
Stratified Experience Replay: Correcting Multiplicity Bias in
Off-Policy Reinforcement Learning

Extended Abstract

Brett Daley

Northeastern University

Boston, MA, USA

b.daley@northeastern.edu

Cameron Hickert

Harvard University

Cambridge, MA, USA

cameron_hickert@hks.harvard.edu

Christopher Amato

Northeastern University

Boston, MA, USA

c.amato@northeastern.edu

KEYWORDS
Deep reinforcement learning, Experience replay

ACM Reference Format:
Brett Daley, Cameron Hickert, and Christopher Amato. 2021. Stratified

Experience Replay: CorrectingMultiplicity Bias in Off-Policy Reinforcement

Learning: Extended Abstract. In Proc. of the 20th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2021), Online, May
3–7, 2021, IFAAMAS, 3 pages.

1 INTRODUCTION
Deep Reinforcement Learning (RL) methods rely on experience

replay [9] to approximate the minibatched supervised learning

setting; however, unlike supervised learning where access to lots

of training data is crucial to generalization, replay-based deep RL

appears to struggle in the presence of extraneous data. Recent works

have shown that the performance of Deep Q-Network (DQN) [11]

degrades when its replay memory becomes too large [4, 10, 17].

This suggests that outdated experiences somehow impact the

performance of deep RL, which should not be the case for off-policy

methods like DQN. Consequently, we re-examine the motivation for

sampling uniformly over a replay memory, and find that it may be

flawed when using function approximation. We show that—despite

conventional wisdom—sampling from the uniform distribution does

not yield uncorrelated training samples and therefore biases gradi-

ents during training. Our theory prescribes a special non-uniform

distribution to cancel this effect, and we propose a stratified sam-

pling scheme to efficiently implement it (see Figure 1).

2 MOTIVATION
We begin by showing how bias arises under experience replay with

function approximation by comparing Q-Learning [16] with its

deep analog, DQN [11]. We model the environment as a Markov

Decision Process (MDP) of the standard form (S,A,𝑇 , 𝑅) [14].
Upon taking action 𝑎 ∈ A in state 𝑠 ∈ S and observing the

resulting state 𝑠 ′ ∈ S, Q-Learning conducts an update on an entry

𝑄 (𝑠, 𝑎) of its lookup table. Define the temporal-difference error

as 𝛿 (𝑠, 𝑎, 𝑠 ′) = 𝑅(𝑠, 𝑎, 𝑠 ′) + 𝛾 max𝑎′∈A 𝑄 (𝑠 ′, 𝑎′) − 𝑄 (𝑠, 𝑎) with dis-

count factor 𝛾 ∈ [0, 1]. Since this particular error has probability
𝑇 (𝑠, 𝑎, 𝑠 ′) = Pr(𝑠 ′ | 𝑠, 𝑎) of occurring, the expected Q-Learning

update can be computed:

𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼
∑
𝑠′∈S

Pr(𝑠 ′ | 𝑠, 𝑎)𝛿 (𝑠, 𝑎, 𝑠 ′) (1)

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

Uniform Experience Replay

(1) Sample randomly from all transitions (s, a, r, s’)

Stratified Experience Replay (SER)

(1) Sample unique (s, a) pair randomly

(2) Sample consequent
(r, s’) pair randomly

Sampling
probability over
(s, a) pairs

Sampling
probability over
(s, a) pairs

Figure 1: A graphical comparison of uniform (top) and strat-
ified (bottom) sampling strategies.

Data Structure 1 Stratified Replay Memory

Initialize array 𝐷 of size 𝑁 , hash table 𝐻 , integer 𝑖 = 0

procedure insert(𝑠 , 𝑎, 𝑟 , 𝑠 ′)
if 𝐷 is full then

Get transition (𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠 ′𝑖) from 𝐷 [𝑖]
Pop queue 𝐻 [(𝑠𝑖 , 𝑎𝑖)]; if now empty, delete key (𝑠𝑖 , 𝑎𝑖)

end if
If (𝑠, 𝑎) ∉ 𝐻 , then 𝐻 [(𝑠, 𝑎)] ← 𝑒𝑚𝑝𝑡𝑦 𝑞𝑢𝑒𝑢𝑒

Push 𝑖 onto queue 𝐻 [(𝑠, 𝑎)]
𝐷 [𝑖] ← (𝑠, 𝑎, 𝑟, 𝑠 ′); 𝑖 ← (𝑖 + 1) mod 𝑁

end procedure

function sample()

Sample state-action pair (𝑠, 𝑎) uniformly from the keys of 𝐻

Sample integer 𝑗 uniformly from queue 𝐻 [(𝑠, 𝑎)]
return transition (𝑠 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 , 𝑠 ′𝑗) from 𝐷 [𝑗]

end function

where 𝛼 ∈ [0, 1] is the learning rate. Importantly, the expected

Q-Learning update is independent of the visitation frequency of

the state-action pair (𝑠, 𝑎) as long as its probability of occurrence

is nonzero.

