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ABSTRACT
In this paper, we extend the unavailable candidate model [10] and

present two new voting rules based on a finer notion of disagree-

ment, called dissatisfaction, which depends on the ranks of the can-

didates, considered among all the candidates (ex ante dissatisfaction
rule) or only among the available candidates (ex post dissatisfaction
rule). We provide algorithmic results for the two rules and show

that apparently very different voting rules such as scoring rules or

Kemeny rule can be unified under the same aggregation concept:

expectation of dissatisfaction under the availability distribution.
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1 INTRODUCTION
While traditional social choice theory assumes that the set of can-

didates is well known before voting takes place, in recent years,

several approaches have been proposed to address the problem of

candidates’ unavailability [3–6, 9, 11, 12]. An approach of particu-

lar interest is the unavailable candidate model proposed by Lu and

Boutilier [10] where the optimal rankings are computed by minimi-

sation of the expected number of disagreements over all the possible

subsets of available candidates. Lu and Boutilier provide a clear

decision-theoretic justification for producing a ranking instead of a

single winner: the output ranking serves as a very compact decision

policy to select the best available candidate as “winner”. However,

the binary disagreement used in their model or in [1, 7, 8] assumes

that a voter is satisfied only if its most preferred available candidate

∗
This work was mainly conducted while at LIP6, Sorbonne Université

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

is elected (as in “plurality” rule) and is fully unsatisfied otherwise.

We argue that the voter’s satisfaction should vary more smoothly

and depend on the rank he/she gives to the candidate declared as

winner by the aggregation. Moreover, we observe that there are

two opposed ways to measure the satisfaction of the voters, either

by considering the ranks of the candidates in the whole preference

order of the voter (ex ante approach), or the ranks of the candidates
within the subset of available candidates (ex post approach).

2 BACKGROUND
Given a set E , P (E ) is the powerset of E and |E | is the cardinality
of E . We use ⟦1;𝑘⟧ to denote the set of integers {1,. . . ,𝑘}. We call𝐶

the set of all the candidates, 𝑅 the set of rankings (permutations) on

the candidates of 𝐶 . We fix𝑚 B |𝐶 |. A ranking can be represented

explicitly by the tuple that lists the candidates from the most to the

least preferred; for instance, the tuple (𝑏, 𝑐, 𝑎) denotes the ranking
that ranks 𝑏 in first position, 𝑐 in second position and 𝑎 in last

position. Let 𝑟 ∈ 𝑅, 𝑎 ∈ 𝐶 and 𝑆 be a non-empty subset of 𝐶 .

𝑟𝑆 (𝑎) denotes the rank of 𝑎 in the restriction of ranking 𝑟 that

considers only the elements of 𝑆 . In particular, we define 𝑟 (𝑎) B
𝑟𝐶 (𝑎). top𝑟 (𝑆) is the most preferred candidate by 𝑟 among the

candidates of 𝑆 . We suppose that the preferences of every voter

𝑣 over the candidates can be modelled by a ranking. Under the

assumption of anonymity, we will consider voting situations [2]

that we here model as multisets of rankings (since the same ranking

may occur several times). Throughout the paper, we consider 𝑉 , a

multiset of 𝑛 ∈ N rankings (representing voters).

The availability distribution is a probability distribution 𝑃 on

P (𝐶) such that, for every 𝑆 ⊆ 𝐶 , 𝑃 (𝑆) is the probability that the

set of available candidates is exactly 𝑆 . We use P𝐶 to denote the

set of probability distributions on P (𝐶). The disutility function
(DF), denoted by 𝜌 , is an increasing mapping from ⟦1;𝑚⟧ to R such

that 𝜌 (𝑖) measures how much a voter is unsatisfied by the item at

the 𝑖-th position in his/her ranking. Given a ranking 𝑟 , when the

set 𝑆 of available candidates is observed, the candidate top𝑟 (𝑆) is
declared the winner. The dissatisfaction felt by a voter 𝑣 is then

the difference between the disutility of top𝑟 (𝑆) and that of top𝑣 (𝑆).
Finally, the total dissatisfaction is the sum of the dissatisfactions of

all the voters in𝑉 . When we produce a ranking, the set of available
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candidates is not known; that is why we provide the ranking that

minimises the total dissatisfaction in expectation over 𝑃 .

