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ABSTRACT
Van Zuylen et al. [26] introduced the notion of a popular ranking in

a voting context, where each voter submits a strictly-ordered list of

all candidates. A popular ranking π of the candidates is at least as

good as any other ranking σ in the following sense: if we compare π
to σ , at least half of all voters will always weakly prefer π . Whether

a voter prefers one ranking to another is calculated based on the

Kendall distance.

Amore traditional definition of popularity—as applied to popular

matchings, a well-established topic in computational social choice—

is stricter, because it requires at least half of the voters who are not
indifferent between π and σ to prefer π . In this paper, we derive

structural and algorithmic results in both settings, also improving

upon the results in [26].We also point out connections to the famous

open problem of finding a Kemeny consensus with 3 voters.
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1 INTRODUCTION
A fundamental question in preference aggregation is the follow-

ing: given a number of voters who rank candidates, can we con-

struct a ranking that expresses the preferences of the entire set of

voters as a whole? A common way of evaluating how close the

constructed ranking is to a voter’s preferences is the Kendall dis-

tance, which measures the pairwise disagreements between two

rankings. Among others, a well-known rank aggregation method

is the Kemeny ranking method [20], in which the winning ranking

minimises the sum of its Kendall distances to the voters’ rankings.

For the preference aggregation problem, van Zuylen et al. [26]

introduce a new rank aggregation method called popular ranking,

which is also based on the Kendall distance. Each voter can compare

two given rankings π and σ , and prefers the one that is closer to

her submitted ranking in terms of the Kendall distance. Van Zuylen

et al. define π to be a winning ranking in an instance if for any

ranking σ , at least half of the voters prefer π to σ or are indifferent
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between them. This implies that there is no ranking σ such that

switching to σ from π would benefit a majority of all voters.

According to the definition of popularity in [26], even in a sit-

uation where exactly half of the voters are indifferent between

rankings π and σ , whilst the other half of the voters prefer σ to π ,
σ is not more popular than π . This example demonstrates how hard

it is for the dissatisfied voters to find a ranking that overrules π—
the definition requires them to find a profiting set of voters who

build an absolute majority, that is, a majority of all voters for this
endeavour.

A straightforward option would be to require only a simple ma-
jority, this is, a majority of the non-abstaining voters, to profit from

switching to σ from π . Excluding the abstaining voters in a pairwise
majority voting rule is common practice [12]. It is also analogous to

the classical popularity notion in the matching literature [1, 9, 24].

In this paper, we propose an alternative definition of a popular

ranking. We define π to be a strongly popular ranking if for every

ranking σ , at least half of the non-abstaining voters prefer π to σ .
This means that switching from π to σ would harm at least as many

voters as it would benefit.

Related literature. The most common approach to aggregating

voters’ preferences is to search for a ranking that minimises the

sum of the distances to the voters’ rankings. If the Kendall dis-

tance [21] is used as the metric on rankings, then this optimality

concept corresponds to the Kemeny consensus [20, 23]. Deciding

whether a given ranking is a Kemeny consensus is NP-complete,

and calculating a Kemeny consensus is NP-hard [6] even if there

are only 4 voters [7, 13], or at least 6 of them [2]. Interestingly, the

complexity of the problem is open for 3 and 5 voters [2, 7].

Majority voting rules offer another natural way of aggregating

voters’ preferences. The earliest reference for this might be from

Condorcet [8], who uses pairwise comparisons to calculate the

winning candidate, establishing his famous paradox on the small-

est voting instance not admitting any majority winner. The abso-

lute and simple majority voting rules have both been extensively

discussed in the setting where the goal is to choose the winning

candidate [4, 5].

The concept of majority voting readily translates to other scenar-

ios, where voters submit preference lists. One such field is the area of

matchings under preferences, where popular matchings [17, 1, 24,

Chapter 7, 9] serve as a voting-based alternative concept to the

well-known notion of stable matchings [3, 16] in two-sided mar-

kets. Besides two-sided matchings, majority voting has also been

defined for the house allocation problem [1, 25], the roommates

problem [14, 18], spanning trees [10], permutations [26], the or-

dinal group activity selection problem [11], and very recently, to
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branchings [19]. The notion of popularity is aligned with simple

majority in all these papers, with one exception, namely [26], which

defines popularity based on the absolute majority rule.

A part of this work revisits the paper from van Zuylen et al. [26].

They show that a popular ranking—according to their definition of

popularity—need not necessarily exist. More precisely, they show

that the acyclicity of a structure known as the majority graph is a

necessary, but not sufficient condition for the existence of a popular

ranking. They also prove that if the majority graph is acyclic, then

one can efficiently compute a ranking, which may or may not be

popular, but for which the voters have to solve an NP-hard problem
to compute a ranking that a majority of them prefer.

Our contribution. We study both the weaker notion of popularity

from [26] and the stronger notion of popularity analogous to the

one in the matching literature, which excludes abstaining voters. In

the full version of the paper [22], we present the following results.

(1) For at most 5 voters, the two notions are equivalent, but with

6 voters this does not hold anymore.

