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ABSTRACT
In this work, we consider the problem of computing optimal actions
for Reinforcement Learning (RL) agents in a co-operative setting,
where the objective is to optimize a common goal. However, in
many real-life applications, the agents are also required to satisfy
certain constraints specified on their actions. Under this setting, the
objective of the agents is to not only learn the actions that optimize
the common objective but also meet the specified constraints. In
recent times, the Actor-Critic algorithm with an attention mecha-
nism has been successfully applied to obtain optimal actions for RL
agents in multi-agent environments. In this work, we extend this
algorithm to the constrained multi-agent RL setting.
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1 INTRODUCTION
In a multi-agent constrained co-operative RL setting, the agents
have to learn actions that not only minimize the expected total
discounted cost but also respect the constraints specified. One ap-
proach to satisfy the constraints is to construct a modified cost as
a linear combination of the original cost and the constraint costs.
However, the weights to be associated with the costs are not known
upfront and need to be learned in a trial-and-error fashion. We
alleviate this problem by considering the Lagrangian formulation
of the problem and training dual Lagrange parameters that act
as weights for the constraint costs. In this work, we propose an
Actor-Critic algorithm for computing the optimal actions for agents
that makes use of the attention mechanism. A brief overview of
the comparison of our work with other works in the literature is
provided in Table 1.
∗Equal contribution by the first three authors. Full paper is available at [20].
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References Features
[7, 11, 16,
18, 19]

Deep RL algorithms for multi-agent setting.
Attention mechanism not considered.

[13, 14, 17]
Deep RL algorithms with Attention for

multi-agent setting. Constrained setting not
considered.

[3–5]
RL algorithms for single-agent constrained
setting. Multi-agent constrained setting not

considered.

[1, 15, 23]
Deep RL algorithms for single-agent

constrained setting. Multi-agent constrained
setting not considered.

[2, 6, 9, 10,
12, 21, 22,

24]

RL algorithms for multi-agent constrained
setting. Attention mechanism not considered.

Our Work Deep RL algorithm with Attention mechanism
for multi-agent Constrained setting.

Table 1: Comparison with other works in the Literature

2 MODEL
We now briefly discuss the constrained co-operative multi-agent
setting [8] described by the tuple < 𝑛, 𝑆,𝐴,𝑇 , 𝑘, 𝑐1, . . . , 𝑐𝑚, 𝛾 >. Here,
𝑛 denotes the number of agents in the environment, 𝑆 = 𝑆1 × 𝑆2 ×
· · · 𝑆𝑛 is the joint state space, 𝐴 = 𝐴1 × · · · ×𝐴𝑛 denotes the joint
action space and𝑇 is the probability transition matrix. Single-stage
cost function (𝑘) where 𝑘 (𝑠, 𝑎) denotes the cost incurred when joint
action 𝑎 is taken in state 𝑠 . Moreover, 𝑐1, . . . , 𝑐𝑚 denote the single-
stage cost functions for the constraints. Note that both the main
cost function (𝑘) and constraint costs (𝑐1, . . . , 𝑐𝑚) depend on the
joint action of the agents. Finally, 𝛾 denotes the discount factor.
Let 𝜋𝑖 : 𝑆𝑖 −→ Δ(𝐴𝑖 ) denote the policy of agent 𝑖 , where for a
given state of agent 𝑖 , 𝜋𝑖 (𝑠𝑖 ) is a probability distribution over its
actions. We now define the total discounted cost (𝐽 ) for a joint
policy 𝜋 = (𝜋1, . . . , 𝜋𝑛) as follows:

𝐽 (𝜋) = 𝐸

[ 𝜏∑
𝑡=0

𝛾𝑡𝑘 (𝑠𝑡 , 𝜋 (𝑠𝑡 ))
]
, (1)

where 𝐸 [.] is the expectation over the entire trajectory of states
with initial state 𝑠0 ∼ 𝑑0, where𝑑0 is a given probability distribution
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over states, 𝜏 is a finite stopping time and 𝑠𝑡 is the joint state at
time 𝑡 . The𝑚 constraints on the system are defined as follows:

𝐸

[ 𝜏∑
𝑡=0

𝛾𝑡𝑐 𝑗 (𝑠𝑡 , 𝜋 (𝑠𝑡 ))
]
≤ 𝛼 𝑗 , ∀𝑗 ∈ 1, . . . ,𝑚, (2)

where 𝛼1, . . . , 𝛼𝑚 are pre-specified thresholds.
The objective of the agents in the multi-agent constrained co-

operative RL setting is to compute a joint policy 𝜋∗ = (𝜋∗1 , . . . , 𝜋
∗
𝑛)

that is the solution to the optimization problem

min
𝜋 ∈Π

𝐽 (𝜋) = 𝐸

[ 𝜏∑
𝑡=0

𝛾𝑡𝑘 (𝑠𝑡 , 𝜋 (𝑠𝑡 ))
]

(3)

s.t 𝐸

[ 𝜏∑
𝑡=0

𝛾𝑡𝑐 𝑗 (𝑠𝑡 , 𝜋 (𝑠𝑡 ))
]
≤ 𝛼 𝑗 , ∀𝑗 ∈ 1, . . . ,𝑚,

where Π is the set of all joint policies. We make use of Lagrangian
approach to solve this constrained problem. The pseudo-code of
our proposed algorithm is described in Algorithm 1.

