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ABSTRACT
We explore the class of problems where a central planner needs

to select a subset of agents, each with different quality and cost.

The planner wants to maximize its utility while ensuring that the

average quality of the selected agents is above a certain threshold.

When the agents’ quality is known, we formulate our problem as an

integer linear program (ILP) and propose a deterministic algorithm,

namely DPSS that provides an exact solution to our ILP.

We then consider the setting when the qualities of the agents are

unknown.Wemodel this as aMulti-Arm Bandit (MAB) problem and

propose DPSS-UCB to learn the qualities over multiple rounds. We

show that after a certain number of rounds, 𝜏 , DPSS-UCB outputs

a subset of agents that satisfy the average quality constraint with a

high probability. Next, we provide bounds on 𝜏 and prove that after 𝜏

rounds, the algorithm incurs a regret of𝑂 (ln𝑇 ), where𝑇 is the total

number of rounds. We further illustrate the efficacy of DPSS-UCB

through simulations. To overcome the computational limitations

of DPSS, we propose a polynomial-time greedy algorithm, namely

GSS, that provides an approximate solution to our ILP. We also

compare the performance of DPSS and GSS through experiments.
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1 MODEL AND SOLUTION APPROACH
Consider a fixed set of 𝑁 = {1, 2, . . . , 𝑛} agents producing a particu-
lar product. Each agent, 𝑖 , has a cost of production, 𝑐𝑖 , and capacity,

𝑘𝑖 . The quality of the 𝑗𝑡ℎ unit of produce by agent 𝑖 is denoted by

𝑄𝑖 𝑗 , which we model as a Bernoulli random variable, with mean 𝑞𝑖 ,

where 𝑞𝑖 is referred to as the quality of the agent. Upon procuring

a unit from agent 𝑖 , a central planner, 𝐶 , receives a utility given

by 𝑟𝑖 = 𝑅𝑞𝑖 − 𝑐𝑖 , where 𝑅 is the proportionality constant. 𝐶 needs

to procure units from these agents so as maximize its total utility,

𝑧, whilst ensuring that the expected average quality of the units

produced, 𝑞𝑎𝑣 =

∑
𝑖∈𝑁 𝑥𝑖𝑞𝑖∑
𝑖∈𝑁 𝑥𝑖

is above a certain threshold 𝛼 ∈ [0, 1].
Here, 𝑥𝑖 refers to the number of units procured from the 𝑖𝑡ℎ agent.

We model our problem as an Integer Linear Program (ILP) ([10]:

Equation 1) and propose a dynamic-programming (DP) based al-

gorithm, 𝐷𝑃𝑆𝑆 , to solve for it. For ease of exposition, we consider

𝑘𝑖 = 1, since each unit of produce can be considered a separate
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agent and the proofs and discussion follows. Under 𝐷𝑃𝑆𝑆 , we cat-

egorize agents into four categories: i) 𝑆1: Agents with 𝑞𝑖 ≥ 𝛼 and

𝑟𝑖 ≥ 0, ii) 𝑆2: Agents with 𝑞𝑖 < 𝛼 and 𝑟𝑖 ≥ 0, iii) 𝑆3: Agents with

𝑞𝑖 ≥ 𝛼 and 𝑟𝑖 < 0, iv) 𝑆4: Agents with 𝑞𝑖 < 𝛼 and 𝑟𝑖 < 0. The agents

are then selected as shown in Algorithm 1.

Algorithm 1 DPSS

1: Inputs: 𝑁 , 𝛼 , 𝑅, costs 𝒄 = {𝑐𝑖 }𝑖∈𝑁 , qualities 𝒒 = {𝑞𝑖 }𝑖∈𝑁
2: Output: Quantities procured 𝒙 = (𝑥1, . . . , 𝑥𝑛)
3: Initialization: ∀𝑖 ∈ 𝑁 , 𝑟𝑖 = 𝑅𝑞𝑖 − 𝑐𝑖 , 𝑧 = 0

4: Segregate 𝑆1,𝑆2,𝑆3,𝑆4 as described in Section 1

5: ∀𝑖 ∈ 𝑆1, 𝑥𝑖 = 1; 𝑧 = 𝑧 + 𝑟𝑖 ; 𝑑 =
∑

𝑖∈𝑆1 (𝑞𝑖 − 𝛼)
6: ∀𝑖 ∈ 𝑆4, 𝑥𝑖 = 0

7: 𝐺 = 𝑆2 ∪ 𝑆3 ; ∀𝑖 ∈ 𝐺,𝑑𝑖 = 𝑞𝑖 − 𝛼
8: function dp(𝑖, 𝑑𝑡𝑒 , 𝑥𝑡𝑒 , 𝑥★, 𝑧𝑡𝑒 , 𝑧★)