3 EX ANTE VS. EX POST DISSATISFACTION
In the ex ante model, the dissatisfaction is computed using the

positions of the candidates in the whole set of candidates 𝐶 .

Definition 1. Let 𝑃 ∈ P𝐶 , 𝜌 be a DF and 𝑟 ∈ 𝑅. We define
Δ̂𝜌,𝑃 (𝑉 , 𝑟 ) B

∑
𝑣∈𝑉 E

𝑆∼𝑃
[𝜌 (𝑣 (top𝑟 (𝑆))) − 𝜌 (𝑣 (top𝑣 (𝑆)))] and the

set of optimal rankings as 𝑅∗
𝜌,𝑃

(𝑉 ) B argmin

𝑟 ∈𝑅
[Δ̂𝜌,𝑃 (𝑉 , 𝑟 )].

Example 1. Let𝐶 = {𝑎, 𝑏, 𝑐}, 𝜌 = (0, 1, 2), 𝑃 ∈ P𝐶 be the uniform
distribution: for all 𝑆 ⊆ 𝐶 , 𝑃 (𝑆) = 1

8
. Let 𝑉 be composed of 4 voters

voting according to the ranking 𝑟 ′ = (𝑎, 𝑏, 𝑐) and 7 according to 𝑟 ′′ =
(𝑐, 𝑎, 𝑏). The following array displays, for all 𝑟 ∈ 𝑅, from left to right,
the value of top𝑟 (𝑆) for every non-empty and non-singleton 𝑆 ⊆ 𝐶 ,∑
𝑆⊆𝐶 𝜌 (𝑟 ′(top𝑟 (𝑆)),

∑
𝑆⊆𝐶 𝜌 (𝑟 ′′(top𝑟 (𝑆)) and, in the last column,

4

∑
𝑆⊆𝐶𝜌 (𝑟 ′(top𝑟 (𝑆))+7

∑
𝑆⊆𝐶𝜌 (𝑟 ′′(top𝑟 (𝑆))=8[Δ̂𝜌,𝑃 (𝑉 , 𝑟 )+𝜒 (𝑉 )]

where 𝜒 (𝑉 ) B E
𝑆∼𝑃

[4𝜌 (𝑟 ′(top𝑟 ′ (𝑆))) + 7𝜌 (𝑟 ′′(top𝑟 ′′ (𝑆)))] does not
depend on 𝑟 .

𝑟

𝑆
𝑎𝑏𝑐 𝑎𝑏 𝑎𝑐 𝑏𝑐 𝜌 (𝑟 ′ (top𝑟 (𝑆 ) ) 𝜌 (𝑟 ′′ (top𝑟 (𝑆 ) ) ∑

(𝑎,𝑏,𝑐 ) 𝑎 𝑎 𝑎 𝑏 0 + 0 + 0 + 1 1 + 1 + 1 + 2 39

(𝑎,𝑐,𝑏) 𝑎 𝑎 𝑎 𝑐 0 + 0 + 0 + 2 1 + 1 + 1 + 0 29
(𝑏,𝑎,𝑐 ) 𝑏 𝑏 𝑎 𝑏 1 + 1 + 0 + 1 2 + 2 + 1 + 2 61

(𝑏,𝑐,𝑎) 𝑏 𝑏 𝑐 𝑏 1 + 1 + 2 + 1 2 + 2 + 0 + 2 62

(𝑐,𝑎,𝑏) 𝑐 𝑎 𝑐 𝑐 2 + 0 + 2 + 2 0 + 1 + 0 + 0 31

(𝑐,𝑏,𝑎) 𝑐 𝑏 𝑐 𝑐 2 + 1 + 2 + 2 0 + 2 + 0 + 0 42

We deduce that the only optimal ranking is (𝑎, 𝑐, 𝑏).

