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ABSTRACT
Individuals in a social network may form their views as a result of
the influence exerted by their connections. In elections, for example,
while they might initially support one candidate, social influence
may lead them to support another. Here, we investigate whether a
recently proposed metric, influence gap, designed to measure the
effect of social influence in voting on social networks, is able to
predict the outcome of a vote on networks exhibiting community
structure, i.e., made of highly interconnected components, and
therefore more resembling of real-world interaction.

To encode communities, we extend the classical model of cave-
man graphs to a richer graph family that displays levels of ho-
mophily, i.e., where connections and opinions are highly inter-
twined. We show that, across these graphs, there are important
cases when the influence gap correlation is a weak predictor due to
communities, and a simpler metric, counting the initial partisan ma-
jority, provides a more accurate prediction overall. Using regression
models, we further demonstrate that the influence gap combined
with the more successful metrics does increase their predictive
power for some levels of homophily.

KEYWORDS
Social Networks, Opinion Dynamics, Voting, Communities
ACM Reference Format:
Jacques Bara, Omer Lev, and Paolo Turrini. 2021. Predicting Voting Out-
comes in Presence of Communities. In Proc. of the 20th International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS 2021), Online,
May 3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
In today’s societies the role of social networks in shaping collective
decisions is widely recognised. Recent political developments, in-
volving fake news and private data usage, have also brought to the
fore their vulnerability to manipulation attempts, both accidental –
those stemming from the underlying network structure [24, 31] –
and intentional – those pursued by malign actors [11, 41].

As a consequence of the growing importance of social networks
in our public discourse, the research on collective decision-making
has witnessed a shift towards the study of social dynamics [18],
looking at the spread of information [1, 19, 47] or edge updates [15]
as a key factor in determining voting outcomes . The multi-agent
systems community, in particular, explored a computational treat-
ment of social dynamics in existing voting models (e.g., Tsang and
Larson [44]), studying novel possibilities to manipulate collective
outcomes [4, 7, 12, 28], making social choice on social networks an
active research topic [27].
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Following this social take on voting research, a recent Nature
paper by Stewart et al. [43] has shown how a static graph-theoretic
metric, influence gap, is highly predictive of how influence dynamics
will impact the result of an election, turning minority views (with
well-placed supporters) into strong majorities.

More specifically, Stewart et al. [43], through computational sim-
ulations of a voter model, backed by social network experiments
with human subjects, found strong correlations between the out-
come of the voters’ decisions and their proposed metric. These
results suggest that an increased presence in a voters’ social neigh-
bourhood (what they call influence assortment) is a good predictor
of a party’s chances to win elections. In other words, when vot-
ers update their preferences looking at their connections, it’s the
strategic positioning of a party’s electorate that matters, rather
than the initial majority (what they call information gerrymander-
ing). Undoubtedly, a metric that allows us to forego the equilibrium
computation of a highly complex system is an important practical
tool, significantly simplifying the analysis of the opinion diffusion
dynamics, a notoriously complex problem [5, 16]. Moreover, it al-
lows for a further understanding of the effects of manipulation, for
example through the strategical placements of bots or zealots to
alter the network dynamics.

The results in Stewart et al. [43] are, however, based on a number
of limiting assumptions, notably that the analysis is carried out
on regular graphs of small degree – each node has three incom-
ing and three outgoing edges – and large scale-free graphs. The
main goal of this paper is to examine whether their metric’s usage
can be expanded beyond this fairly narrow family of graphs to
more realistic-looking graphs. In particular, we focus on graphs
which are characterized by the presence of a community struc-
ture [22, 25], allowing for phenomena such as echo chambers and
homophily [6, 44]. These are well-established patterns of real-world
social networks, e.g., in the evidence on how Americans are sort-
ing themselves into partisan communities [9], and should, in our
view, be accounted for by any reasonable model of how collective
decisions are affected by social influence.

Our Contribution. Here we study a family of graphs – homophilic
relaxed-caveman graphs – which, building upon the classical clique-
like community model of caveman graphs [45], introduces further
variance and reality-resembling interactions by determining con-
nections as a noisy function of the degree of homophily. The key
difference thus to Stewart et al. [43], is that we look at networks
with community structure, while they only consider regular and
scale-free graphs. We compute the influence gap for these graphs
and show how homophily and rewiring interact to produce a rather
unexpected pattern, which will feature in our main findings. We
then examine the influence gap against the final voting outcome,
using an empirical opinion diffusion model and parameters [43].
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We see that with equal representation but varying influence gap,
the latter no longer correlates with the final voting outcome as it
did in Stewart et al. [43]. Once we extend the scope of the statistics,
though, to include a multitude of starting partisan majorities, the
gap generally correlates strongly with the final voting outcome.
In doing so, however, we find that trivially counting the initial
majorities generally provides an even better predictor, which is in
contrast with Stewart et al.’s proposal. Using regression models, we
then determine the complex interrelation between influence gap
and initial majority, which we can combine to refine the predictions
as a function of homophily and rewiring probability.

