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ABSTRACT
SARSA-RS is a reward shaping method that updates the
shaping through learning. However, the bottleneck of this
method is the aggregation of states since designers need to
design mappings from all states to abstract states. We pro-
pose a dynamic trajectory aggregation that uses subgoal se-
ries. The designer’s effort becomes minimal because only hu-
man input is the subgoal series. This makes application to en-
vironments with high-dimensional observations possible. We
compared our method by using participants’ subgoal series
with a baseline reinforcement learning algorithm and other
subgoal-based methods in a navigation task. As a result, our
reward shaping outperformed all other methods in learning
efficiency.
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1 INTRODUCTION
Reinforcement learning(RL) can acquire a policy maximizing
long-term rewards. It is common for the state-action space
to be quite large in a real environment. For that case, the
learning becomes too slow to obtain optimal policies in a re-
alistic amount of time. Since a human could have knowledge
helpful to an agent in such cases, a promising approach is
utilizing human knowledge [11, 15, 20].

The reward function is most related to learning efficiency.
Most difficult tasks in RL have a sparse reward function [3].
Inverse reinforcement learning (IRL) [1, 18] is the most pop-
ular method for enriching the reward function. IRL uses an
optimal policy to generate a dense reward function [13, 21].
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There is the question of the teacher’s cost in providing tra-
jectories or policies. Humans sometimes have difficulty pro-
viding these because they may not have the skills. In partic-
ular, in a robotics task, humans are required to have robot-
handling skills and knowledge on the optimal trajectory. An-
other approach is reward shaping [6–8, 12, 16]. Potential-
based reward shaping(PBRS) is able to add external rewards
while keeping the optimal policy of the environment [17]. To
use PBRS, we need to define the potential function. SARSA-
RS acquires it in learning [9, 10]. SARSA-RS needs a func-
tion for aggregating states. However, this is often unavailable
when the task has a high-dimensional observation. We pro-
pose a subgoal-based trajectory aggregation method. Our
method needs only ordered states as subgoal series. The way
of providing the external knowledge with our method is eas-
ier than state aggregation because access to all states is not
required. Since humans only provide several states, skill in
controlling robots are not always necessary. This may give
non-expert a chance to enhance RL algorithms from view-
point of Interactive RL [2].

2 SUBGOAL-BASED DYNAMIC
TRAJECTORY AGGREGATION

We propose dynamic trajectory aggregation from states into
abstract states with subgoal series. The method basically fol-
lows SARSA-RS [9], and the difference is mainly the aggre-
gation function and minorly the accumulated rewards. Our
method aggregates trajectories dynamically into abstract states
during learning with subgoal series. We define a subgoal as
a state s that is a subgoal if s is a goal in one of the sub-
tasks decomposed from a task. A subgoal series is written
formally as (SG, ≺). SG is a set of subgoals and a sub-set of
S. There are two types of subgoal series, totally ordered and
partially ordered. With totally ordered subgoals, a subgoal
series is deterministically determined at any subgoal. In con-
trast, partially ordered subgoals have several transitions to
the subgoal series from a subgoal. We use only the totally or-
dered subgoal series, but both types of ordered subgoals can
be used for our method. Since an agent achieves a subgoal
only once, the transition between subgoals is unidirectional.
We assume that the subgoal series (SG, ≺) is pre-defined,
and (SG, ≺) = {sg0 ≺ sg1 ≺ · · · ≺ sgn}.
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Figure 1: Concept of subgoal-based aggregation.

2.1 Dynamic Trajectory Aggregation
We build abstract states to represent the achievement status
of a subgoal series. If there are n subgoals, the size of abstract
states is n+1. The agent is in a first abstract state z0 before
it achieves a subgoal. Then, the abstract state z0 transits to
z1 when the subgoal sg0 is achieved. This means that tra-
jectories are aggregated until subgoal sg0 transits into z0.
The aggregated trajectories change dynamically every trial
because of the policy with randomness. As the learning pro-
gresses, the aggregated trajectories become fixed. The value
over abstract states is distributed to the values of states of
the trajectory. Note that the trajectories for updating the
value are different from those that the values are distributed
to. The updated value function is not used for the current
trial but for the next trials. An image of the dynamic trajec-
tory aggregation is shown in Figure1. As is shown, a circle
is a state, and the aggregated states are in each gray back-
ground area. The bold circles express the states with which
the designer deals. The number of bold circles in Figure 1(b)
is much lower than Figure 1(a). “S” and “G” in the circles
are a start and a goal, respectively. Figure 1(b) shows that
the trajectory is separated into two sub-episodes, and each
of them corresponds to abstract states.

2.2 Accumulated Reward Function
We clearly define the reward transformation function rh be-
cause our method only updates the achievements of subgoals.
We describe this formally as rh =

∑N−1
t=0 γtrt, where N is

the duration until subgoal achievement. The function accu-
mulates rewards with discount γ. Depending on the policy at
the time, N is varied dynamically. This follows n-step tempo-
ral difference (TD) learning [19] because there are transitions
between an abstract state zi and another one zi+1.

3 EXPERIMENTS
We used a navigation task in pinball in OpenAI Gym [5].
Details can be found in [4]. We used a reward function gen-
erating a reward of +10000 when the agent reached the goal.
This domain is difficult for humans because delicate control
of the ball is necessary. We acquired ten patterns of two
ordered subgoals from participants, and the evaluation was
conducted using them with a PC [Core i7-7700 (3.6GHz),
16 GB of memory]. We compared our method with human

(a) Participants’ subgoals (b) Random subgoals

Figure 2: Subgoal dis-
tribution in pinball do-
main.
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Figure 3: Learning
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subgoals (HRS) with three other methods, an actor-critic al-
gorithm (AC) [14], our method with random subgoals (RRS),
and naive subgoal reward shaping (NRS). The three reward
shaping methods were implemented with AC. RRS used ten
patterns of two randomly selected subgoals from the whole
state space. NRS has the potential function Φ(s) that out-
puts a scalar value η just when an agent has visited a sub-
goal state, and 0 otherwise. We set η as 10,000 so as to be
the same value as the goal reward. The difference from our
method is that there was a fixed value only for subgoals. All
methods learned a total 100 times from scratch through 200
episodes. The learning took several tens of minutes. A sub-
goal had only a center position and a radius that was the
same as the target. The agent achieved a subgoal when it
entered the circle of the subgoal at any velocity. The setting
of AC was the same as [4].

Figure 2 shows the subgoal distribution acquired from ten
participants and from the random subgoals generated. In this
figure, the color of the start point, the goal, and the subgoals
are red, blue, and green, respectively. As shown in the figure,
participants focused on four regions of branch points to set
subgoals in comparison with random subgoals.

Figure 3 shows the learning curves of HRS, RRS, AC, and
NRS. The learning indicator was the average number of steps
per episode over learning 100 times. It took an average shift
of 10 episodes. As is shown, HRS performed better than all
other methods. RRS and NRS seemed to be almost the same
as AC.

4 CONCLUSION
Although SARSA-RS incorporating state aggregation infor-
mation into rewards is helpful, humans will rarely have to
deal with all states in an environment with larger continuous
observations. We proposed dynamic trajectory aggregation
by which a human deals with several characteristic states
as a subgoal. We evaluated a navigation task involving pin-
ball with subgoals from participants. The experimental re-
sults revealed that our method with human subgoals enabled
faster learning compared with the others. Our method could
make SARSA-RS available without the mapping of all states,
and learning was clearly accelerated. We plan to apply our
method to an environment with image observations.
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