On Weakly and Strongly Popular Rankings

Sonja Kraiczky
Merton College
University of Oxford
Oxford, UK
sonja.kraiczky@merton.ox.ac.uk

Ágnes Cseh
Hasso-Plattner-Institute
University of Potsdam
Potsdam, Germany
agnes.cseh@hpi.de

David Manlove
School of Computing Science
University of Glasgow
Glasgow, UK
david.manlove@glasgow.ac.uk

ABSTRACT

Van Zuylen et al. [26] introduced the notion of a popular ranking in a voting context, where each voter submits a strictly-ordered list of all candidates. A popular ranking π of the candidates is at least as good as any other ranking σ in the following sense: if we compare π to σ, at least half of all voters will always weakly prefer π. Whether a voter prefers one ranking to another is calculated based on the Kendall distance.

A more traditional definition of popularity—as applied to popular matchings, a well-established topic in computational social choice—is stricter, because it requires at least half of the voters who are not indifferent between π and σ to prefer π. In this paper, we derive structural and algorithmic results in both settings, also improving upon the results in [26]. We also point out connections to the famous open problem of finding a Kemeny consensus with 3 voters.

KEYWORDS

majority rule; Kemeny consensus; complexity; preference aggregation; popular matching

ACM Reference Format:

1 INTRODUCTION

A fundamental question in preference aggregation is the following: given a number of voters who rank candidates, can we construct a ranking that expresses the preferences of the entire set of voters as a whole? A common way of evaluating how close the constructed ranking is to a voter’s preferences is the Kendall distance, which measures the pairwise disagreements between two rankings. Among others, a well-known rank aggregation method is the Kemeny ranking method [20], in which the winning ranking minimises the sum of its Kendall distances to the voters’ rankings.

For the preference aggregation problem, van Zuylen et al. [26] introduce a new rank aggregation method called popular ranking, which is also based on the Kendall distance. Each voter can compare two given rankings π and σ, and prefers the one that is closer to her submitted ranking in terms of the Kendall distance. Van Zuylen et al. define π to be a winning ranking in an instance if for any ranking σ, at least half of the voters prefer π to σ or are indifferent between them. This implies that there is no ranking σ such that switching to σ from π would benefit a majority of all voters.

According to the definition of popularity in [26], even in a situation where exactly half of the voters are indifferent between rankings π and σ, whilst the other half of the voters prefer σ to π, σ is not more popular than π. This example demonstrates how hard it is for the dissatisfied voters to find a ranking that overrules π—the definition requires them to find a profiting set of voters who build an absolute majority, that is, a majority of all voters for this endeavour.

A straightforward option would be to require only a simple majority, this is, a majority of the non-abstaining voters, to profit from switching to σ from π. Excluding the abstaining voters in a pairwise majority voting rule is common practice [12]. It is also analogous to the classical popularity notion in the matching literature [1, 9, 24]. In this paper, we propose an alternative definition of a popular ranking. We define π to be a strongly popular ranking if for every ranking σ, at least half of the non-abstaining voters prefer π to σ. This means that switching from π to σ would harm at least as many voters as it would benefit.

Related literature. The most common approach to aggregating voters’ preferences is to search for a ranking that minimises the sum of the distances to the voters’ rankings. If the Kendall distance [21] is used as the metric on rankings, then this optimality concept corresponds to the Kemeny consensus [20, 23]. Deciding whether a given ranking is a Kemeny consensus is NP-complete, and calculating a Kemeny consensus is NP-hard [6] even if there are only 4 voters [7, 13], or at least 6 of them [2]. Interestingly, the complexity of the problem is open for 3 and 5 voters [2, 7].

Majority voting rules offer another natural way of aggregating voters’ preferences. The earliest reference for this might be from Condorcet [8], who uses pairwise comparisons to calculate the winning candidate, establishing his famous paradox on the smallest voting instance not admitting any majority winner. The absolute and simple majority voting rules have both been extensively discussed in the setting where the goal is to choose the winning candidate [4, 5].