Other Related Literature. Discussion of how opinions and ideas
spread in society flourished as a research field since Rogers’s sem-
inal work [39], which introduced many of the concepts still un-
derlying the field. Since then, research expanded to cases where
agents have limited information [20, 32], including on graph struc-
tures [10, 35]. There was a particular focus on “information cas-
cades” or “herd mentality”, when choices are made sequentially,
both when there is a ground truth [8, 21, 37] and where there is
none [3, 46]. We use this basic assumption that people wish to
conform to their surroundings in this paper, as well.

A closely related avenue of research concerns opinion diffusion
models, where agents are recipients of social influence and opinions
spread in a network. Research on this has been both empirical [14]
and theoretical [4, 26, 29] (see overviews in Mahajan et al. [36] and
Young [49]), including attempts to find influential nodes in the social
graph [33]. Computational models of opinion diffusion have looked
at the fixed-point properties of the graph dynamics, in connection
with consensus formation [5] and its complexity [16]. An important
stream of research has looked at how to control opinion diffusion
by external intervention, for example through bribery [12] or false-
name attacks [13], which is naturally connected to the view we are
taking here.

Paper Structure. In Section 2 we introduce our setup and the basic
graph-theoretic terminology, in particular the model of (relaxed)
caveman-graphs. We also present some analytical considerations
on the computation of the influence gap in such graphs. In Section
3 we present our proposed homophilic extension, together with
the algorithms to control the homophily level and the rewiring
probability. Section 4 introduces the opinion diffusion dynamics,
measuring the predictive power of influence gap and other metrics
in our models. These results are further discussed in Section 5,
where we compare metrics and establish the effects of homophily
and rewiring. We conclude in Section 6 presenting various follow-
up research directions.

2 INFLUENCE GAP AND COMMUNITIES
2.1 Influence Gap
Our social graph is defined by a structure 𝐺 = (𝑉 , 𝐸) where 𝑉 =

{1, 2, ..., 𝑁 } is the set of nodes, our agents (or voters), and 𝐸 is a
set of undirected, unweighted edges that signify a social connec-
tion/acquaintance. Like much of the research on opinion dynamics
(including, in particular, Stewart et al. [43]), we shall focus on the
two-party (or two-opinion) setting and we shall henceforth refer

to the parties as colors, red and blue. The case with more than two
parties remains an important follow-up research direction.

Over our social graph we therefore overlay a partisan structure
P = {R,B}, and each node is associated with a particular party by
a function, the party assignment, 𝑝 : 𝑉 → P. The number of voters
for the red (blue) party is 𝑅 (𝐵), and each node 𝑛 ∈ 𝑉 sees the votes
of its neighbours, N(𝑛) = {𝑚 | (𝑛,𝑚) ∈ 𝐸}, and itself, henceforth
its poll, N(𝑛) ∪ 𝑛. In particular, each voter sees Δ𝑛 , the fraction
of its poll voting for their party 𝑝 (𝑛), again, including themselves.
Influence assortment [43] is, intuitively, the relative advantage of a
party against its rivals, and acts on two different levels: on the level
of a single node 𝑛, denoted by 𝑎𝑛 ; and on the level of a party, say
red, denoted by A𝑅 .

The following table defines these notions formally, including the
influence gap 𝐼𝐺𝑅 , as the advantage in assortment of party R (resp.,
𝐼𝐺𝐵 denotes its dual). Note the use of the Kroneker delta 𝛿𝑖, 𝑗 , which
is 1 if 𝑖 = 𝑗 and 0 otherwise.

𝑎𝑛 =

{
Δ𝑛 Δ𝑛 ≥ 1

2
−(1 − Δ𝑛) Δ𝑛 < 1

2
(1)

A𝑅 =
1
𝑅

∑
𝑛∈𝑉

𝑎𝑛𝛿𝑝 (𝑛),R (2)

𝐼𝐺𝑅 = A𝑅 − A𝐵 (3)

Influence assortment on the level of nodes, 𝑎𝑛 , can be thought of
as the extent to which an agent’s party is present in its own poll,
and thus how much they can be influenced to vote to a different
party. Its value (regardless of sign) highlights how homogeneous a
node’s neighbourhood is, while its sign indicates if a node belongs
to the majority party in the local neighbourhood. The mean of
node assortments over nodes of a single party is then the party
assortment, A𝑅 (resp., A𝐵 ). The influence gap, 𝐼𝐺𝑅 (resp., 𝐼𝐺𝐵 ),
can therefore be understood as the difference in how “strategically
placed” a party is – how much do its supporters interact with other
parties (and therefore, able to be influenced by them). Henceforth,
we omit the party index from 𝐼𝐺 whenever clear from the context.

