward samples and not exhibit appropriate general-

ization capabilities.

Predator-Prey. In this environment, Dr.ReinforceR outperforms

all the other methods, achieving performance that is equal or close

to these of the Dr.Reinforce upper bound. In contrast, COMA strug-

gles in learning something useful when more agents are introduced.

This points out how accurately learning an optimal 𝑄-function

may be problematic in many settings: to compute the counterfac-

tual baseline, estimates of 𝑄-values need to be accurate even on

state-action pairs that the policies do not visit often, rendering the

learning problem more difficult. From this side, learning the reward

function is an easier regression problem not involving bootstrapped

estimates or moving target problems.

4 CONCLUSIONS
In cooperative multi-agent systems agents face the problem of fig-

uring out how they are contributing to the overall performance

of the team in which only a shared reward signal is available. We

proposed Dr.Reinforce, a novel algorithm that tackles multi-agent

credit assignment by combining policy gradients and differencing

of the reward function. When the true reward function is known,

our method outperforms all compared baselines and scales much

better with the number of agents. For settings in which such reward

function is not known, we proposed Dr.ReinforceR, that learns a cen-

tralized reward network used for estimating the difference rewards,

which scales significantly better than COMA in the predator-prey

benchmark.
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