
Optimized Execution of PDDL Plans using Behavior Trees
Extended Abstract

Francisco Martín Rico
Intelligent Robotics Lab

Rey Juan Carlos University
Fuenlabrada, Madrid
francisco.rico@urjc.es

Matteo Morelli
CEA list

Palaiseau, France
Matteo.MORELLI@cea.fr

Huascar Espinoza
CEA list

Palaiseau, France
Huascar.ESPINOZA@cea.fr

Francisco J. Rodríguez-Lera
University of León

León, Spain
fjrodl@unileon.es

Vicente Matellán Olivera
University of León

León, Spain
vicente.matellan@unileon.es

ABSTRACT
Robots need task planning to sequence and execute actions toward
achieving their goals. On the other hand, Behavior Trees provide a
mathematical model for specifying plan execution in an intrinsically
composable, reactive, and robust way. PDDL (Planning Domain
Definition Language) has become the standard description language
for most planners. In this paper, we present a novel algorithm to
systematically create behavior trees from PDDL plans to execute
them. This approach uses the execution graph of the plan to gen-
erate a behavior tree. The most remarkable contribution of this
approach is the algorithm to build a Behavior Tree that optimizes
its execution by paralyzing actions, applicable to any plan, taking
into account the actions’ causal relationships. We demonstrate the
improvement in the execution of plans in mobile robots using the
ROS2 Planning System framework.

KEYWORDS
AI Planning; Multirobot; Behavior Trees
ACM Reference Format:
FranciscoMartín Rico,MatteoMorelli, Huascar Espinoza, Francisco J. Rodríguez-
Lera, and Vicente Matellán Olivera. 2021. Optimized Execution of PDDL
Plans using Behavior Trees : Extended Abstract. In Proc. of the 20th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS
2021), Online, May 3–7, 2021, IFAAMAS, 3 pages.

1 INTRODUCTION
In this work we want to improve the execution of PDDL[4][3] plans
and tasks in mobile service robots [8]. The execution of the plans
is a crucial aspect for AI planning in robotics. Once the plan is
generated in a computer, it must be carried out in the real world.
This execution includes handing over the actions to the components
that must perform them and keep checking the action requirements
during their execution.

Currently, other approaches in ROS (Robotic Operating System),
the de facto standard for robotic software development, are ROSPlan
[1], only available in ROS 1, and SKIROS [9]. The work presented
in this paper has been developed for the ROS2 Planning System

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

(PlanSys21 in short) that aspires to be the reference framework for
AI Planning in the next version of ROS: ROS2.

In particular, the main contribution of this paper is a novel al-
gorithm to build a Behavior Tree[2] that optimizes the execution
time of plans by explicitly producing parallel actions. Behavior
Trees can adequately represent plans, including the causal con-
straints between the actions, and the evaluation of preconditions.
We consider that this approach to apply Behavior Trees in Plan-
ning improves other approaches such as approaches like [7], [10],
and [5]. The technical report at [6] contains a detailed comparison,
along a detailed description of the algorithms of this contribution.

2 GRAPH REPRESENTATION FROM PLANS
Before applying our algorithm, we must create a planning graph 𝐺
(Figure 1) that contains the effect-requirement dependencies of the
actions of the plan (Listing 1). It is a directed acyclic graph defined
by the tuple 𝐺 =< 𝐴,𝐶 >, where 𝐴 is the set of actions in a plan,
corresponding to nodes of the graph. 𝐶 is the set of directed arcs
that represents the execution precedence of the actions.

PDDL listing 1 A PDDL plan.
0.00: (move r2d2 bedroom living)
5.00: (move r2d2 living kitchen)

Starting from plans generated by a PDDL planner, like the one
in Listing 1, we generate a graph like the one shown in figure 1.

3 BEHAVIOR TREE BUILDING
Behavior Trees are used to code the execution of actions through
a tree that contains nodes, which are leaves if they are end nodes
(without child nodes). The leaves represent actions to be carried out,
or conditions to check. The rest of the nodes define the execution
flow of the tree. Themain contribution is an algorithm automatically
builds a Behavior Tree from any type planning graph. It is based
on three main concepts:

Execution flows An execution flow starts from an action 𝑎𝑖
node whose 𝑅𝑎𝑖 = ∅, and add the actions in the path follow-
ing the arc effect→ requirement. In Figure 1 shows the three
different flows in the planning graph shown in Figure 1.

1https://github.com/IntelligentRoboticsLabs/ros2_planning_system/

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1596

https://github.com/IntelligentRoboticsLabs/ros2_planning_system/


A
Time: 0

B C

D
Time: 5

E F

Time: 10

G

H
Time: 15

I

J
Time: 30

K

A
Time: 0

B C

D
Time: 5

E F

Time: 10

G

H
Time: 15

I

J
Time: 30

K

A
Time: 0

B C

D
Time: 5

E F

Time: 10

G

H
Time: 15

I

J
Time: 30

K

Figure 1: Different execution flows of the same planning
graph.

A

D

GFE B

JHE KIF

Figure 2: Behavior Tree generated from the red flow of Fig-
ure 1. Red rectangles are Waiting Nodes.

Singleton action Each action unit 𝑎𝑖 in the generated Behav-
ior Tree is a Singleton 𝑆 (𝑎𝑖 ), i.e., it can appear in different
points in the Behavior Tree, but it refers to the same action
unit. If an action unit 𝑎𝑖 has already returned SUCCESS when
executed in one branch, it will return SUCCESS if it is ticked
in any other branch.