Throughout the paper we focus on the case of a strong party
assignment (SPA), following Alon et al. [4], where each party is
assigned a fixed fraction of nodes – typically this will be a half but
in later sections we consider non-equal representation. 1

2.2 Caveman Graphs
A caveman graph𝐺 = (𝑉 , 𝐸) is a set of 𝑙 isolated cliques each of size
𝑘 [45].2 These graphs are collections of cliques that encode a very
basic form of community-structure formation without showing
interesting variety nor appearing much in empirical networks [48].
A relaxed-caveman graph is a modified version of this, whereby the
edges are rewired with some given probability. Concretely, given

1Weak party assignment (WPA), in contrast, assigns to every node a party 𝑃 with
some probability, e.g., they are red with probability 3

4 . While we leave the treatment
of WPA for future research, we note that our random graph generation models with
non-equal representation are de facto working with a constrained form of WPA.
2A connected version of caveman graphs is formed by rewiring a single edge per clique
it to a node in an adjacent clique along a central cycle [45], also commonly referred to
as a caveman graph. For the purposes of this paper a caveman graph will be taken to
mean the unconnected set of isolated cliques.
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a probability 𝑝 and iterating over all edges 𝐸 of a set of isolated
cliques, an edge (𝑢, 𝑣) ∈ 𝐸 is rewired as (𝑢, 𝑛), for 𝑢, 𝑣, 𝑛 ∈ 𝑉 [23]; if
(𝑢, 𝑛) already exists, nothing happens, such that all new edges are
between nodes of different cliques. This extension provides a fairly
diverse and intuitively clear set of communities, without the need
to rigorously define the concept of community itself or to delve
into the plethora of community detection [2, 23, 40] and generation
[30, 34] methods.

Cavemen graphs and their relaxed variant display interesting
analytical properties when it comes to computation of the influence
gap. We now show that in the two party case, where each party
has equal number of voters, this has a unique solution and how
this paves the way to an intuitive explanation of the IG’s predictive
power under a reasonable model of influence dynamics. The IG
computation procedure can be extended beyond the two party case
although, in general, will not have a unique solution.

First, consider a graph of 𝑙 cliques, labelled 𝑐 ∈ {1, · · · , 𝑙}, each
of size 𝑘 . A red node 𝑛 in clique 𝑐 , with total number of red nodes
𝑥𝑐 , sees exactly Δ𝑛 = 𝑥𝑐/𝑘 red nodes in its poll, as, by definition, it
sees all of the nodes inside its clique. This clearly holds for all other
red nodes inside 𝑐 , as well. Thus, the influence assortment of any
red node in 𝑐 is equal, so that 𝑎𝑛 = 𝑎𝑚 for all nodes 𝑛,𝑚 ∈ 𝑐; the
sum of influence assortments over all red nodes in 𝑐 is therefore
𝑥𝑐𝑎𝑛 .

Once all 𝑥𝑐 are known, we can group and loosely order cliques
together into three types: those in which red holds a strict majority,
those in which there’s an exact tie and those in which blue holds a
strict majority. To this end ∃𝑀,𝑀 ′ ∈ {1, · · · , 𝑙} with𝑀 ′ ≤ 𝑀 such
that for 𝑛 ∈ 𝑉 :

𝑥𝑐


> 1/2 for 𝑐 ≤ 𝑀 ′

= 1/2 for𝑀 ′ < 𝑐 ≤ 𝑀

< 1/2 for𝑀 < 𝑐

In other words, 𝑀 ′ is the number of cliques in which the red
party hold a strict majority,𝑀 is the number of cliques where they
hold a weak majority in and 𝑀 −𝑀 ′ is the number of cliques with
equal representation. Finally, denoting the sum of 𝑥𝑐 ’s from 𝑐 = 1
up to 𝑐 = 𝑑 (for 1 ≤ 𝑑 ≤ 𝑙) as 𝑋𝑑 ≡ ∑𝑑

𝑐=1 𝑥𝑐 , knowing the cliques
with red majority𝑀 allows us to calculate the red assortment on
the level of the party, A𝑅 .

A𝑅 =
1
𝑅

∑
𝑛∈𝑉

𝑎𝑛𝛿𝑝 (𝑛),R

=
1
𝑅

(
𝑀∑
𝑐=1

(
𝑥𝑐

𝑥𝑐

𝑘

)
+

𝑙∑
𝑐=𝑀+1

𝑥𝑐
(𝑥𝑐
𝑘

− 1
))

=
1
𝑅

(
𝑙∑

𝑐=1

𝑥2
𝑐

𝑘
− (𝑅 − 𝑋𝑀 )

)
A𝑅 =

1
𝑅

(
𝑙∑

𝑐=1

𝑥2
𝑐

𝑘
+ 𝑋𝑀

)
− 1 (4)

We can find the equivalent for the blue party by making two
observations. First, the influence assortment of any blue node 𝑛 ∈ 𝑐

is 𝑏𝑛 = −𝑎𝑚 for a red node 𝑚 ∈ 𝑐 . Second, the number of blue
nodes in clique 𝑐 is 𝑦𝑐 = 𝑘 − 𝑥𝑐 hence the number of blue nodes
up to clique 𝑑 is 𝑌𝑑 ≡ ∑𝑑

𝑐=1 𝑦𝑐 = 𝑑𝑘 − 𝑋𝑑 . We note that since there

are𝑀 ′ cliques that contain a strict red majority, then equivalently
in these𝑀 ′ cliques blue is strictly a minority. Following similarly
from the red party, the influence assortment of the blue party, A𝐵 ,
in terms of red counts 𝑥𝑛 is thus as follows.

A𝐵 =
1
𝐵

(
𝑙∑

𝑐=1

𝑥2
𝑐

𝑘
+ 𝑋𝑀′ + 𝑁 − 2𝑅 −𝑀 ′𝑘

)
(5)

Finally, this gives us an expression for the influence gap 𝐼𝐺 in
favour of the red party for a general set of 𝑙 isolated cliques, under
any party assignment, noting that 𝑁 = 𝐵 + 𝑅 = 𝑙𝑘 .

