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ABSTRACT
Strategic diversity is often essential in games: in multi-player games,
for example, evaluating a player against a diverse set of strategies
will yield a more accurate estimate of its performance. Furthermore,
in games with non-transitivities diversity allows a player to cover
several winning strategies. However, despite the significance of
strategic diversity, training agents that exhibit diverse behaviour
remains a challenge. In this paper we study how to construct di-
verse populations of agents by carefully structuring how individuals
within a population interact. Our approach is based on interaction
graphs, which control the flow of information between agents dur-
ing training and can encourage agents to specialise on different
strategies, leading to improved overall performance. We provide
evidence for the importance of diversity in multi-agent training
and analyse the effect of applying different interaction graphs on
the training trajectories, diversity and performance of populations
in a range of games.
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1 INTRODUCTION
Most interesting real-world games and tasks involve separate and
potentially competing objectives (aremulti-agent (MA) in nature)
and do not admit a single winning strategy that beats all (i.e. have
some non-transitive element). Training agents that master these
types of games poses several challenges. For example, in MA games
performance is only defined relative to other players, not absolutely.
Additionally, as a result of the non-transitive nature of these games,
performance against one opponent can often be uninformative or
even misleading about performance against other opponents.
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In this paper we show that a number of the challenges associated
with non-transitive MA environments can be addressed by max-
imising strategic diversity of agents. At a higher level, diversity of
an agent population is beneficial in three different situations: 1. As
a learner population diversity leads to better test time performance.
2. Trainer populations (the opponents of a learner population dur-
ing training) constitute better training adversaries if they cover a
diverse set of strategies. 3. Finally, diverse evaluator populations
estimate the performance of the learner population more accurately.

Given the importance of strategic diversity we thus pose the
question of how to methodically train such diverse populations.
In this paper we opt for a population-level approach and define
structured population-level objectives via interaction graphs that
specify the objective of each agent in a population in terms of
(mixtures of) other agents. A key observation is that training the
same agent against different opponents results in different training
behaviour as well as different final performance of said agent.

We use this insight to train strategically diverse agents by sys-
tematically selecting the opponents that an agent encounters during
training. To this end we introduce interaction graphs as a framework
to describe the training interactions between agents in a population.
Depending on the properties of the graph the resulting population
will exhibit varying levels of strategic diversity and performance.
We study this effect for a number of different graphs on a modified
version of Rock-Paper-Scissors, Blotto and Starcraft. Finally, it is
important to note, that the setup analysed here is qualitatively dif-
ferent from a standard approach, where a best response is found
with respect a distribution of previously trained (fixed) agents [3, 5].
Instead, interaction graphs describe a matchmaking schedule for
co-training players. Our main contributions are:

(1) We provide evidence for the importance of diversity in non-
transitive MA games.

(2) We introduce the interaction graph framework to describe
the control of training interactions in populations.

(3) We analyse the effect of different population graphs on the
resulting populations for three different games.

2 EXPERIMENTS
Environments. We consider three environments with different

types of non-transitive structures: (1) GMM-RPS, a variant of con-
tinuous Rock-Paper-Scissors (RPS) that combines the cyclic nature
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of RPS with a transitive strength element for each pure strategy. (2)
Colonel Blotto is a two-player, zero-sum resource distribution game.
It is well-studied in game-theory where it’s usually of particular
interest because of its highly non-transitive strategy space. (3) The
StarCraft II environment [6] is a real-time strategy 2-player game
with highly non-transitive game dynamics. In addition to being
significantly more complex than the previously described games it
also has a temporal element that the other two lack.

2.1 Graphs
We compare nine different graph structures to start characteris-
ing the effect of restricting the training interactions within pop-
ulations. We distinguish between fixed and adaptive interaction
graphs; Fixed interaction graphs are defined at the beginning of
training and remain fixed throughout. We compare fixed graphs
with different properties: fully connected and self-play [4] graphs
that maximise and minimise information flow respectively. Cyclical
graphs with and without hierarchies as well as a non-cyclic hier-
archical graph [3]. Adaptive interaction graphs start out fully
connected and the edges are then continuously updated during
training as a function of their relative performance against the
other agents in the population (e.g. train against those that are
better/worse than you) [1].