Contrast this with DQN, which replaces the tabular lookup

𝑄 (𝑠, 𝑎) with a parametric function 𝑄 (𝑠, 𝑎;\) that is trained via sto-

chastic gradient descent over a dataset of past experiences. To facili-

tate our analysis, consider the theoretical case where DQN’s replay

memory 𝐷 has unlimited capacity and the agent executes a fixed

behavior policy ` for an infinite duration before training. We can

deduce that a sample drawn uniformly from 𝐷 will have probability

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1486

0 500000 1000000 1500000 2000000
Timestep

−800

−700

−600

−500

−400

−300

−200

−100

0

Ep
iso

de
 R

et
ur

n

Taxi

Uniform
Stratified

0 500000 1000000 1500000 2000000
Timestep

0.0

0.1

0.2

0.3

0.4

Ep
iso

de
 R

et
ur

n

FrozenLake

Uniform
Stratified

Figure 2: SER performance compared against a uniform
baseline on two environments, averaged over 100 trials.

Pr(𝑠, 𝑎, 𝑟, 𝑠 ′) = Pr(𝑠 ′ | 𝑠, 𝑎) Pr(𝑠, 𝑎).1 Define the temporal-difference

error as 𝛿 (𝑠, 𝑎, 𝑠 ′) = 𝑅(𝑠, 𝑎, 𝑠 ′) +𝛾 max𝑎′∈A 𝑄 (𝑠 ′, 𝑎′;\−) −𝑄 (𝑠, 𝑎;\)
where \− is a time-delayed copy of \ that helps stabilize training.

The expected DQN update can likewise be computed:

\ ← \ + 𝛼 Pr(𝑠, 𝑎)
∑
𝑠′∈S

Pr(𝑠 ′ | 𝑠, 𝑎) 𝛿 (𝑠, 𝑎, 𝑠 ′) ∇\𝑄 (𝑠, 𝑎;\) (2)

Note that this is analogous to (1) up to an additional factor of

Pr(𝑠, 𝑎). This factor effectively scales the learning rate in proportion
to how frequently the state-action pair occurs in the MDP under

the policy `. Hence, even under these rather favorable conditions

(an unchanging policy with infinite training samples), DQN suffers

from multiplicity bias due to the uniform distribution. Significantly,

this bias is not unique to DQN and affects other off-policy deep RL

methods like DDPG [8], ACER [15], TD3 [5], and SAC [6].

3 STRATIFIED EXPERIENCE REPLAY
According to our theory, an ideal experience replay strategy would

sample state-action pairs in inverse proportion to their relative fre-

quencies under the stationary distribution. While it is not tractable

to directly compute this distribution for high-dimensional environ-

ments, our agent has the advantage of a large replay memory at its

disposal; hence, sample-based approximations are feasible.

Recall from Section 2 that the sampling probability under the

uniform distribution factors: Pr(𝑠, 𝑎, 𝑟, 𝑠 ′) = Pr(𝑠 ′ | 𝑠, 𝑎) Pr(𝑠, 𝑎).
Dividing this by Pr(𝑠, 𝑎) to eliminate the multiplicity bias, and then

normalizing tomake the probabilities sum to 1 over the setS×A×S,
we arrive at the ideal sampling distribution: Pr(𝑠 ′ | 𝑠, 𝑎) / |S × A|.
Remarkably, this indicates that we can sample from two uniform

distributions in succession to counter multiplicity bias. We call this

Stratified Experience Replay2 (SER) inwhichwe first uniformly sam-

ple an antecedent state-action pair (𝑠, 𝑎) from𝐷 and then uniformly

sample a consequent reward-state pair (𝑟, 𝑠 ′) from the transitions

observed in (𝑠, 𝑎). By utilizing this two-step sampling strategy, we

are able to achieve a reasonable approximation
3
to the ideal distri-

bution without needing to explicitly compute these probabilities.

Data Structure 1 outlines an efficient implementation of SER that

1
The reward 𝑟 = 𝑅 (𝑠, 𝑎, 𝑠′) is deterministic and does not influence the probability.

2
Our approach should not be confused with the recent method of the same name [13].

3
It is not exact since, in practice, the replay memory will generally not contain S × A
fully, nor will the experiences be collected from a single policy `. Future work that

re-examines these simplifications could potentially improve empirical performance.