𝐼𝐺 =
𝑋𝑀

𝑅
− 𝑋𝑀′

𝐵
+ 𝐵 − 𝑅 +𝑀 ′𝑘

𝐵
− 1 + 𝐵 − 𝑅

𝑅𝐵

𝑙∑
𝑐=1

𝑥2
𝑐

𝑘
(6)

In the case of a strong party assignment with equal representa-
tion, i.e., 𝐵 = 𝑅 = 𝑁/2, we can constrain 𝑀 and 𝑀 ′ by noting that
there must be as many strict red majorities as strict blue minorities
𝑀 = 𝑙 −𝑀 ′. Furthermore, the term 𝑋𝑀 −𝑋𝑀′ = (𝑀 −𝑀 ′) · 𝑘/2 since
all the cliques in𝑀 −𝑀 ′ have equal representation.

𝐼𝐺 =
2
𝑁
(𝑋𝑀 − 𝑋𝑀′) + 2𝑀 ′𝑘

𝑙𝑘
− 1

=
2
𝑙𝑘

(𝑀 −𝑀 ′)𝑘
2
+ 2𝑀 ′

𝑙
− 1

=
𝑀 +𝑀 ′

𝑙
− 1

𝐼𝐺 = 0 (7)

Let us now notice, in light of this observation, how in graphs
with rigid communities, IG can fail to be predictive with equal
representation. Consider to this extent a simple update model where
voters never change their mind unless most of their friends are
different, in which case they stick to their party with probability
Δ𝑛 . In Figure 1, for example, we expect such an opinion diffusion
model to converge to an outcome where the red party conquers the
clique on the left but loses the other two. This, note, would also hold
under a number of reasonable update rules alike. For these basic
models, we start seeing how community-based structures “locally"
converge to robust equilibria.

Figure 1: A caveman graph with split majority and IG of 0.

Strong party assignments on isolated cliques thus present a case
for which influence gap can, even at the intuitive level, fail to
predict the outcome of a particular voting game, counter to Stewart
et al. [43]. As we pointed out earlier, such communities are clearly
somewhat artificial and unrealistic. Instead, relaxations of these
graphs present a more realistic model of social networks while
having non-zero influence gap. For low rewire probabilities we
note that the results above can be extended further to relaxed-
caveman graphs by considering the effects of a small number of
rewired edges as perturbations𝑂 (1/min(𝑅, 𝐵)), since at worst for a
single rewire the assortment of a node gets changed by ±1 and thus
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its contribution to the influence gap changes by 𝑂 (1/𝑅) or 𝑂 (1/𝐵).
The observation also carries over to our homophilic extension,
which we present next.

3 HOMOPHILIC CAVEMAN GRAPHS
Relaxed-caveman graphs rewire the edges of the original caveman
graph without looking at party assignment. This means that, effec-
tively, the resulting graph, though exhibiting a rich community
structure, abstracts away from the relation between connections
and opinions, which is typical of real-world networks, where the
two are highly intertwined [6, 9]. To address this issue, we propose
a modification to the relaxed-caveman graph as the homophilic
relaxed-caveman (hRC) graph model in a similar fashion to the ho-
mophilic Erdős-Rényi and Barabási-Albert graphs used in Tsang
and Larson [44]. This allows us to generate synthetic graphs with
communities where the graph structure is dependent on the party
assignment, following the observed behavior [9] that people tend
to cluster with people who share their views.

Algorithm: Homophilic Relaxed-Caveman Graph, 𝐺

(1) Initialise 𝐺 as a set of 𝑙 cliques each of size 𝑘
(2) for (𝑢, 𝑣) ∈ 𝐸:

• Choose at random an 𝑛 ∈ 𝑉 ,𝑛 ≠ 𝑣

• if 𝑝 (𝑢) = 𝑝 (𝑛):
– 𝑝 = 𝑝0ℎ

• else:
– 𝑝 = 𝑝0 (1 − ℎ)

• Rewire (𝑢, 𝑣) as (𝑢, 𝑛) with probability 𝑝
(3) return 𝐺

The algorithm above describes how to generate the hRC graph,
starting from a set of disconnected cliques 𝐺 = (𝑉 , 𝐸). It becomes
hRC graph G𝑝 (𝑙, 𝑘, 𝑝0, ℎ), with 𝑙 communities, each of size 𝑘 , with
rewiring probability 𝑝0 and homophily factor ℎ, given a party assign-
ment 𝑝 : 𝑉 → P. The probability to rewire 𝑝0 can be thought of as
the likelihood of changing a pre-existing friendship to a new friend,
while the homophily is the probability of agent 𝑢’s new friend 𝑛
voting for the same party.

We highlight two important subclasses of the hRC model:
• For ℎ = 0.5 we recover the relaxed-caveman graph with
rewire probability 𝑝 = 𝑝0/2 since a node is equally likely to
be rewired to its party as it is to the opposing party, but with
probability 𝑝0 · 0.5.

• For high values of 𝑝0 nodes from different cliques intermingle
sufficiently enough that the community structure begins to
fade. This becomes problematic due to a wide variety in the
definition and detection of community [23, 40], such as via
modularity-based methods [38].

