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ABSTRACT
We consider the problem of allocating indivisible items to agents

where both agents and items are partitioned into disjoint groups.

Following previous works on public housing allocation, each item

(or house) belongs to a block and each agent is assigned a type. The

allocation problem consists in assigning at most one item to each

agent in a good way while respecting diversity constraints. Based

on Schelling’s seminal work, we introduce a generic individual

utility function where the welfare of an agent not only relies on her

preferences over the items but also takes into account the fraction

of agents of her own type in her own block. In this context, we

investigate the issue of stability, and study two existing allocation

mechanisms: a sequential mechanism used in Singapore and a

distributed procedure based on mutually improving swaps of items.
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1 INTRODUCTION
Fairly dividing indivisible items among agents is a central prob-

lem in multiagent systems. There are often relations connecting

both items (e.g. spatial or temporal relations [4]) and agents (e.g.
belonging to the same hierarchical structure, or being of the same

type). In public housing allocation problems for instance, agents get

assigned to locations (houses), belonging to blocks. They may of

course have preferences over those locations, but importantly, this

is also a setting where externalities naturally occur [11]: it makes a

difference whether your friends, for instance, get assigned to the

same block as you. While agents may naturally seek the proximity

of other agents of the same type (a phenomenom well-known as

homophily), the objective might be opposite at the society level.
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From the designer’s perspective, it is indeed often desirable to pre-

serve some diversity. In practice this can be done by imposing some

quotas. Recently, several papers have studied variants of these set-

tings [5, 7, 8]. However to the best of our knowledge, none of them

addressed a model where agents are motivated (to some extent) by

such an homophily bias, while the system has a conflicting diversity

objective enforced through a system of quotas. In this paper we

undertake the study of such a model.

2 OUR MODEL AND STABILITY NOTION
We consider an allocation problem involving a set N of 𝑛 agents,

partitioned into a set𝑇 of 𝑘 types𝑇1, . . . ,𝑇𝑘 , and a setM of𝑚 items,

partitioned into a set 𝐵 of 𝑙 blocks 𝐵1, . . . , 𝐵𝑙 , where the inequality

|N | ≥ |M| holds; note that it is a realistic assumption, especially

when considering the allocation of public goods. We denote by

T (𝑖) the type of any agent 𝑖 ∈ N and by B(ℎ) the block of any

item ℎ ∈ M. Following the work of Benabbou et al. [2, 3], diversity

constraints are here defined using type-block quotas 𝜆𝑝,𝑞 ∈ N, with
(𝑝, 𝑞) ∈ [𝑘] × [𝑙], such that 𝜆𝑝,𝑞 stands for the maximum number of

agents of type𝑇𝑝 allowed in block 𝐵𝑞 . Without loss of generality, we

assume that the inequality 𝜆𝑝,𝑞 ≤ |𝐵𝑞 | holds for all (𝑝, 𝑞) ∈ [𝑘]× [𝑙]
since it is not possible to assign more than |𝐵𝑞 | items in block 𝐵𝑞 by

definition. We also assume that the inequality

∑
𝑝∈[𝑘 ] 𝜆𝑝,𝑞 ≥ |𝐵𝑞 |

holds for all blocks 𝑞 ∈ [𝑙] otherwise all allocations satisfying

diversity constraints would leave some items unassigned.

Definition 1 (Valid Allocation). An allocation 𝐴 : N → 2
M

is a function that maps every agent 𝑖 ∈ N to a subset 𝐴(𝑖) ⊂ M of
items. An allocation 𝐴 is valid iff:

(1) ∀𝑖 ∈ N , |𝐴(𝑖) | ≤ 1 (each agent receives at most one item).
(2) ∀𝑖, 𝑗 ∈ N , 𝐴(𝑖) ∩𝐴( 𝑗) = ∅ (agents do not share items).
(3)

⋃
𝑖∈N 𝐴(𝑖) = M (all items are assigned).