We provide a characterisation of the ex ante dissatisfaction rule

which shows that, given a DF 𝜌 , finding an optimal ranking boils

down to using the scoring rule whose scoring function is −𝜌 and

that this result does not depend on the availability distribution 𝑃

as long as 𝑃 is non-null on pairs (𝑃 (𝑆) > 0 if |𝑆 | = 2).

Theorem 1. Let 𝑃 ∈ P𝐶 and 𝜌 be a DF. The set of rankings where
the candidates are in the increasing order of 𝑎 ∈ 𝐶 ↦→ ∑

𝑣∈𝑉 𝜌 (𝑣 (𝑎))
(there are several such rankings if some candidates have equal scores)
is included in 𝑅∗

𝜌,𝑃
(𝑉 ). If 𝑃 is non-null on pairs, the two sets are equal.

In the ex post model, we assume that the disutility felt by a voter

when a candidate is elected depends on its position within the set

of the actually available candidates.

Definition 2. Let 𝑃 ∈ P𝐶 , 𝜌 be a DF and 𝑟 ∈ 𝑅. We define
Δ𝜌,𝑃 (𝑉 , 𝑟 ) B

∑
𝑣∈𝑉 E

𝑆∼𝑃
[𝜌 (𝑣𝑆 (top𝑟 (𝑆))) − 𝜌 (1)] and the set of op-

timal rankings as 𝑅∗
𝜌,𝑃

(𝑉 ) B argmin

𝑟 ∈𝑅
[Δ𝜌,𝑃 (𝑉 , 𝑟 )].

Example 2. Let us summarise the computations in the following
array, in the same manner as in Example 1:

𝑟

𝑆
𝑎𝑏𝑐 𝑎𝑏 𝑎𝑐 𝑏𝑐 𝜌 (𝑟 ′

𝑆
(top𝑟 (𝑆 ) ) 𝜌 (𝑟 ′′

𝑆
(top𝑟 (𝑆 ) ) ∑

(𝑎,𝑏,𝑐 ) 𝑎 𝑎 𝑎 𝑏 0 + 0 + 0 + 0 1 + 0 + 1 + 1 21

(𝑎,𝑐,𝑏) 𝑎 𝑎 𝑎 𝑐 0 + 0 + 0 + 1 1 + 0 + 1 + 0 18

(𝑏,𝑎,𝑐 ) 𝑏 𝑏 𝑎 𝑏 1 + 1 + 0 + 0 2 + 1 + 1 + 1 43

(𝑏,𝑐,𝑎) 𝑏 𝑏 𝑐 𝑏 1 + 1 + 1 + 0 2 + 1 + 0 + 1 40

(𝑐,𝑎,𝑏) 𝑐 𝑎 𝑐 𝑐 2 + 0 + 1 + 1 0 + 0 + 0 + 0 16
(𝑐,𝑏,𝑎) 𝑐 𝑏 𝑐 𝑐 2 + 1 + 1 + 1 0 + 1 + 0 + 0 27

The ex post rule gives (𝑐, 𝑎, 𝑏), and not (𝑎, 𝑐, 𝑏) as the ex ante rule.

The ex post approach is also the approach considered in [1, 7]

and, in particular, in [10] with the DF (0, 1, ..., 1) which implicitly

assumes that the best decision would be to follow plurality when

the set of available candidates is revealed. A major advantage of

plurality is the small quantity of information needed and, thus, a

reduced cognitive load for voters. Since, in the unavailable candidate

model, the complete rankings of preferences are needed anyway,

generalising scoring rules and not only plurality via ex post rule

does not require more information but provides a richer model.

4 ALGORITHMIC ANALYSIS
For the ex ante approach, it directly follows from our characteri-

sation result that an optimal ranking in the ex ante dissatisfaction

model can be found in polynomial time in𝑚 and 𝑛. For the ex post

approach, the problem is more challenging.

We assume that the availability distribution is 𝑃 : 𝑆 ⊆ 𝐶 ↦→
𝑝𝑚−|𝑆 | (1 − 𝑝) |𝑆 | for a 𝑝 ∈]0; 1[. Note that, as far as 𝜌 (1) < 𝜌 (2)
(which we suppose true, otherwise ex post rule cannot distinguish

some pairs of distinct rankings), 𝜌 can be normalised so that 𝜌 (1) =
0 and 𝜌 (2) = 1 without changing the set of optimal rankings. Given

𝑞 ∈ [1;+∞[, we say that a normalised DF 𝜌 is 𝑞-sub-geometrical if,
for any 𝑘 ∈ ⟦2;𝑚⟧, 𝜌 (𝑘) ≤ 𝑞𝑘−2.