We now show how the influence gap is distributed in homophilic
relaxed-caveman graphs with equal partisan split (𝑅 = 𝐵). To do so
we generated hRC graphs across the entire range of homophily and
rewire probability. Due to the randomized nature of the model, for
any given set of parameters ℎ and 𝑝0, we produced 10,000 graphs
and found the mean of their influence gaps, towards whichever
party had the higher influence assortment. Note how this, therefore,
represents the ability for either party to open an advantage over its

Figure 2: A surface plot of the mean absolute value of influ-
ence gap, across different homophily factors ℎ and a range
of rewire probabilities 𝑝0. Each point is measured from 104

party assignments each generating a single graph.

opponent, not for a specific one. If, instead, we measured the gap
towards a specific party, say red, then we would expect the mean
of the gap to be 0 due to symmetry.

We find that across all values of ℎ, the absolute value of influence
gap increases monotonically with the rewire probability 𝑝0. That is,
any cross-section in ℎ of Figure 2 is monotonic in 𝑝0. This is consis-
tent with our results on non-relaxed-caveman graphs (Equation 7),
in which the influence gap was 0 (the effects of homophily are
irrelevant for such low 𝑝0 values, since these graphs are statistically
indistinguishable from the equivalent relaxed-caveman).

The relationship to homophily, however, is more complex, partic-
ularly when the community structure is less apparent, as with high
𝑝0 value. Specifically, the influence gap is asymmetrically unimodal,
with a peak at around 𝑝0 = 1 and ℎ = 0.3. Notice that this means
parties are marginally better off when the likelihood of forming
a community between the party members is lower than with the
opposing party. This asymmetry, we believe, is in large part due
to the definition of influence assortment for a node. When the
neighbourhoodN(𝑛) of an agent 𝑛 is just slightly in support of the
opposite party but its own preference is enough to push the poll
into a (weak) majority Δ𝑛 ≥ 0.5 then the maximal value of influ-
ence gap is reached, when most/all nodes face this situation. The
asymmetric behaviour of influence gap in hRC graphs is reflected
in our overall metric comparison (Figure 7), where the predictive
power of IG is overtaken by majority exactly from this peak on.

4 PREDICTING VOTING OUTCOMES
In this section we examine whether the findings of Stewart et al.
[43] still hold when communities are present. Our conclusion, in
summary, is that influence gap does not capture the result of the
influence dynamics in case of a given partisan split, incidentally also
a central assumption in their analysis, with a rather poor correlation.
When the assumption of a given representation is relaxed, the
correlation is restored, but a more predictive and computationally
simpler metric exists, namely the initial majority of either party.
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Figure 3: Example time series of a voting game, using Stew-
art et al. [43] behavioural model on a homophilic relaxed-
caveman graph with rewire parameter 𝑝0 = 0.3 and ho-
mophily ℎ = 0.3. The two parties initially have equal vote
share but eventually the red party reaches a super-majority
of 𝑉 = 0.6 (the dashed lines are 𝑉 and 1 − 𝑉 ). The vertical
dotted line at 𝑡∗ represents the transition between early and
late phases of the game.

4.1 Voter Model
For 𝑁 voters, at least half are assigned to the red party and the
remainder to the blue, and all are placed in an influence network. A
voter’s knowledge is restricted to a subset of the entire graph: only
knowing the voting intentions of its neighbours as well as its own,
serving as a form of poll, to which it wishes to conform. The game
lasts for a fixed amount of time, during which players can change
their voting intentions synchronously3. The winning party is the
one to hold a super-majority above a threshold 𝑉 > 0.5 when the
updating process is done, otherwise we consider it a deadlock.

The agents follow a stochastic behavioural model developed
by Stewart et al. [43], informed by a social experiment with human
subjects who were given pay-offs depending on the success of
their assigned party. At any given time, a voter, according to the
behavioural model, would vote for their assigned party with a
probability that depends on a) what their surroundings predict will
happen (win, lose or deadlock) and b) the stage of the game (early
or late). In other words, for each individual there exists a family
of six parameters 𝑝𝑖 𝑗 , where 𝑖 ∈ {win, lose, deadlock} is the poll’s
prediction and 𝑗 ∈ {early, late} is the stage of the game, that are
precisely these probabilities, henceforth strategies.

Table 1: Mean agent strategies 𝑝𝑖 𝑗 , such that an agent with
a neighbourhood poll predicting state 𝑖 during phase 𝑗 will
stick to their party, on average, with probability 𝑝𝑖 𝑗 . These
values were inferred from social experiments (see the Sup-
plementary Material of Stewart et al. [43] for an extensive
discussion of how these numbers are obtained and why
these are used independently of the graph structure).

𝑝𝑖 𝑗 Early Late
Win 0.975 0.979

Deadlock 0.964 0.911
Lose 0.598 0.574

3Note the difference from the iterative voting model, as used by Tsang and Larson
[44], in which every voter updates separately to the others. Whereas, ours is more
akin to the update model of Alon et al. [4].