(4) ∀𝑝 ∈ [𝑘],∀𝑝 ∈ [𝑙], |{𝑖 ∈ 𝑇𝑝 : 𝐴(𝑖) ∈𝐵𝑞}| ≤𝜆𝑝,𝑞 (upper quotas).

We assume here that the utility𝑢𝑖 (𝐴) that an agent 𝑖 ∈ N derives

from an allocation 𝐴 has two components:

• 𝑢𝐼
𝑖
(𝐴) ∈ [0, 1]: an item-based utility representing the utility

derived by agent 𝑖 for 𝐴(𝑖) the item she receives.

• 𝑢𝑁
𝑖

∈ [0, 1] ∩ Q: a neighbour-based utility which is equal to

the fraction of agents of type T (𝑖) assigned to items in block

B(𝐴(𝑖)). More formally, it is defined by:

𝑢𝑁𝑖 (𝐴) =
∑

𝑗 ∈N:𝐴( 𝑗) ∈B(𝐴(𝑖)) I(T (𝑖),T ( 𝑗))
|B(𝐴(𝑖)) |
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where I(T (𝑖),T ( 𝑗)) equals 1 if agents 𝑖 and 𝑗 have the same type,

and equals 0 otherwise. Then, the utility of agent 𝑖 ∈ N for alloca-

tion 𝐴 is defined by:

𝑢𝑖 (𝐴) = 𝑢𝐼𝑖 (𝐴) + 𝜑 × 𝑢𝑁𝑖 (𝐴)

where 𝜑 ∈ [0, 1] is used to define the relative importance of the

item-based utility and the neighbour-based utility. This type of

utility function thus allows to model agents which are both con-

cerned by the item they obtain, as well as their neighbourhood.

We take inspiration from the model of [8] but the differences are

important to notice: both our location and neighbourhood relations

are partitions among agents, while they are arbitrary (undirected)

graphs in [8] – they would thus correspond to collections of cliques

in their model. Two types of behaviour are especially interesting:

Definition 2 (Item-Focused and Neighbour-Focused). An
agent is said to be item-focused if she only cares about the item she
receives (i.e. when 𝜑 = 0). An agent 𝑖 ∈ N is said to be neighbour-
focused if she only cares about her neighbourhood (i.e. when 𝜑 ≠ 0

and 𝑢𝐼
𝑖
(ℎ) = 0 for all ℎ ∈ M).

An instance I of the public allocation problem with gener-

alized utility function and diversity constraints is a tuple I =

⟨N ,M, 𝐵,𝑇 ,𝑢𝐼 , 𝑢𝑁 , 𝜆, 𝜑⟩ with N ,M, 𝐵,𝑇 , 𝜑 as defined above, and:

• 𝜆 = ⟨𝜆1,1, · · · , 𝜆𝑘,𝑙 ⟩ the [𝑘] × [𝑙] matrix of quotas,

• 𝑢𝐼 = ⟨𝑢𝐼
1
, · · · , 𝑢𝐼𝑛⟩ the item-based utility profile of the agents,

• 𝑢𝑁 = ⟨𝑢𝑁
1
, · · · , 𝑢𝑁𝑛 ⟩ their neighbour-based utility profile.

When assessing the welfare of the whole society of agents, we

rely on the classical utilitarian social welfare: 𝑠𝑤 (𝐴) = ∑
𝑖∈N 𝑢𝑖 (𝐴).

A key property of an allocation is stability, in the sense that no

individual would like to deviate from the prescribed allocation. In

our context, we shall concentrate on the notion of swap-stability
[1, 11]: it shouldn’t be the case that two agents would be happy to

swap their items, resulting in a valid allocation. Formally:

Definition 3 (Improving Swap-Deal). A swap-deal among a
pair of agents (𝑖, 𝑗) ∈ N × N is said to be improving if and only if
𝑢𝑖 (𝐴( 𝑗)) > 𝑢𝑖 (𝐴(𝑖)) and 𝑢 𝑗 (𝐴(𝑖)) > 𝑢 𝑗 (𝐴( 𝑗)).

