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ABSTRACT
We present the first explicit-state method for analysing and ensur-
ing the safety of DRL agents for Atari games. Our method only
requires access to the emulator. We give a suite of 42 properties that
characterise “safe behaviour” for 31 games. We evaluate the safety
of the best available DRL agents which, as our experiments show,
violate most of our properties. We propose a countermeasure that
implements shielding using bounded explicit-state exploration. Our
method improved their overall safety, producing the safest DRL
agents for Atari games currently available.
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Deep reinforcement learning (DRL) combines neural networks with
reinforcement learning (RL) and, capitalising on recent advances in
both technologies, has been successfully employed in many areas
of artificial intelligence, from playing games against humans to con-
trolling robots in the physical world [3, 19, 38, 44]. A setup of this
kind consists of an agent and a neural network that automatically
learns to interact with the environment by maximizing rewards
received as consequence of its actions [13, 23]. DRL has demon-
strated super-human capabilities in numerous applications, notably,
the game of Go [38], and is now used in safety-critical domains
such as autonomous driving [27]. While DRL agents perform well
most of the time, the question of whether unsafe behaviour may
occur in corner cases is an open problem. Safety analysis answers
the question of whether the environment can possibly steer the
system into an undesirable state or, dually, whether the agent can
guarantee that the system remains within a set of safe states (an
invariant) in which nothing bad happens [15, 20, 31]. We discuss
the safety of popular DRL methods for one of the most challenging
benchmarks: the Atari 2600 console games.
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(a) (b)

Figure 1: The effect of a bounded-prescience shield on game
Freeway. In (a), both actions ‘up’ and ‘down’ are safe thus al-
lowed; in (b), action ‘up’ is unsafe thus blocked by the shield.

Games for the classic Atari 2600 console feature low-resolution
graphics and small memory footprints. They are simple when com-
pared with contemporary games, yet offer a broad variety of scenar-
ios including many that are difficult for modern AI [9, 32, 34, 41].
Macroscopically, diversity in the game mechanics challenges the
generality of the machine learning method; microscopically, di-
versity in the outcome of multiple identical plays, i.e., the non-
determinism in the game, challenges the robustness of the trained
agent. Many Atari games exploit variations in the response time
of the human player for differentiating runs. The Arcade Learning
Environment (ALE) creates this diversity by randomly injecting
no-ops, skipping frames, or repeating agent actions [21, 32]. On
one hand, this prevents overfitting the agent but, on the other hand,
implies that there is no guarantee that an agent works all of the
time—the scores that we use to rank training methods are averages.
Agents are trained for strong average-case performance.

The application of DRL in safety-critical applications, by contrast,
requires worst-case guarantees, and we expect a safe agent to main-
tain safety invariants. To evaluate whether or not state-of-the-art
DRL delivers safe agents we specify a collection of properties that in-
tuitively characterize safe behaviour for a variety of games, ranging
from generic properties such as “don’t lose lives” to game-specific
ones such as avoiding particular obstacles. Figure 1 illustrates the
property “duck avoids cars” in the game Freeway. In the scenario in
Fig. 1a this property is maintained regardless of the action chosen
by the agent whereas the scenario given in Fig. 1b offers the possi-
bility of violating it. We conjecture that satisfying our properties is
beneficial for achieving a high score, and therefore study whether
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Figure 2: Properties grouped by number of satisfying agents
before (w/o dots) and after BPS (with dots).

neural agents trained using best-of-class DRL methods learn to
satisfy these invariants.

The safety of DRL has been studied from the perspective of
verification, which determines whether a trained agent is safe as-is,
and that of synthesis, which alters the learning or the inference
processes in order to obtain a safe-by-construction agent [2, 5,
6, 8, 15]. Verification methods for neural agents have borrowed
from constraint satisfaction or abstract interpretation [10, 16, 18,
24, 26, 39, 42, 43]. These symbolic approaches either reason about
the safety of neural networks in isolation, e.g., vulnerability to
adversarial attacks [40], or require a symbolic representation of the
environment; unfortunately, these are unsuitable to Atari games
because their mechanics are hidden inside the Stella emulator (i.e.,
the core of ALE). We circumvent this limitation by adopting an
explicit-state verification strategy [12] that only requires access to
the emulator.