Since voters are not a homogeneous bunch and will have dif-
ferent strategies, each parameter is sampled from the empirical
distribution of the social experiment. Thus while 𝑝𝑖 𝑗 is a random
variable, which has an empirical distribution with mean given by
Table 1, for each voter 𝑣 a set of 6 parameters 𝑝𝑣

𝑖 𝑗
are realisations of

the random variables. We point out that the behavioural parameters
can be used independently of the initial structure, as voters’ are
unaware of the graph they sit in, an assumption also made by [43]
when replicating their findings with simulations.

4.2 Benchmark Metrics
As the exact analysis of the opinion dynamics faces important
complexity barriers – Stewart et al. [43] proposed using the IG as a
prediction tool. To IG we add three more metrics, which we will
compare against:

Majority Which party has the majority in the beginning state.
Deterministic voter skew (dVS) A deterministic simplifica-

tion of the update dynamics; at each time step every agent
synchronously conforms to the strict majority party in their
poll, keeping the current choice in case of a tie, and after
𝜎 steps the voter skew is measured. In principle, one could
evolve the system for as many steps 𝜎 as in the stochastic
process, but we use 𝜎 = 1, as errors due to the simplification
may be propagated and worsened with more steps.

Efficiency gap (EG) A political science metric [42], developed
tomeasure gerrymandering, in whichwe examine howmany
votes were “wasted”, i.e., could have been eliminated without
changing the outcome.

4.3 Experiments
Each simulation of the voter game runs for 240 seconds that starts
with the early phase of the game and transitions to the late phase
after 83 seconds (both times chosen to be consistent with the social
experiments of Stewart et al. [43]). The 𝑁 = 20 voters are assigned
a party – 10 are assigned red while the other 10 are given the blue
party – and then are placed in a graph 𝐺 , generated by a number
of different assignments of ℎ and 𝑝0.

During the game, every 3.3 seconds a voter, 𝑣 , can update their
intention, with probability 𝑝𝑣

𝑖 𝑗
, which are sampled from the empir-

ical parameter-distributions found from the human social exper-
iment [43]. In total, for a single simulation 𝑁 samples are taken
from 6 distributions each. After 240 seconds have elapsed the vote
share across the entire graph is measured.

For clarity we outline in Table 2 the three synthetic datasets
we produced, each broader and more expansive than the last. The
first studies the effects of communities being present in relaxed
and homophilic relaxed-caveman graphs with equal representation.
The second broadens the notion of correlation to include unequel
representations, focusing only on hRC graphs for a particular set of
parameter values. The final and most comprehensive delves more
deeply into the effects of community strength (as controlled by the
rewire 𝑝0) and echo chambers (homophily ℎ) on the predictions of
the metrics noted above.

An example of a time series produced by a simulation is shown
in Figure 3. The different sections of the plot, partitioned by dashed
and dotted lines, represent different strategies. For example, in the
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Table 2: Summary table of the synthetic datasets (labelled
1, 2 and 3, from top to bottom) generated of homophilic re-
laxed caveman graphs. Metrics were evaluated at the start
of the dynamics, while voter skews were measured post-
election. The size of a dataset is measured in the number
of elections simulated.

Majority Parameters Metrics Size

0 ℎ = 0.3, 𝑝0 = 1 IG 105

0-9 ℎ = 0.3,
𝑝0 ∈ {0, 0.1, 0.5, 0.9, 1}

Majority,
IG 5x106

0-9 ℎ ∈ {0, 0.1, · · · , 1},
𝑝0 ∈ {0, 0.2, · · · , 1}

Majority,
IG, dVS, EG 1.2x107

early phase (𝑡 < 𝑡∗) both parties are deadlocked and thus agents
vote for their assigned party with probability 𝑝

agent
deadlock,early. The

convergence of a time series is not a guaranteed because, as in the
original social experiment, the game finishes after 240 seconds.

Figure 4: Simulations of the behavioural model of Stew-
art et al. [43] acting on relaxed- and homophilic relaxed-
caveman graph from dataset 1. In both cases the influence
gap correlates very weakly with voter skew, having a Pear-
son’s 𝜌 < 0.2, and passing a significance test with 𝑝 < 10−5.
Left: for the relaxed-caveman graph with rewire parameter
𝑝 = 0.3 gives rise to a Pearson correlation of 𝜌 = 0.104. Right:
for the homophilic relaxed-caveman with rewire probabil-
ity 𝑝0 = 1 and homophily factor ℎ = 0.3 the correlation is
slightly more pronounced with 𝜌 = 0.160.

4.4 Results
Where Stewart et al. [43] found strong correlation between IG and
election outcome in scale-free (Barabási-Albert) graphs for a given
initial voter skew, we find the contrary in RC and hRC graphs.
Starting with equal representation – same number of red nodes as
blue – we find that the presence of communities suppresses the
correlation noted in the original paper Stewart et al. [43]. In both
the relaxed-caveman and the homophilic relaxed-caveman with
given parameter sets, the Pearson correlation coefficient is small –
𝜌 < 0.2 – as seen in Figure 4.

Communities in the hRC graphs reduce the predictive quality of
the influence gap, not only due to the dynamic effects, but because

of its constraints on the influence gap itself. As shown by Equation
7, for equi-sized cliques with equal representation the influence gap
is 0. Minor modifications to the graph via edge rewires induce a
bounded effect on the influence gap where on average the value is
not very different from 0.

