
Learning to Cooperate with Unseen Agents Through
Meta-Reinforcement Learning

Extended Abstract

Rujikorn Charakorn, Poramate Manoonpong, Nat Dilokthanakul
Vidyasirimedhi Institute of Science and Technology (VISTEC)

{rujikorn.c_s19,poramate.m,natd_pro}@vistec.ac.th

ABSTRACT
Ad hoc teamwork problem describes situations where an agent has
to cooperate with previously unseen agents to achieve a common
goal. For an agent to be successful in these scenarios, it has to
have cooperative skills. One could implement cooperative skills
into an agent by using domain knowledge (e.g., goals, roles, and
protocols) to design the agent’s behaviours. However, in complex
domains, domain knowledge might not be available. Therefore, it is
interesting to explore how to directly learn cooperative skills from
data. In this work, we apply meta-reinforcement learning (meta-
RL) formulation in the context of ad hoc teamwork problem. Our
experiments show that such a method could produce cooperative
agents in two cooperative environments with different cooperative
circumstances.

KEYWORDS
Ad-hoc Teamwork; Cooperation; Generalisation; Meta-Learning;
Deep Reinforcement Learning

ACM Reference Format:
Rujikorn Charakorn, Poramate Manoonpong, Nat Dilokthanakul. 2021.
Learning to Cooperate with Unseen Agents Through Meta-Reinforcement
Learning: Extended Abstract. In Proc. of the 20th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2021), Online, May
3–7, 2021, IFAAMAS, 2 pages.

1 INTRODUCTION
In this work, we posit that a cooperative agent needs the ability
to generalise its policy to the dynamics of unseen agents and this
can be achieved with meta-reinforcement learning. Meta-learning
paradigm considers learning an adaptive behaviour using data. At
test time, the agent can utilise newly collected samples to shape its
behaviour in an unseen environment. Intuitively, this method could
work well in the ad hoc teamwork problem, where we would like
our agent to adapt its behaviour such that it cooperates smoothly
with an unseen partner. This approach will be useful when working
with complex environments, where domain knowledge might not
be available.

2 METHODS
2.1 Training setup
In this work, we consider two-player cooperative tasks, where our
agent will have to cooperate with a set of agents from a pool, P, of

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

partner agents. Similar to Wang et al. [4] and Duan et al. [1], our
meta-RL agent is implemented with an RNN and trained with a
distribution of partners P.

2.2 Environments
2.2.1 Lever Coordination Game (LC Game). We adapt the lever
coordination game from Hu et al. [2]. This game consists of five
levers; two players are playing at a time. At each timestep, each
of the agents will select one of the levers. A positive reward of 1.0
is achieved if both of them selects the same lever. However, one
of the agents is a pre-programmed agent, which keeps repeating
a pattern of three actions. For example, one of the partner agents
will keep choosing lever 1, 4, 5, 1, 4, 5 and, then, keep repeating
these actions.

2.2.2 Discrete Speaker-Listener Game (DSL Game). We adapt the
speaker-listener game from Lowe et al. [3]. The game consists of
a speaker, a listener and five landmarks. At each timestep, the
reward of 1.0 will be randomly assigned to one of the landmarks.
The speaker can see where the reward is and has to speak to the
listener by emitting a one-hot vector to the listener. The listener
then chooses one of the landmarks as a target and receive a positive
reward if it selects the correct target. Similar to the LC game, the
speaker is a pre-programmed partner agent. Each pre-programmed
agent has a unique one-to-one mapping between landmarks and
the five-dimensional one-hot vectors.

3 EXPERIMENTS
3.1 Emergence of Cooperative skills
We test meta-RL agents in the LC game and the DSL game with
four model variations, which have different input features to the
RNNs. The models are:

• RNN: Baseline recurrent neural network (RNN) with the
standard observation.

• a-RNN: Recurrent neural network with the standard obser-
vation and the previous action of the agent 𝑎𝑡−1.

• r-RNN: Recurrent neural network with the standard obser-
vation and the reward 𝑟𝑡−1.

• ar-RNN: Recurrent neural network with the standard obser-
vation, the previous action 𝑎𝑡−1 and the reward 𝑟𝑡−1.

The results from Fig. 1 show that recurrent architectures with
the previous reward as an additional input (r-RNN and ar-RNN)
outperform the ones that do not have the feature as input (RNN
and a-RNN). Specifically, when matched with unseen agents, ar-
RNN has the highest average score of 36.2 in LC game and 34.4 in
DSL game. An agent with the complete knowledge of the partner’s

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1478

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 AVG

ar-RNN

r-RNN

a-RNN

RNN

0

5

10

15

20

25

30

35

40.12 31.61 38.55 33.37 41.69 37.13 33.86 36.68 32.81 38.71 36.17

17.43 23.1 26.0 25.06 25.42 18.3 22.6 23.6 22.37 24.7 23.64

10.96 1.93 9.2 5.2 6.26 12.89 9.03 3.76 5.03 4.82 7.82

10.04 3.21 17.0 6.68 6.78 6.97 6.87 3.33 13.22 6.55 6.97

Figure 1: Test-time score when matched with unseen agents
in the LC game. Each cell in the heatmap shows an average score
over five training seeds for a pair of a trained agent and an unseen
agent. ar-RNN and r-RNN have high test-time scores while a-RNN
and r-RNN do not. The results are similar in the DSL game.