Our method explicitly enumerates all traces induced by the agent
after every non-deterministic initialisation of the game. Meanwhile,
it labels all visited states as safe or unsafe using custom labelling
functions that observe lives counts, rewards, and also the generated
screen frames. We specified labelling functions for 42 non-trivial
properties for 31 games. We evaluated the safety w.r.t. our proper-
ties on 6 agents trained using different technologies, i.e., A3C [33],
DQN [35], IQN [14], and Rainbow [22]. As seen in Fig. 2 all agents
violate 24 of our properties, whereas only the 4 minimal properties
(properties satisfied more than half the time by random agents)
are satisfied by all. Surprisingly, properties that are intuitively dif-
ficult for humans, e.g., “don’t die”, are satisfied by some agents,
whereas many of the shallow properties which require no planning
or foresight (e.g. “don’t walk out of bounds”) are violated.

To improve the overall safety of DRL agents w.r.t. our properties,
we build shields using our explicit-state labelling and exploration
technique. Ensuring safety amounts to constraining the traces of
the system to those that are admissible by the safety property. Meth-
ods that act on the training phase modify the optimization criterion
or the exploration process in order to obtain neural agents that
naturally act safely [15]. Methods of this kind typically require
information about the environment, e.g., in the form of teacher
advice [37]. To the best of our knowledge, naturally safe agents
have never been trained for Atari games. On the other side of the

spectrum, shielding enables the option of fixing unsafe agents at in-
ference phase only, introducing a third actor—the shield—that takes
over control when necessary and with minimal interference [2].
A shield leverages the fact that safety properties are usually easy
to satisfy, in contrast to the main objective of the task.

Shields formally guarantee that a model environment satisfies
a safety property, regardless of the agent’s actions. Shielding has
been applied to models defined as finite state machines, timed
automata, dynamical systems, and multi-agent systems [2, 4, 7, 28,
30, 46]. Unfortunately, complete models of the environment are
not always available, and this is also the problem for the Atari
games. To overcome this limitation, shields are usually computed
over an abstract model that is learned from samples of environment
behaviour [1, 11, 25]. However, this has not been applied to the
Atari games. We investigate the benefit of shielding for the Atari
games using an arguably simpler approach: we shield the agents
from taking actions that lead to unsafe outcomes within some
bounded foresight of the future, which we obtain using explicit-
state exploration. We thus study a form of shielding that acquires
knowledge about the environment online, while it runs [29, 36].

The idea of a bounded search from the current state is com-
monplace. Like a rudimentary chess-playing computer, our method
considers every combination of moves ahead of time—up to some
bound—before taking an action [45]. We augment agents with
bounded-prescience shields (BPSs) which, during execution, restrict
the admissible actions to those that are necessarily safe within
this prescience bound. At every step, a BPS enumerates all traces
from the current state for a bounded number of extra steps and
labels each of them as safe or unsafe; then, it invokes the agent
and chooses the next action whose traces are all labelled as safe
and whose agent score is the highest. As seen in Fig. 2, our method
ensured satisfaction of shallow properties for all agents. Notably, it
also fixed some properties that we consider difficult and that were
satisfied by most but not all non-deterministic executions using the
original agent.

Summarising, our contribution is threefold. First, we enrich the
Atari games with the first comprehensive library of safety specifica-
tions. Second, we implement an explicit-state safety checker for the
Arcade Learning Environment and discover that current DRL algo-
rithms consistently violate most of our safety properties. Third, we
implement a shielding method that, by exploiting a bounded fore-
sight of the future, improves the safety of existing agents w.r.t. a set
of simple yet critical properties, without interfering with their main
objective. To the best of our knowledge, our method has produced
the safest DRL agents for Atari games currently available.

The full version of this paper is available on arXiv [17]. The
implementation and the experimental setup are on GitHub1.
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