Figure 5:Histogramof influence gap andfinal voter skew for
homophilic relaxed-caveman graphs generated by dataset 2.
Colours denote the frequency of each bin. The relationship
is statistically strong, with Pearson correlation of 𝜌 = 0.891.

We observe a more interesting behaviour as we extend the scope
of the statistics to include multiple initial voter skews, i.e., initial
partisan majorities. As we vary the red party’s non-negative major-
ity more graphs with higher IG – in favour of red – are generated
and correspondingly see elections that are increasingly biased to
the red party. Looking at Figure 5, a visibly strong correlation with
a Pearson correlation of 𝜌 = 0.891 arises, restoring the high corre-
lation Stewart et al. [43] originally observed. Notice how the left
image in Figure 4 can be seen as an embedded subset of Figure 5,
as a small patch of points centered around 0. Further, increasing
the majority shifts the outcomes (the green patches in the graph)
to higher influence gap and voter skew and reduces its size. The
initial majority, therefore, presents itself as a useful control variable
(of influence gap) and as a predictive metric.

In fact, as shown by Figure 6, for a particular set of parameter
values, majority predicts the election outcome more accurately than
influence gap, with Pearson 𝜌 = 0.904. The trivial act of counting the
number of nodes a party has provided a stronger correlation than
the more complex metric proposed in Stewart et al. [43]. Although
troublesome, this does not spell the end for influence gap. Using
several regression models (see Section 5.1) knowing both majority
and IG improves the predictions from either individually. In other
words having counted the nodes, knowing the IG can still improve
predictions for the final outcome.

Varying homophily and rewiring. We now investigate the effects
of network generation on the dynamics and, more importantly for
this work, the effectiveness of metrics. The homophilic relaxed-
caveman model allows us to change both the strength of the com-
munities, through the rewire probability 𝑝0, and the echo chambers
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Figure 6: Histogram of initial majority and final voter
skew for homophilic relaxed-caveman graphs generated by
dataset 2. Colours denote the frequency of each bin. Having
a Pearson correlation of 𝜌 = 0.904, majority predicts the elec-
tion outcome better than IG.

that form, through the homophily ℎ. For low rewiring the graphs
generated are almost a set of equisized cliques, while increasing 𝑝0
tends to dilute communities together. Agents become increasingly
entrenched in their partisan social bubble for high homophily while
at the low end they actively seek out opposing views4.

Homophily plays little role at low rewire, as shown by Figure 7;
at 𝑝0 = 0 all hRC graphs are reduced to the unconnected caveman
graph and as such homophily has no impact. As 𝑝0 increases, the
homophily becomes more important and in particular a region
ℎ < 0.5 emerges in which IG predicts an election more accurately
than the initial majority (for an intuitive explanation see Section 5.2)
suggesting that graph structure is a more important factor when
friendship groups are more diverse. The predictive powers of both
majority and efficiency gap monotonically and linearly increase
with homophily; the gradient of their relationship also increases as
the hard community structure is diluted. The other two, however,
show non-monotonic behaviour in opposite ways: the correlation
of IG is peaked at around ℎ = 0.7 while there is a minimum for the
dVS at ℎ = 0.3.

Curiously the predictions of IG are not affected greatly by rewiring
more edges, at least comparatively to the other three metrics. This
suggests influence gap has some degree of robustness, in the sense
that it performs as well in homophilic/heterophilic social networks,
i.e. in a multitude of cases. Take the low homophily case, for exam-
ple, where both majority and EG perform worse as the communities
become more diluted (higher 𝑝0) while the dVS actually improves
considerably. At the other end, for high ℎ, all metrics generally
improve considerably, the efficiency gap in particular.

4To an extent low homophily is the exception and not the rule in empirical social
networks. Certainly there are many people who remain open-minded to different
opinions, however this is often not the case in the digital world [17].

5 COMBINING METRICS
5.1 Regression Models
In order to explore the role of majority and influence gap (𝑥𝑀 and 𝑥𝐼
respectively, following typical regression notation) as predictive or
explanatory variables in dataset 2, we use linear regression (Equa-
tion 8) to build several models of the voter skew, 𝑦. Two models are
single-featured using only the initial majority or the influence gap
and the third is a joint model built using a multiple regression of
both features. All three are trained on the same 70% of the data –
multiple majorities for single homophily hRC graphs – and tested
on the remaining 30%.

𝑦 = 𝛽𝑀𝑥𝑀 + 𝛽𝐼𝑥𝐼 + 𝛽0 (8)

Table 3: Coefficients of regression, 𝛽 , and of determination,
𝑅2, for regression models of the dynamic voting game out-
come on homophilic relaxed-caveman graphs with ℎ = 0.3.

Metric 𝛽𝑀 𝛽𝐼 𝛽0 𝑅2

Majority 0.0497 0.0445 0.817
IG 0.229 -0.00328 0.793

Majority, IG 0.0300 0.101 0.0132 0.844

The regression confirms our observations (see Section 4.4), that
majority is a better predictive tool than influence gap. This does not,
however, render it useless. In particular the joint model outperforms
both individual models that either use majority or influence gap
exclusively as shown in Table 3, despite some colinearity (with a
variance inflation factor of 19.4) between features.