The concept of majority voting readily translates to other scenarios, where voters submit preference lists. One such field is the area of matchings under preferences, where popular matchings [17, 1, 24, Chapter 7, 9] serve as a voting-based alternative concept to the well-known notion of stable matchings [3, 16] in two-sided markets. Besides two-sided matchings, majority voting has also been defined for the house allocation problem [1, 25], the roommates problem [14, 18], spanning trees [10], permutations [26], the ordinal group activity selection problem [11], and very recently, to
branchings [19]. The notion of popularity is aligned with simple
majority in all these papers, with one exception, namely [26], which
defines popularity based on the absolute majority rule.

A part of this work revisits the paper from van Zuylen et al. [26].
They show that a popular ranking—according to their definition of
popularity—need not necessarily exist. More precisely, they show
that the acyclicity of a structure known as the majority graph is a
necessary, but not sufficient condition for the existence of a popular
ranking. They also prove that if the majority graph is acyclic, then
one can efficiently compute a ranking, which may or may not be
popular, but for which the voters have to solve an NP-hard problem
to compute a ranking that a majority of them prefer.

Our contribution. We study both the weaker notion of popularity
from [26] and the stronger notion of popularity analogous to the
one in the matching literature, which excludes abstaining voters. In
the full version of the paper [22], we present the following results.
(1) For at most 5 voters, the two notions are equivalent, but with
6 voters this does not hold anymore.
(2) We give a sufficient condition for the two notions to be
equivalent for a given ranking \(\pi \).
(3) In the case of 2 or 3 voters, one can find a popular ranking
of either kind and verify the weak or strong popularity of a
given ranking in polynomial time.
(4) The problem of verifying the weak or strong popularity of a
given ranking for 4 voters is polynomial-time solvable if and
only if it is polynomial-time solvable for 5 voters.
(5) If finding a ranking that is more popular in either sense than
a given ranking in an instance with 4 (or 5) voters were
polynomial-time solvable, then the famously open Kemeny
consensus problem for 3 voters would also be polynomial-
time solvable.

2 DEFINITIONS AND EXAMPLE

We are given a set of candidates and a set of voters, each of whom
submits a ranking. A ranking \(\pi \) is a permutation of all candidates.
The rank of candidate \(a \) in ranking \(\pi \) is the position it appears at in \(\pi \), and it is denoted by \(\text{rank}_a(\pi) \). The Kendall distance \(K(\pi, \sigma) \)
between two rankings \(\pi \) and \(\sigma \) is defined as the number of pairwise
disagreements between \(\pi \) and \(\sigma \), or formally

\[
K(\pi, \sigma) = \left| \{(a, b) : \text{rank}_a(\pi) > \text{rank}_b(\pi) \text{ and } \text{rank}_a(\sigma) < \text{rank}_b(\sigma)\} \right| + \left| \{(a, b) : \text{rank}_a(\pi) < \text{rank}_b(\pi) \text{ and } \text{rank}_a(\sigma) > \text{rank}_b(\sigma)\} \right|.
\]

The Kendall distance is equivalent to the number of swaps that
the bubble sort algorithm [15] executes when converting ranking
\(\pi \) to ranking \(\sigma \). Voters prefer rankings that are similar to their
submitted ranking. More precisely, voter \(v \) prefers ranking \(\sigma \) to
ranking \(\pi \) if \(K(\pi, \pi_v) < K(\pi, \sigma) \). Analogously, voter \(v \) abstains
between \(\pi \) and \(\sigma \) if \(K(\sigma, \pi_v) = K(\pi, \pi_v) \).

In the instance depicted by Figure 1, let \(\pi_1 = [1, 2, 3], [5, 6, 4],
[9, 7, 8] \) and \(\pi_2 = [1, 2, 3], [4, 5, 6], [7, 8, 9] \). Clearly \(\nu_4 \) prefers \(\pi_2 \)
to \(\pi_1 \), since \(\pi_{2v_4} = \pi_2 \) and \(\pi_{1v_4} \neq \pi_1 \), that is, \(K(\pi_{1v_4}, \pi_2) = 0 < K(\pi_{2v_4}, \pi_1) \). In the same instance, \(v_1 \) is an abstaining voter since
\(K(\pi_{v_1}, \pi_2) = 4 = K(\pi_{v_1}, \pi_1) \).