Algorithm 1 Multi-Agent Constrained Attention Actor-Critic
(MACAAC)
1: 𝐸 ←−Maximum number of episodes.
2: 𝐿 ←− Length of an episode.
3: 𝑈 ←− Steps per update.
4: 𝜃𝑖 ←− policy parameters of the agent 𝑖 , 𝑖 = 1, . . . , 𝑛.
5: UpdateCritic: Subroutine to update the critic parameters.
6: UpdateActors: Subroutine to update the policy parameters of

all the agents.
7: 𝑄𝜂 𝑗

←− Q-value of constrained cost associated with constraint
𝑗, 𝑗 = 1, . . . ,𝑚.

8: 𝛽𝑡 ←− Slower timescale step-size at time step 𝑡 .
9: Initialize Lagrange parameters 𝜆1, . . . , 𝜆𝑚 .
10: Create 𝜇 parallel environments.
11: Initialize replay buffer, D.
12: 𝑢 ←− 0
13: for 𝑒𝑝 = 1, 2, . . . , 𝐸 do
14: Obtain initial observations 𝑜𝑒

𝑖
for all agents 𝑖 in each

15: environment 𝑒
16: for 𝑡 = 1, 2, . . . , 𝐿 do
17: Obtain actions 𝑎𝑒

𝑖
∼ 𝜋𝜃𝑖 (.|𝑜𝑒𝑖 ), ∀𝑖 = 1, . . . , 𝑛,

18: ∀𝑒 = 1, . . . , 𝜇
19: Execute actions and get (𝑜∗,𝑒

𝑖
, 𝑘𝑒 , 𝑐𝑒1, 𝑐

𝑒
2, . . . , 𝑐

𝑒
𝑚) ∀𝑖, 𝑒

20: Let 𝑟𝑒 = 𝑘𝑒 +
𝑚∑
𝑗=1

𝜆 𝑗𝑐
𝑒
𝑗 , ∀𝑒

21: Store (𝑜𝑒
𝑖
, 𝑎𝑒

𝑖
, 𝑟𝑒 , 𝑐𝑒1, 𝑐

𝑒
2, . . . , 𝑐

𝑒
𝑚, 𝑜
∗,𝑒
𝑖
), ∀𝑖, 𝑒 in 𝐷

22: 𝑜𝑒
𝑖
= 𝑜
∗,𝑒
𝑖

, ∀𝑖, 𝑒
23: 𝑢+ = 𝜇

24: if (𝑢% U) < 𝜇 then
25: Sample minibatch (B) from D
26: Get next actions 𝑎

′
1, . . . , 𝑎

′
𝑛

27: UpdateCritic(B, 𝑎
′
1, . . . , 𝑎

′
𝑛)

28: UpdateActors(B)
29: for 𝑗 = 1, . . . ,𝑚 do
30: 𝜆 𝑗 ←− max(0, 𝜆 𝑗 + 𝛽𝑡 (𝑄𝜂 𝑗

− 𝛼 𝑗 ))

3 EXPERIMENTS AND RESULTS
In the constrained version of Cooperative Navigation [16] that we
consider, there are 5 agents and 5 targets that are randomly gener-
ated in a continuous environment at the beginning of each episode.
The objective of the agents is to navigate towards the targets in a
co-operative manner such that all targets are covered. The length
of each episode is 25 time steps and the single-stage cost at each
time step is the sum of the distance to the nearest agent, over all the
targets. Therefore, the agents have to learn to navigate towards the
targets in such a way that all target positions are covered. However,
we include a single-stage penalty of 1 when there is a collision be-
tween the agents (and 0 otherwise). The penalty threshold (𝛼) is set
to 3 in our experiments. This means that the expected total penalty
over all the episodes must be less than or equal to 3. The discount
factor is set to 0.99. We refer to the main cost that the agents are
minimizing as ‘cost’ and the constrained cost as the ‘penalty’. For
comparison purposes, we also implement the constrained version
of MADDPG [16] algorithm, which we refer to as ‘MADDPG-C’.
Moreover, to better analyze the results, we also report the results
on an un-constrained version of Multi-agent Attention Actor-Critic
[13] where there is no penalty incurred for collisions among the
agents, which we simply refer to as ‘Unconstrained’.

3.1 Discussion
In Figure 1a, we observe that the total cost approaches convergence
for all the three algorithms. The ‘Unconstrained’ algorithm achieves
the smallest average cost as there is no penalty for collisions in
this case. Therefore, the agents can move freely in the continuous
space and navigate quickly towards the targets. This can also be
observed in Figure 1b, where we see that the average penalty of the
‘Unconstrained’ algorithm is the highest. In Figure 1b, we see that
the average penalty comes down as the training progresses for the
constrained algorithms (MADDPG-C and our proposed MACAAC),
while for the ‘unconstrained’ algorithm it almost remains constant.
This is the effect of Lagrange parameters that are learnt in the
constrained setting.

(a) Expected total cost (b) Expected total penalty

Figure 1: Performance of Algorithms on Constrained Coop-
erative Navigation during the training.
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