From a given allocation 𝐴, it may exist some improving swap-

deals that lead to an invalid allocation. We thus restrict the set of

swap-deals that can be applied from a given allocation as follows:

Definition 4 (Valid Swap-Deal). A swap-deal among a pair of
agents (𝑖, 𝑗) ∈ N × N is valid if and only if the resulting allocation
satisfies the diversity constraints (i.e., type-block quotas).

We can now introduce our stability notion.

Definition 5 (Stable Allocation). An allocation 𝐴 is stable if
and only if there is no valid improving swap-deal from 𝐴.

The Price of Stability (PoS) is defined as the ratio between the util-
ity of any valid allocation maximizing the utilitarian social welfare

and the utility of the best stable valid allocation. We have:

Proposition 2.1. PoS = 1 when all agents are item-focused, or
when all agents are neighbour-focused. PoS > 1 in the general case.

3 A SEQUENTIAL MECHANISM
The sequential procedure presented in [3] is a simplified version

of the Singaporean public housing allocation process: in some ran-

dom order, the agents sequentially pick the unallocated items that

maximize their utilities, while respecting the diversity constraints.

Proposition 3.1. The sequential mechanism does not always
return a valid allocation.

Proof. Consider an instance with a set of 4 neighbour-focused

agents N = {1, 2, 3, 4} partitioned into 2 types 𝑇1 = {1, 2} and

𝑇2 = {3, 4}, a set of 4 items M = {ℎ1, ℎ2, ℎ3, ℎ4} partitioned into 2

blocks 𝐵1 = {ℎ1, ℎ2} and 𝐵2 = {ℎ3, ℎ4}, and the following quotas:

𝜆1,1 = 𝜆2,1 = 1 (at most 1 agent per type in 𝐵1) and 𝜆1,2 = 𝜆2,2 = 2

(at most 2 agents per type in 𝐵2). When we run the sequential

mechanism with agent order (1, 2, 3, 4), nothing prevent the first

two agents from picking the two items available in block 𝐵2, which

then forces agent 3 to pick an item in block 𝐵1, leaving agent 4

unassigned since her quota is reached in block 𝐵1. In that case, the

resulting allocation is not valid as one item remains unassigned. □

Proposition 3.2. The sequential mechanism does not always
return a stable allocation, even when all agents are neighbour-focused.
It does return a stable allocation when all agents are item-focused.

The worst-case error of any algorithm returning a valid alloca-

tion, is the ratio between the utility of any valid allocation maxi-

mizing the utilitarian social welfare and the utility of the allocation

returned by the algorithm. For the sequential mechanism, this error

is unbounded in the general case. When 𝜑 ≠ 0 and 𝑘 is a constant,

it is upper bounded by
1+𝜑
𝜑 𝑘 and the bound is tight.

4 A SWAP-DEAL MECHANISM
A natural distributed approach in multiagent resource allocation is

to start from a valid allocation and let the agents perform bilateral

improving swap-deals until they reach a stable outcome [6, 9, 12].

We focus on a simple swap-deal mechanism where at each step,

pairs of agents meet randomly and performs a swap-deal if possible.

Proposition 4.1. The swap-deal mechanism will provably reach
a stable outcome.

The worst-case error of the swap-deal mechanism is similar to

that of the sequential mechanism. We then derive the following

result on the Price of Anarchy (PoA) [10], which is defined as the

largest utility ratio between any valid allocation and any valid stable

allocation: it is unbounded in the general case. When 𝜑 ≠ 0 and 𝑘

is a constant, PoA ≤ 1+𝜑
𝜑 𝑘 and this bound is tight.

5 CONCLUSION
This paper investigated a model where the agents have an ho-

mophily component in their utility function, and there is a society-

wide objective to promote diversity through the use of quotas. We

show in particular that the simplified version of the sequential

mechanism used in Singapore has several drawbacks, among which

the lack of swap stability. An easy patch is to let agents swap until

a stable allocation is reached – but is there such a guarantee? We

show that this is the case, despite the fact that swaps may actually

decrease social welfare. In other words, stability comes at a price.
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