We now define the two different notions of popularity. The first
notion of an weakly popular ranking corresponds to the popular
ranking as defined in [26].

\[
\begin{align*}
\pi_{c1} &= [1, 2, 3], [6, 4, 5], [8, 9, 7] \\
\pi_{c2} &= [2, 3, 1], [4, 5, 6], [9, 7, 8] \\
\pi_{c3} &= [3, 1, 2], [5, 6, 4], [7, 8, 9] \\
\pi_{c4} &= [1, 2, 3], [4, 5, 6], [7, 8, 9] \\
\pi_{c5} &= [1, 2, 3], [5, 4, 6], [9, 7, 8] \\
\pi_{c6} &= [1, 2, 3], [5, 4, 6], [9, 7, 8]
\end{align*}
\]

Figure 1: A voting instance with 6 voters \(v_1, v_2, \ldots, v_6 \) and 9
candidates 1, 2, \ldots, 9.

Definition 2.1. Ranking \(\sigma \) is more popular than ranking \(\pi \) in
the weak sense if \(K(\pi, \pi_v) < K(\pi, \pi_\sigma) \) for an absolute majority of
all voters. Ranking \(\pi \) is weakly popular if no ranking \(\sigma \) is more
popular than \(\pi \) in the weak sense.

If we consider \(\sigma_1 = [2, 1, 3], [4, 5, 6], [7, 8, 9] \), then in the instance
in Figure 1, \(\sigma_2 = [1, 2, 3], [4, 5, 6], [7, 8, 9] \) is more popular than \(\sigma_1 \) in
the weak sense. Notice that \(\sigma_1 \) and \(\sigma_2 \) only differ in their ordering
of the pair of candidates \(\{1, 2\} \). So since five out of six voters prefer
candidate 1 to candidate 2, they form an absolute majority of all
voters who prefer \(\sigma_2 \) to \(\sigma_1 \).

This definition requires more than half of the \(n \) voters to prefer
\(\sigma \) to \(\pi \) in order to declare \(\sigma \) to be more popular that \(\pi \). Abstain-
ing voters make it hard to beat \(\pi \) in such a pairwise comparison.
However, if \(\sigma \) only needs to receive more votes than \(\pi \) among
the voters not abstaining between these two rankings, then it can
beat \(\pi \). This leads to the notion of strong popularity. Let \(V_{\text{abs}}(\pi, \sigma) \)
be the set of voters who abstain in the vote between \(\pi \) and \(\sigma \), that is,
\(v \in V_{\text{abs}}(\pi, \sigma) \) if and only if \(K(\pi_v, \pi) = K(\pi_v, \sigma) \). In Figure 1,
\(V_{\text{abs}}(\sigma_1, \sigma_2) = \{v_1, v_2, v_3\} \) while \(\sigma_1 \) and \(\sigma_2 \) as before.

Definition 2.2. Ranking \(\sigma \) is more popular than ranking \(\pi \) in
the strong sense if \(K(\pi, \pi_v) < K(\pi, \pi_\sigma) \) for a majority of the
non-abstaining voters \(V \setminus V_{\text{abs}}(\pi, \sigma) \). Ranking \(\pi \) is strongly popular if
no ranking \(\sigma \) is more popular than \(\pi \) in the strong sense.

It follows directly from the two definitions above that strongly
popular rankings are weakly popular as well, but weakly popular
rankings are not necessarily strongly popular. In the instance in
Figure 1, \(\sigma_1 = [1, 2, 3], [5, 6, 4], [9, 7, 8] \) is more popular than \(\sigma_2 =
[1, 2, 3], [4, 5, 6], [7, 8, 9] \) in the strong sense, since \(\nu_5 \) and \(\nu_6 \) prefer
\(\sigma_1 \) to \(\sigma_2 \), while \(v_1, v_2, v_3 \) abstain. Notice that \(\sigma_1 \) is not
more popular than \(\sigma_2 \) in the weak sense, because two voters do not
constitute an absolute majority of all 6 voters, only a majority of the
non-abstaining 3 voters.

Acknowledgement. We thank Markus Brill for fruitful discussions.
Sonja Kraiczky was supported by Undergraduate Research Bursary
19-20-66 from the London Mathematical Society, and by the
School of Computing Science, University of Glasgow. Ágnes Cseh
was supported by the Federal Ministry of Education and Research
of Germany in the framework of KI-LAB-ITSE (project number
01IS19066). David Manlove was supported by grant EP/P028306/1
from the Engineering and Physical Sciences Research Council.
REFERENCES