Waiting nodes This control node refers to an action unit 𝑎𝑖 ,
and denominates𝑊 (𝑎𝑖 ). It returns RUNNING if 𝑎𝑖 has never
returned SUCCESS.

Our algorithm, detailed in [6], automatically creates a behavior
Tree like 2 that represents the plan, where each leaf is a subtree like
shown in Figure 3, where the requirements are checked at runtime,
the action is executed, and the effects are applied.

req
at_start? B

req
over_all?

effect
at_start

Action

req
at_end?

effect
at_end

Figure 3: Expansion of each action unit.

4 EVALUATION
The scenario used in this evaluation is the SciRoc Restaurant test,
but including one or more robots to see how execution can be
optimized by performing various actions in parallel.

Figure 4: Starting from left, total time for execution with
one robot (r1_seq, r1_bt, r1_plan), two robots (r2_seq, r2_bt,
r2_plan), three robots (r3_seq, r3_bt, r3_plan) and four
robots (r4_seq, r4_bt, r4_plan).

This optimization in the execution of actions is reflected in the
complete plan’s execution time, shown in Figure 4. As more robots
are added, sequential execution maintains the same duration, since
it does not optimize anything. Execution time according to plan
decreases when more robots are included. The execution based on
Behavior Tree shows the best performance in all configurations.
The execution based on the planner is the most deterministic one
due to planning that takes into account the maximum times per
action. It should be noted that when resources are increased, in
this case, robots, but there are no tasks (tables in this scenario) for
every robot, performance deteriorates.

5 CONCLUSIONS
This paper presents a proposal for using Behavior Trees to execute
plans generated by a PDDL-based AI planner. Coding a plan as
Behavior Tree is a compact way to represent and execute a robot
action plan. Major contribution of the paper is the algorithm capable
of transforming any plan into a Behavior Tree in a systematic way.
This solution creates a planning graph from the plan and makes
the tree recursively. Different types of nodes are used to build
the Behavior Tree such as the singleton action node and the wait
node to improve the efficiency of parallel excution of actions. The
generated Behavior Tree is so optimized to execute in parallel all
the possible actions in a plan, preserving the causal relationships
of the actions. Another contribution is the execution an action as
soon as its requirements are available, even before established in
the plan.

6 ACKNOWLEDGEMENT
This work was supported by the EU-funded projects RobMoSys ITP
MROS under Grant Agreement No. 732410

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1597



REFERENCES
[1] Michael Cashmore, Maria Fox, Derek Long, Daniele Magazzeni, Bram Ridder,

Arnau Carreraa, Narcís Palomeras, Natàlia Hurtós, and Marc Carrerasa. 2015.
ROSPlan: Planning in the Robot Operating System. In Proceedings of the Twenty-
Fifth International Conference on International Conference on Automated Planning
and Scheduling (Jerusalem, Israel) (ICAPS’15). AAAI Press, 333–341.

[2] Michele Colledanchise and Petter Ogren. 2018. Behavior Trees in Robotics and AI:
An Introduction. https://doi.org/10.1201/9780429489105

[3] Maria Fox and Derek Long. 2003. PDDL2.1: An extension to PDDL for expressing
temporal planning domains. J. Artif. Intell. Res. (JAIR) 20 (12 2003), 61–124.
https://doi.org/10.1613/jair.1129

[4] Malik Ghallab, Craig Knoblock, David Wilkins, Anthony Barrett, Dave Chris-
tianson, Marc Friedman, Chung Kwok, Keith Golden, Scott Penberthy, David
Smith, Ying Sun, and Daniel Weld. 1998. PDDL - The Planning Domain Definition
Language. (08 1998).

[5] Eleonora Giunchiglia, Michele Colledanchise, Lorenzo Natale, and Armando
Tacchella. 2019. Conditional Behavior Trees: Definition, Executability, and Ap-
plications. In 2019 IEEE International Conference on Systems, Man and Cybernetics

(SMC). IEEE, 1899–1906.
[6] Francisco Martín, Matteo Morelli, Huascar Espinoza, Francisco J. G. Lera, and

Vicente Matellán. 2021. Optimized Execution of PDDL Plans using Behavior
Trees. arXiv:2101.01964 [cs.RO]

[7] Alejandro Marzinotto, Michele Colledanchise, and Petter Ogren. 2014. To-
wards a unified behavior Trees framework for robot control. Proceedings -
IEEE International Conference on Robotics and Automation, 5420–5427. https:
//doi.org/10.1109/ICRA.2014.6907656

[8] Illah Nourbakhsh and Michael Genesereth. 1996. Assumptive Planning and
Execution: a Simple, Working Robot Architecture. Autonomous Robots 3, 1 (March
1996), 49 – 67.

[9] F. Rovida, B. Grossmann, and V. Krüger. 2017. Extended behavior trees for quick
definition of flexible robotic tasks. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 6793–6800.

[10] Haotian Zhou, Huasong Min, and Yunhan Lin. 2019. An Autonomous Task
Algorithm Based on Behavior Trees for Robot. In 2019 2nd China Symposium on
Cognitive Computing and Hybrid Intelligence (CCHI). IEEE, 64–70.

Extended Abstract AAMAS 2021, May 3-7, 2021, Online

1598

https://doi.org/10.1201/9780429489105
https://doi.org/10.1613/jair.1129
https://arxiv.org/abs/2101.01964
https://doi.org/10.1109/ICRA.2014.6907656
https://doi.org/10.1109/ICRA.2014.6907656

	Abstract
	1 Introduction
	2 Graph representation from plans
	3 Behavior Tree building
	4 Evaluation
	5 Conclusions
	6 Acknowledgement
	References