9: if 𝑖 == |𝐺 | and 𝑑𝑡𝑒 < 0 then return 𝑥★, 𝑧★

10: if 𝑖 == |𝐺 | and 𝑑𝑡𝑒 ≥ 0 then
11: if 𝑧𝑡𝑒 > 𝑧★ then
12: 𝑧★ = 𝑧𝑡𝑒 ; 𝑥★ = 𝑥𝑡𝑒

13: return 𝑥★, 𝑧★

14: 𝑥★, 𝑧★ = 𝐷𝑃 (𝑖 + 1, 𝑑𝑡𝑒 , [𝑥𝑡𝑒 , 0], 𝑥★, 𝑧𝑡𝑒 , 𝑧★)
15: 𝑥★, 𝑧★ = 𝐷𝑃 (𝑖 + 1, 𝑑𝑡𝑒 + 𝑑𝑖 , [𝑥𝑡𝑒 , 1], 𝑥★, 𝑧𝑡𝑒 + 𝑟𝑖 , 𝑧★)
16: return 𝑥★, 𝑧★

17: 𝑥𝐺 , 𝑧𝐺 = DP(0,d,[ ],[ ],0,0)

18: ∀𝑖 ∈ 𝐺,𝑥𝑖 = 𝑥𝐺
𝑖

19: return x

Unknown Qualities. We now consider a setting when 𝑞𝑖 are un-
known beforehand and can only be learned by selecting the agents.

When online learning is involved, the stochastic multi-armed bandit

(MAB) problem captures the exploration vs. exploitation trade-off

effectively [1–5, 12–18]. Since we select multiple agents in a round,

we model it as a Combinatorial MAB (CMAB) problem [6–9, 11]

with semi-bandit feedback and quality constraint (QC). In our set-

ting, QC depends on the qualities of the agents that are unknown,

which makes it different from similar works like Jain et al. [14]

where the authors present a bandit framework where the constraint

depends on the cost of the agents which are known beforehand.

We propose an abstract framework, SS-UCB (Algorithm 2), for

subset selection problem with QC. SS-UCB assumes that there

exist an offline subset selection algorithm, SSA, (e.g., DPSS), which

returns a super-arm that satisfies the QC corresponding to the

qualities, cost and threshold provided as input to it. An algorithm

under the SS-UCB framework proceeds in discrete rounds, 𝑡 =

1, . . . ,𝑇 . In round 𝑡 , 𝐶 selects a super arm, 𝑆𝑡 = {𝑖 ∈ 𝑁 |𝑥𝑡
𝑖
= 1},

where 𝑥𝑡
𝑖
refers to if arm 𝑖 is selected at round 𝑡 . The expected

average quality of 𝑆𝑡 is given by 𝑞𝑡𝑎𝑣 =
1

𝑠𝑡
∑
𝑖∈𝑆𝑡 𝑞𝑖 . Let 𝑠

𝑡 = |𝑆𝑡 |
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Figure 1: Relative Performance of GSS Figure 2: Regret incurred for 𝑡 > 𝜏 Figure 3: Constraint Satisfaction at each
round

Algorithm 2 SS-UCB

1: Inputs: 𝑁 , 𝛼 , 𝜖2, R, costs 𝒄 = {𝑐𝑖 }𝑖∈𝑁
2: For each agent 𝑖 , maintain: 𝑤𝑡

𝑖
, 𝑞𝑡

𝑖
, (𝑞𝑡

𝑖
)+

3: 𝜏 ← 3 ln𝑇

2𝜖2
2

; 𝑡 = 0

4: while 𝑡 ≤ 𝜏 (Explore Phase) do
5: Play a super-arm 𝑆𝑡 = 𝑁

6: Observe qualities 𝑋
𝑗

𝑖
, ∀𝑖 ∈ 𝑆𝑡 and update 𝑤𝑡

𝑖
, 𝑞𝑡

𝑖

7: 𝑡 ← 𝑡 + 1
8: while 𝑡 ≤ 𝑇 (Explore-Exploit Phase) do

9: For each agent 𝑖 , set (𝑞𝑡
𝑖
)+ = 𝑞𝑡

𝑖
+

√
3 ln 𝑡

2𝑤𝑡
𝑖

10: 𝑆𝑡 = SSA ({(𝑞𝑡
𝑖
)+ }𝑖∈𝑁 , 𝑐, 𝛼 + 𝜖2,R)

11: Observe qualities 𝑋
𝑗

𝑖
, ∀𝑖 ∈ 𝑆𝑡 and update 𝑤𝑡

𝑖
, 𝑞𝑡

𝑖

12: 𝑡 ← 𝑡 + 1

and𝑤𝑡
𝑖
denote the number of rounds an agent 𝑖 has been selected

until round 𝑡 , i.e.,𝑤𝑡
𝑖
=

∑
𝑦≤𝑡 𝑥

𝑦

𝑖
. For 𝑖 ∈ 𝑆𝑡 , 𝐶 observes its realized

quality 𝑋
𝑗
𝑖
, where 𝑗 = 𝑤𝑡

𝑖
and E[𝑋

𝑗
𝑖
] = 𝑞𝑖 and obtains a utility of

𝑟 (𝑆𝑡 ) = ∑
𝑖∈𝑆𝑡 𝑅𝑞𝑖 − 𝑐𝑖 . The empirical mean estimate of 𝑞𝑖 at round

𝑡 , is denoted by 𝑞𝑡
𝑖
= 1

𝑤𝑡
𝑖

∑𝑤𝑡
𝑖

𝑗=1
𝑋

𝑗
𝑖
. The upper confidence bound

(UCB) estimate is denoted by (𝑞𝑡
𝑖
)+) (Algorithm 2, Line 9)