0 50 100 150 200 250 300 350 400 450 500
0

0.2

0.4

0.6

0.8

1
Long horizon
Switching

Switching point

Timestep

Em
p

ir
ic

al
 r

ew
ar

d
 p

ro
b

ab
ili

ty

Figure 2: Continual Adaptation in the LC game. We test
whether the meta-RL agent can adapt to multiple partners within
the same trajectory.

pattern would theoretically get the score of 50.0. However, RNN
and a-RNN have a lower average score than a random policy that
would have an average score of 10.0.

These experiments indicate that ar-RNN and r-RNN can cooper-
ate effectively while a-RNN and RNN cannot. We interpret these
results as follow:

• The reward signal 𝑟𝑡−1 is necessary for the emergence of
cooperative skills. This is because the agent needs to know
whether or not its current strategy is suited to the current
partner.

• The previous action input 𝑎𝑡−1 helps the agent to cooperate
quicker when used in combination with the reward signal
𝑟𝑡−1 because this feature can be used by the RNN to correlate
the action with the reward. This makes it easier for the RNN
to identify what is the correct action during adaptation.

3.2 Continual Adaptation
When an agent is deployed into the real world, test-time scenarios
might differ from the ones that are used during the training. In
this section, we examine the ability of a meta-RL agent to extrapo-
late under unexpected situations including working under longer
horizon and partner switching.

3.2.1 Longer horizon. In this experiment, the agent is tested in
trajectories with horizon length of 500 in the LC game and 2,000
in the DSL game. This is much longer compared to the horizon
length of 50 that the agent is trained with. We find that meta-RL
agent is robust when it performs to longer horizon length in both

environments. The performance is stable throughout the entire
trajectory.

3.2.2 Partner Switching. Working with only one partner through-
out an entire trajectory might not be realistic when considering
real-world applications where behaviour or partner switching could
occur over the course of the task. Here, we investigate meta-RL
ability to adapt under this circumstance without explicitly trained
or designed for this situation.

In this experiment, the partner agent is changed periodically. The
periods are to be 50 timesteps in both games and also 500 timesteps
in the DSL game to highlight the adaptation speed. The results
from the LC game are shown in Fig. 2. As can be seen from the
results, themeta-RL agent can adapt flexibly even though it has been
trained to adapt with only one partner per episode. We see different
adaptation behaviours when the agent is already adapted to one
partner. Specifically, it adapts faster to the first partner compared
to later partners in both environments. We think this is because
the agent is optimised to adapt to only one partner in an episode.

3.3 Limitations
So far, the experimental results have shown that meta-RL can pro-
duce ad hoc agents with preferable attributes. In this experiment,
we want to find the limitations of the agents and pitfalls that one
needs to avoid when using this training method.

3.3.1 Quantity. First, we study the impact of the number of train-
ing partners. We consider the number of training partners from
the set of {5,10,15,20}. We observe that the ad hoc teamwork per-
formance and cooperation get better as we increase the number
of training partners. This indicates that the quantity of training
partners has a direct impact on the adaptation of the agent.

3.3.2 Diversity. Next, we study the impact of diversity of the train-
ing partners. Instead of randomly selecting training partners from
the pool of all possible agents, we select the training partners such
that they only come from a specific part of a behaviour space. This
selection process skews the partner selection process such that
some lever sequences or mappings will appear more often, while
some are not presented during the training process at all. This is
similar to out-of-distribution testing in supervised learning.

The training score of meta-RL agent does not deteriorate when
trained under this skewed distribution. However, we notice that the
test-time performance reduced significantly in both environments.
This suggests that lack of diversity is detrimental to the generalisa-
tion of the meta-RL agent causing the agent to be less adaptive to
unseen agents during test-time.

REFERENCES
[1] Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter

Abbeel. 2016. RL2: Fast reinforcement learning via slow reinforcement learning.
arXiv preprint arXiv:1611.02779 (2016).

[2] Hengyuan Hu, Adam Lerer, Alex Peysakhovich, and Jakob Foerster. 2020. “Other-
Play” for Zero-Shot Coordination. In Proceedings of the 37th International Con-
ference on Machine Learning (Proceedings of Machine Learning Research, Vol. 119),
Hal Daumé III and Aarti Singh (Eds.). PMLR, 4399–4410.

[3] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive envi-
ronments. In Advances in neural information processing systems. 6379–6390.

[4] Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo,
Remi Munos, Charles Blundell, Dharshan Kumaran, and Matt Botvinick. 2016.
Learning to reinforcement learn. arXiv preprint arXiv:1611.05763 (2016).

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1479

	Abstract
	1 Introduction
	2 Methods
	2.1 Training setup
	2.2 Environments

	3 Experiments
	3.1 Emergence of Cooperative skills
	3.2 Continual Adaptation
	3.3 Limitations

	References