0 20 40 60 80 100 120 140

seaquest

star_gunner

space_invaders

qbert

jamesbond

beam_rider

pong

robotank

gopher

breakout

atlantis

92.83%

93.34%

95.00%

96.62%

97.48%

100.26%

100.45%

100.60%

102.92%

105.93%

108.15%

Figure 3: Average episode score of SER throughout training
on 11 Atari games, relative to that of the uniform baseline,
i.e. 100 × (stratified − random) / (uniform − random).

avoids an expensive search over the replay memory and thereby

maintains a sampling cost of 𝑂 (1).

4 EXPERIMENTS
Code and implementation details for all experiments are online.

4

All networks were optimized using Adam [7]. In our first exper-

iment, we trained a two-layer tanh DQN to solve Taxi [3] and

FrozenLake [2], comparing the performance of SER against uni-

form experience replay. SER helps the agent learn significantly

faster just by changing the sampling distribution (Figure 2).

Our second experiment compared the two sampling strategies

when training a convolutional DQN on 11 Atari 2600 games within

the ALE [1] following the procedures in [11] (excepting the use of

Adam). While SER improved average performance in a majority of

the games (Figure 3), the benefits were relatively modest compared

to those of our first experiment. This is likely due to the high-

dimensional nature of the games, wherein the majority of state-

action pairs are visited no more than once.

Nevertheless, we were surprised to find that redundancy is still

present in the games—particularly those where SER outperformed

the baseline. For example, in Atlantis, we found that nearly 20%

of the replay memory’s samples were redundant after 1M training

steps, and the most-visited sample was encountered over 250 times.

We believe that SER’s performance could be further improved by

considering ways to count similar—not just identical—state-action

pairs as being redundant (e.g. using density models [12]).

Conclusion. SER offers a theoretically well-motivated alternative

to the uniform distribution for off-policy deep RL methods. By cor-

recting for multiplicity bias, SER helps agents learn significantly

faster in small MDPs, although the benefits are less pronounced

in high-dimensional environments like Atari 2600 games. We see

great promise in future methods that address scalability by explor-

ing ways to generalize over similar state-action pairs during the

stratification process.

ACKNOWLEDGMENTS
This work was partially funded by US Army Research Office award

W911NF-20-1-0265.

4 https://github.com/brett-daley/stratified-experience-replay

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1487

https://github.com/brett-daley/stratified-experience-replay

REFERENCES
[1] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. 2013. The

Arcade Learning Environment: An Evaluation Platform for General Agents.

Journal of Artificial Intelligence Research 47 (2013), 253–279.

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. arXiv:1606.01540
(2016).

[3] Thomas G Dietterich. 2000. Hierarchical Reinforcement Learning with theMAXQ

Value Function Decomposition. Journal of Artificial Intelligence Research 13 (2000),
227–303.

[4] William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo

Larochelle, Mark Rowland, and Will Dabney. 2020. Revisiting Fundamentals of

Experience Replay. arXiv:2007.06700 (2020).
[5] Scott Fujimoto, Herke Van Hoof, and David Meger. 2018. Addressing Function

Approximation Error in Actor-Critic Methods. arXiv:1802.09477 (2018).

[6] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft

Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a

Stochastic Actor. arXiv:1801.01290 (2018).
[7] Diederik P Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-

mization. arXiv:1412.6980 (2014).
[8] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous Control with

Deep Reinforcement Learning. arXiv:1509.02971 (2015).

[9] Long-Ji Lin. 1992. Self-Improving Reactive Agents Based on Reinforcement

Learning, Planning and Teaching. Machine Learning 8, 3-4 (1992), 293–321.

[10] Ruishan Liu and James Zou. 2018. The Effects ofMemory Replay in Reinforcement

Learning. InAllerton Conference on Communication, Control, and Computing. IEEE,
478–485.

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-

ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,

Georg Ostrovski, et al. 2015. Human-Level Control through Deep Reinforcement

Learning. Nature 518, 7540 (2015), 529–533.
[12] Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. 2017. Count-

Based Exploration with Neural Density Models. In International Conference on
Machine Learning. PMLR, 2721–2730.

[13] Anil Sharma, Mayank K Pal, Saket Anand, and Sanjit K Kaul. 2020. Stratified

Sampling Based Experience Replay for Efficient Camera Selection Decisions. In

IEEE International Conference on Multimedia Big Data. IEEE, 144–151.
[14] Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Intro-

duction. MIT Press.

[15] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray

Kavukcuoglu, and Nando de Freitas. 2016. Sample Efficient Actor-Critic with

Experience Replay. arXiv:1611.01224 (2016).
[16] Christopher John Cornish HellabyWatkins. 1989. Learning from Delayed Rewards.

Ph.D. Dissertation. King’s College.

[17] Shangtong Zhang and Richard S Sutton. 2017. A Deeper Look at Experience

Replay. arXiv:1712.01275 (2017).

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1488

	1 Introduction
	2 Motivation
	3 Stratified Experience Replay
	4 Experiments
	Acknowledgments
	References