We refer to the algorithm as DPSS-UCB when we use DPSS

(Algorithm 1) as SSA in the SS-UCB framework. We prove that

DPSS-UCB outputs the super-arm that satisfies the QC with high

probability after a certain threshold number of rounds, 𝜏 , and incurs

a regret of 𝑂 (ln𝑇 ). Additionally, we supplement our proofs by

evaluating our framework on simulated data (Figure 2 and 3).

Theorem 1. For 𝜏 = 3 ln𝑇

2𝜖2
2

, if each agent is explored 𝜏 number

of rounds, then if we invoke DPSS with target threshold 𝛼 + 𝜖2 and
{(𝑞𝑡

𝑖
)+}𝑖∈𝑁 as the input, the QC is approximately met with high

probability.

P
(
𝑞𝑡𝑎𝑣 < 𝛼 − 𝜖1 |

1

𝑠𝑡

∑
𝑖∈𝑆𝑡
(𝑞𝑡𝑖 )
+ ≥ 𝛼 + 𝜖2, 𝑡 > 𝜏

)
≤ 𝑒𝑥𝑝 (−𝜖2

1
𝑡).

where 𝜖1 is the tolerance parameter and refers to the planner’s

ability to tolerate a slighty lower average quality than required.

Definition 1. We say 𝒒 = (𝑞1, 𝑞2, . . . , 𝑞𝑛) satisfies 𝜖-seperatedness
if ∀𝑆 ⊆ 𝑁 ,𝑈 (𝑆) = 1

𝑠

∑
𝑖∈𝑆 𝑞𝑖 s.t.𝑈 (𝑆) ∉ (𝛼 − 𝜖, 𝛼).

This suggests that there is no super-arm 𝑆 ∈ 𝜒 , such that 𝛼 −
𝜖 ≤ 1

|𝑆 |
∑
𝑖∈𝑆 𝑞

𝑡
𝑖
≤ 𝛼 . It is important for DPSS-UCB to satisfy 𝜖1-

seperatedness because if there exists such a super-arm, for which

the average quality is between (𝛼 − 𝜖1, 𝛼), DPSS-UCB will include

it in 𝜒 due to tolerance parameter 𝜖1 while it would violate the QC.

Theorem 2. If qualities of the agents satisfy 𝜖1-seperatedness, then
regret incurred for 𝑡 > 𝜏 is bounded by 𝑂 (ln𝑇 ).

GSS. : To overcome the computational limitations of DPSS in (𝑂 (2𝑛)
time complexity), we propose GSS that runs𝑂 (𝑛 log𝑛) and provides
an approximate solution to our ILP. GSS solves for the linearly

relaxed variant of our ILP; however, due to the nature of our QC, we

don’t always drop the fractional part. The details of the algorithm

can be found in [10]. While the approximation ratio of the utilities

obtained through GSS and DPSS can be arbitrarily small, we show

that in practice (Fig. 1), GSS gives close to optimal solutions at a

huge computational benefit that allows us to scale our framework

for a large number of agents. We then use GSS as our SSA in the SS-

UCB framework and propose GSS-UCB as an alternate algorithm

to DPSS-UCB when qualities are unknown. Through experiments

on simulated data (Fig. 2 and 3), we show that GSS-UCB achieves a

comparable regret and constraint satisfaction similar to DPSS-UCB.

2 CONCLUSION
In this paper, we addressed the class of problems where a central

planner had to select a subset of agents that maximized its utility

while ensuring a quality constraint. Our motivation towards this

setting was consumer-oriented cooperative societies such as those

of artisans where production is decentralized. Each producer has a

different quality and cost of produce depending on its workmanship

and the scale at which it operates. In such settings, the qualities

of the individual units of produce are stochastic and usually dif-

ficult to quantify until the products are procured and sold in the

market, which justifies the need for a MAB framework. Towards

this, we propose a generalized SS-UCB framework that can be used

to design and compare other approaches to this class of problems.

The framework also allows solving for other interesting variants

of the problem such as (i) where the pool of agents is dynamic (ii)

where an agent selected in a particular round is not available for the

next few rounds (sleeping bandits) (iii) where the planner needs to

design a mechanism to elicit a strategic agents’ cost of production

truthfully. Kindly refer to [10] for the full version of the paper.
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