5.2 Topology and Correlation
At high homophily,ℎ > 0.5, hRC graphs are rife with echo chambers
in which an agent has friends mostly of the same party and opinion
as themselves. Its polls are therefore incredibly homogeneous and
it sees no compelling reason to change its vote, meaning the graph
structure plays little to no role. Extending this intuition to all agents
in the graph, very little diffusion of opinions occur and thus the
final outcome of the election will be incredibly reminiscent of and
similar to the start. In other words counting the number of votes at
the start will closely resemble – and thus predict – the number of
votes at the end, and as such majority here can better predict the
outcome than IG.

Moreover, this logic can help explain the general trend that the
correlation of most metrics increase drastically at high homophily.
Since the exogenous party assignment will resemble the final out-
come the election itself becomes immensely straight-forward and
thus prediction becomes increasingly trivial. As such any reason-
able metric should perform better purely on the basis that there
has not been great change in the system. Initial majority is likely
the best metric in this regime because it is precisely equivalent to
measuring the initial voter skew.

On the other hand, at low homophily,ℎ < 0.5, most polls are very
diverse: an agent will see mostly nodes of the opposite party. In this
case enough of her friends disagree with her own opinion, that the
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Figure 7: As model parameters of the homophilic relaxed-caveman are varied independently, in dataset 3, the Pearson correla-
tion coefficient (PCC) between the final voter skew and the majority (purple), the influence gap (IG, green), the deterministic
voter skew (dVS, orange) and the efficiency gap (EG, red) are plotted. Curves for multiple rewire probabilities are plotted, on
the left 𝑝0 = 0, in the middle 𝑝0 = 0.4 and on the right 𝑝0 = 1. Influence gap begins to outperform majority around 𝑝0 = 0.4.

agent has a higher probability of changing her views, doubting her
choice more frequently. In this scenario the dynamics become less
‘stable’, and more complex diffusion occurs. The graph structure,
therefore, is able to play an important role in how these changes
occur and in favour of which party. Hence, initial majority gives
poorer predictions.

More formally, at high ℎ the average poll will show a majority
towards its agent’s party Δ𝑣 > 0.5 or even a super-majority Δ𝑣 > 𝑉 .
During phase 𝑗 of the voting game, most voters 𝑣 see a prediction
of 𝑖 = win, so that their strategy is 𝑝𝑣win, 𝑗 . Since the empirical
distribution for 𝑝win, 𝑗 is heavily biased towards 𝑝win, 𝑗 ≥ 0.9 most
voters will stick to their initial opinion. Conversely for ℎ < 0.5
an agent’s poll, at least initially, likely shows a super-minority
Δ𝑣 < 1 −𝑉 or equivalently 𝑖 = lose such that over 40% of agents
will change their votes.

6 DISCUSSION AND CONCLUSION
We proposed a novel graphmodel, the homophilic relaxed-caveman,
as a means to generate synthetic graphs with communities that may
exhibit echo chambers. Starting with the recently proposed metric
of influence gap as predictor of voter skew in dynamic opinion
formation models, we provide algorithms to compute it in our
graphs.

Moreover, we show that the presence of communities suppresses
the power of the influence gap, unless a broader understanding
of correlation, one that considers multiple starting majorities, is
utilised. When doing so, the correlation with the final outcome is
strengthened and the value of the metric’s predictions is restored.
However, this is not without caveats: for some parameter-regimes
of the homophilic relaxed-caveman model, a trivial aggregation of
initial voter intentions is an even more informative metric. This, as
we further analysed, is due to the presence of echo chambers that
are conducive to more predictable dynamics.

Having measured the efficacy of several metrics, this poses the
question of whether a metric exists that can predict the voting
dynamics most accurately. We envisage such metric to be explicitly

dependent on party assignment and should be predictive while
computationally easy to compute.

Another potential direction concerns the difference in voters’
behaviour. In our hRC models, the homophily level and the proba-
bility of rewiring are the same for both parties. However, we may
want to distinguish between electorates that have different levels
of approaching others. For example more open-minded voters, who
do not mind accepting connections that do not share their view,
while others are more close-minded. Preliminary results suggest
that a party can leverage a higher homophily factor in this way to
structure the network to its favour.

Additionally, it is important to explore the models with more
than two parties. With two parties, influence assortment and gap
are very well-defined measures. In contrast, straightforward multi-
party extensions are not unique and the choice of one depends
on the context. For example, does defining 𝑎𝑖 through the “net
influence of the party with the plurality of positive influence” [43]
make sense? Moreover, voters preferences may come into play: do
they have a ranked list of parties or a single favoured party?

The dynamic model has only shown that the outcome of an elec-
tion on networks with community can be biased by the structure.
However, we may want to model manipulation explicitly, by allow-
ing parties to insert artificial bots or zealots, as Stewart et al. [43]
did, to influence members behaviour. Just like the forceful agents
in Acemoglu et al. [1], these can be modelled as nodes that have a
party affiliation but never update their view.

Finally, agents may be allowed to actively seek new friendships,
whether to express their views more widely or to receive more
opinions - the distinction becoming important when considering
directed networks. Can a party utilise these dynamic connections
to its advantage?
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