(2) We give a sufficient condition for the two notions to be

equivalent for a given ranking π .
(3) In the case of 2 or 3 voters, one can find a popular ranking

of either kind and verify the weak or strong popularity of a

given ranking in polynomial time.

(4) The problem of verifying the weak or strong popularity of

a given ranking for 4 voters is polynomial-time solvable if

and only if it is polynomial-time solvable for 5 voters.

(5) If finding a ranking that is more popular in either sense than

a given ranking in an instance with 4 (or 5) voters were

polynomial-time solvable, then the famously open Kemeny

consensus problem for 3 voters would also be polynomial-

time solvable.

2 DEFINITIONS AND EXAMPLE
We are given a set of candidates and a set of voters, each of whom

submits a ranking. A ranking π is a permutation of all candidates.

The rank of candidate a in ranking π is the position it appears at

in π , and it is denoted by rankπ [a]. The Kendall distance K(π ,σ )
between two rankings π and σ is defined as the number of pairwise

disagreements between π and σ , or, formally as

K (π , σ ) = | {(a, b) : rankπ [a] > rankπ [b] and rankσ [a] < rankσ [b]} |

+ | {(a, b) : rankπ [a] < rankπ [b] and rankσ [a] > rankσ [b]} |.

The Kendall distance is equivalent to the number of swaps that

the bubble sort algorithm [15] executes when converting ranking

π to ranking σ . Voters prefer rankings that are similar to their

submitted ranking. More precisely, voter v prefers ranking σ to

ranking π if K(σ ,πv ) < K(π ,πv ). Analogously, voter v abstains
between π and σ if K(σ ,πv ) = K(π ,πv ).

In the instance depicted by Figure 1, let σ1 = [1, 2, 3], [5, 6, 4],

[9, 7, 8] and σ2 = [1, 2, 3], [4, 5, 6], [7, 8, 9]. Clearly v4 prefers σ2
to σ1, since πv4

= σ2 and πv4
, σ1, that is, K(πv4

,σ2) = 0 <

K(πv4
,σ1). In the same instance, v1 is an abstaining voter since

K(πv1
,σ2) = 4 = K(πv1

,σ1).
We now define the two different notions of popularity. The first

notion of an weakly popular ranking corresponds to the popular

ranking as defined in [26].

πv1
= [1, 2, 3], [6, 4, 5], [8, 9, 7]

πv2
= [2, 3, 1], [4, 5, 6], [9, 7, 8]

πv3
= [3, 1, 2], [5, 6, 4], [7, 8, 9]

πv4
= [1, 2, 3], [4, 5, 6], [7, 8, 9]

πv5
= [1, 2, 3], [5, 4, 6], [9, 7, 8]

πv6
= [1, 2, 3], [5, 6, 4], [7, 9, 8]

Figure 1: A voting instance with 6 voters v1,v2, . . .v6 and 9

candidates 1, 2, . . . , 9.

Definition 2.1. Ranking σ is more popular than ranking π in

the weak sense ifK(σ ,πv ) < K(π ,πv ) for an absolute majority of all
voters. Ranking π is weakly popular if no ranking σ is more popular
than π in the weak sense.

If we consider σ3 = [2, 1, 3], [4, 5, 6], [7, 8, 9], then in the instance

in Figure 1, σ2 = [1, 2, 3], [4, 5, 6], [7, 8, 9] is more popular than σ3 in
the weak sense. Notice that σ3 and σ2 only differ in their ordering

of the pair of candidates {1, 2}. So since five out of six voters prefer

candidate 1 to candidate 2, they form an absolute majority of all

voters who prefer σ2 to σ3.
This definition requires more than half of the n voters to prefer

σ to π in order to declare σ to be more popular than π . Abstain-
ing voters make it hard to beat π in such a pairwise comparison.

However, if σ only needs to receive more votes than π among

the voters not abstaining between these two rankings, then it can

beat π . This leads to the notion of strong popularity. Let V
abs

(π ,σ )
be the set of voters who abstain in the vote between π and σ , that
is, v ∈ V

abs
(π ,σ ) if and only if K(πv ,π ) = K(πv ,σ ). In Figure 1,

V
abs

(σ1,σ2) = {v1,v2,v3} with σ1 and σ2 as before.

Definition 2.2. Ranking σ is more popular than ranking π in

the strong sense if K(σ ,πv ) < K(π ,πv ) for a majority of the non-
abstaining voters V \Vabs(π ,σ ). Ranking π is strongly popular if no
ranking σ is more popular than π in the strong sense.

It follows directly from the two definitions above that strongly

popular rankings are weakly popular as well, but weakly popular

rankings are not necessarily strongly popular. In the instance in

Figure 1, σ1 = [1, 2, 3], [5, 6, 4], [9, 7, 8] is more popular than σ2 =
[1, 2, 3], [4, 5, 6], [7, 8, 9] in the strong sense, since v5 and v6 prefer
σ1 to σ2, while v1,v2, and v3 abstain. Notice that σ1 is not more

popular than σ2 in the weak sense, because two voters do not

constitute an absolute majority of all 6 voters, only a majority of

the non-abstaining 3 voters.
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