Theorem 2. Let 𝜌 be a 𝑞-sub-geometrical DF, for a 𝑞 ∈ [1;+∞[.

Let 𝜖 ∈]0, 1

𝑛𝑚 (𝑚−1)+1 [, 𝑝 ∈ [max((1 − 𝜖)
1

𝑚−1 ,
𝑞−(1+𝜖)

1

𝑚−1
𝑞−1 ); 1[.

Any ranking in 𝑅∗
𝜌,𝑃

(𝑉 ) is also a Kemeny consensus.

A direct consequence of Theorem 2 is that ex post rule is NP-hard.

Taking inspiration from [10], we define a MyopicTop algorithm, but

tailored to the ex post rule via our new notion of dominance:

Proposition 1. If there is no ambiguity on 𝜌 , we define 𝑓 : 𝑎 ∈
𝐶 ↦→ ∑

𝑣∈𝑉
∑
𝑆⊆𝐶
𝑎∈𝑆

𝑃 (𝑆)𝜌 (𝑣𝑆 (𝑎)). Let 𝑎 ∈ 𝐶 . If, for all 𝑏 ∈ 𝐶 \ {𝑎},
(1+𝑝) 𝑓 (𝑎) < (1−𝑝) 𝑓 (𝑏), then, 𝑎 is the first candidate of all optimal
rankings. In this case, we call 𝑎 the dominant candidate.

The idea of the algorithm is as follows. We successively remove

the dominant candidates from 𝐶 and append them to the output

ranking. When there is no more dominant candidate in the set of

the remaining candidates, we choose and order 𝐾 candidates so

that they minimise their contribution to Δ𝜌,𝑃 (𝑉 , 𝑟 ) (this step is

exponentially complex in 𝐾 ). Finally, the remaining candidates are

ordered randomly.

Proposition 2. MyopicTop algorithm runs in 𝑂 (𝑛𝑚max(3,𝐾+2) ).
It is possible to show that MyopicTop algorithm is a PTAS for

the ex post dissatisfaction rule provided that 𝜌 is normalised and

bounded. Note that here, contrarily to Theorem 2, parameter 𝑝 is

assumed to be fixed and independent on 𝑛 and𝑚.

Theorem 3. Let 𝜖 > 0. Let (𝜌𝑚)𝑚∈N∗ be a family of normalised
DF; we suppose that there exists a fixed 𝑀 ∈ R∗

+ such that, for all
𝑚 ∈ N∗, for all 𝑖 ∈ ⟦1;𝑚⟧, 𝜌𝑚 (𝑖) ≤ 𝑀 . Let 𝐾 B ⌈log 1

𝑝
( 2𝑀
(1−𝑝)3𝜖 )⌉.

Let𝑚 ∈ N∗. Consider an optimal 𝑟∗ ∈ 𝑅∗
𝜌𝑚,𝑃

(𝑉 ) and 𝑟 the ranking
obtained via the MyopicTop algorithm with inputs 𝐶 , 𝜌 , 𝑝 , 𝑉 , 𝐾 .

If Δ𝜌𝑚,𝑃 (𝑉 , 𝑟∗) = 0, Δ𝜌𝑚,𝑃 (𝑉 , 𝑟 ) = 0. Otherwise,
Δ𝜌𝑚,𝑃 (𝑉 ,𝑟 )
Δ𝜌𝑚,𝑃 (𝑉 ,𝑟 ∗) ≤ 1+𝜖 .

The assumption whereby the DF is bounded is quite reasonable

in a context of preference aggregation in which the voter has more

difficulty to discriminate between the alternatives as they go further

in his/her preference ranking, explaining the convergence of the DF

towards the upperbound which can be understood as the disutility

of completely disliked alternatives.
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