2.2 Evaluation metrics
Qualitative methods: because the strategy space of GMM-RPS is R2,
we can plot how the strategies of the different agents in a population
change during training depending on the interaction graph.

Quantitative methods: we measure the effective diversity and rel-
ative population performance (RPP) [1] of the populations trained
with different interaction graphs on GMM-RPS and Blotto (Given
the complexity of Starcraft we evaluate the populations on different
but related metrics of performance and diversity, see [2] for details).
In order to measure the RPP we need an evaluator baseline. We
compare learned populations with high and low measured effective
diversity as well as a ‘ground truth’ population containing all the
strategies in the Nash if they are known. Finally, we also measure
the convergence of the agents’ policies to evaluate whether they
get stuck in cycles and the coverage to evaluate how much of the
strategy space a population covers between all its agents.

3 DISCUSSION
We characterise the differences across all nine interaction graphs by
looking at the evaluation metrics mentioned above. In the following
we summarise the main findings.

Diverse evaluator populations estimate performance more
accurately. We show that the performance of 90 populations eval-
uated by an evaluator population with high effective diversity
matches the ground truth (absolute) performance better than that
of a low diversity evaluator population. This effect seems to be
stronger as the game increases in complexity.

Diverse learner populations perform better. We show that
for the simple games high effective diversity is be correlated with
strong performance.

Graphs influence the training behaviour of populations.
We show that the training trajectories that result from training on

different interaction graphs vary drastically for GMM-RPS. Given
the simplicity of the game most populations display one of two
possible behaviours: the agents either all synchronise within a
population or they cover different areas of the action space in-
dependently. In general, interaction graphs that allow for cyclic
training interactions cover all modes, while those that don’t contain
cycles end up cycling.

Graphs influence the effective diversity of populations.We
can further quantify this behaviour by measuring the average ef-
fective diversity obtained by populations trained on the different
interaction graphs. We show that interaction graphs that allow
for cyclic interactions between agents have a larger spread across
action space. For GMM-RPS and Blotto this spread translates to
higher effective diversity.

Graphs with cycles encourage specialisation and increase
effective diversity in simple non-transitive games. We show
that the directed nature of cycles allows individual agents to focus
on a subset of the population (that does not necessarily focus on
them) and thus to specialise. Populations trained with undirected
graphs, on the other hand, tend to collapse to the same strategy
as the symmetry in the connections means agents have the same
objective. As a result populations trained with cyclic interaction
graphs have higher effective diversity.

A fixed graph structure is powerful when it matches the
underlying game structure, otherwise adapting graphsmight
be a better choice. The hierarchical cycle, for example, works well
on the RPS-like games as it matches the underlying structure. It
does not, however, perform as well on Blotto which has a richer
strategy structure. The adaptive graphs, on the other hand, find a
good approximation in either case.

Focusing on those that are better than you makes you less
exploitable and focusing on those that are worse than you
makes you a better exploiter. Focusing on opponents that beat
you involves learning best response against a more diverse set
of strategies which encourages agents to be more robust. Playing
against those you are beating already, on the other hand, allows
agents to specialise. As a result populations might become more
exploitable as they might get stuck on weak enemies.

Individual convergence is not as important as population-
level convergence for diversity and coverage. Individual agents
may cycle as long as all important strategies are covered.

Whenmoving to significantly more complex environments
some fundamental insights hold, but some do not. We have
chosen simple games as a starting point for our analysis. While
most insights hold across these games, they may not translate to
significantly more complex games such as StarCraft. In fact, some
intuitions, e.g. the usefulness of directed graphs, the fact that the
wrong fixed graph can hinder learning or that focusing on agents
you beat allows you to specialise seem to agree with the results
obtained on StarCraft. However, it is also clear that one should be
careful to translate graphs or particular methods directly from very
simple environments to more complex ones. Stark difference in
game dynamics might lead to unexpected failure modes (e.g. the
collapse of rectified Nash onto a single Nash agent that it can’t
recover from) or unforeseen successes (e.g. the ability of the fully
connected graph to explore the strategy space).

For an extended version of this paper we refer the reader to [2].
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