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1 INTRODUCTION
Multi-agent crowd simulation is generally used to construct an
environment suitable for reality by parameter estimation. This
estimation is to modify a model defined by human movements
and behaviors to fit real-world data by means of statistics or op-
timization [2, 11]. In the field of traffic engineering, for example,
parameter estimation is used to modify speed models and collision
models of pedestrians and vehicles [10, 13]. For different simulation
settings, it is not easy to obtain original data of each real-world
environment. Few existing estimation methods have been fairly
evaluated. Therefore, there is a need for a benchmark to discuss
the applicability of certain estimation methods to other use cases.

We propose a benchmark based on a multi-agent system (MAS),
MAS-Bench, for parameter estimation on a crowd simulation. The
benchmark allows its users to challenge parameter optimization of
a complicated real-world system easily. As shown in Figure 1, MAS-
Bench provides an integrated benchmark to optimize parameters
without any initial construction of simulation models or related
systems. We hope that MAS-Bench will boost the further improve-
ment of potential optimization methods, mostly applicable to high-
dimensional problems and data assimilation methods required in
real-time simulation.

MAS-Bench will be publicly available on GitHub1.

2 PROPOSED BENCHMARK: MAS-BENCH
2.1 Problem Setting of Parameter Estimation
MAS-Bench offers modeling of a real-world crowd routing to exit
from a large-scale outdoor festival site. The benchmark handles a
1https://github.com/MAS-Bench/MAS-Bench
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Figure 1: Overview of the proposed MAS-Bench.

problem to minimize the error between an original value O and its
simulated value S by adjusting input parameter values.O and S are
observable values with pedestrian walking speed from the main
festival venue (origin) to the nearest station (destination) and the
number of people at the destination. θ is an unobservable parameter
set of the Gaussian mixture model (GMM) to estimate the number
of people at the origin. The problem is formulated as follows:

θ∗ = argminθ ∈Θϵall (θ ,O, S ) (1)

The error ϵall is computed as the sum of the linear combination of
ϵdest and ϵpac, where ϵdest is the error in the number of arrivals,
and ϵpac is the error in the walking speed. Each error is calculated
as a root means square error (RMSE).

MAS-Bench evaluates an input set θ of Gaussian distribution
parameters: a ratio π , mean µ, and variance σ of the d-th Gauss-
ian distribution. The Gaussian model fd (t ;θd ) of the d-th basis of
f (t ;θ ) can be described as follows:

fd (t ;θd ) =
Cdπd√
2πσ 2

d

exp
(
−
(t − µd )

2

2σ 2
d

)
(2)

f (t ;θ ) =
D∑
d=1

fd (t ;θd ) (3)

where Cd = 1/
∫ T
0 fd (t ; µd ,σd )dt denotes the normalization con-

stant, and T denotes the closing time of the simulation.
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Table 1: Performance evaluation of observable and unobservable data using RMSE (mean and variance values after five itera-
tions).

2D 5D 8D 17D
Observable Unobservable Observable Unobservable Observable Unobservable Observable Unobservable

RS 10.37 (1.53) 0.64 (0.12) 13.97 (3.48) 10.77 (0.98) 17.53 (2.39) 17.37 (0.22) 14.95 (1.85) 16.66 (0.99)
PSO 6.69 (0.48) 0.65 (0.21) 8.03 (2.35) 13.34 (5.51) 16.01 (7.23) 16.43 (3.80) 11.06 (0.66) 14.80 (2.01)

CMAES 6.71 (0.53) 0.80 (0.40) 5.42 (1.00) 6.96 (3.69) 5.57 (0.43) 9.04 (1.90) 9.55 (0.53) 13.03 (0.77)
SHADE 8.81 (1.09) 0.94 (0.34) 6.12 (0.49) 4.37 (1.21) 7.35 (1.15) 8.29 (2.80) 12.02 (1.51) 11.52 (1.06)
TPE 7.44 (0.61) 0.61 (0.16) 4.90 (0.13) 4.35 (1.60) 7.96 (0.88) 13.38 (3.52) 9.74 (0.79) 13.40 (3.16)

2.2 Crowd Simulation
In MAS-Bench, the multi-agent crowd simulator uses actual mea-
surements such as agents’ walking flow data with RGB-D cameras
and each walking distance between the origin and destination with
a handy Global Positioning System (GPS). Both were obtained every
15 minutes on Route 1 (320m), Route 2 (600m), and Route 3 (770m).
These different lengths of routes are provided to control the flow
on each route and to alleviate congestion. The crowd simulator sets
four types of walking agents according to walking speed and roles:
Guided Agent as the speed baseline, Busy Agent at 10% faster than
the Guided Agent, Slow Agent at 50% slower, and Pacing agent at
an average walking speed within one link (about 30m).

2.3 Baseline of Optimization Methods
MAS-Bench provides five optimization methods: Random search
(RS), Particle swarm optimization (PSO), Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES), Success-History based Adaptive
Differential Evolution (SHADE), and Tree-structured Parzen Esti-
mator (TPE).

RS is an optimized baseline algorithm to randomly generate an
input parameter set, specifically for a high-dimensional and multi-
modal function [3]. PSO is a typical metaheuristic algorithm to
seek an optimal solution according to adaptability to a given en-
vironment [6]. CMA-ES is a state-of-the-art method of black-box
optimization [7–9] to generate an input parameter set from a mul-
tivariate normal distribution of a suitable parameter set. SHADE
is also known as a state-of-the-art method of black-box optimiza-
tion [12], derived from Joint Approximation Diagonalization of
Eigen-matrices (JADE) [14]. TPE is a high-performance algorithm
adopted for Bayesian optimization by Hyperopt [4] and Optuna [1]
to probabilistically determine the next input parameter set from
the evaluation history [5].

3 EXPERIMENTS: USE CASE OF MAS-BENCH
This section demonstrates a use case of MAS-Bench parameter
optimization with the experimental results.

3.1 Experiment Settings
To compare the performance of optimizationmethods, we evaluated
((D + 1)/3)2 × 20 [input parameter sets] ×40 [generations] where
D is the number of dimension (parameters). Each dimension is set
based on calculation of [distribution]×[agent type]×[distribution
parameter set]. We considered four types of benchmark problems.

• 2D for Guided Agent
• 5D for Guided Agent and Busy Agent
• 8D for one distribution of three agent types
• 17D for two distributions in one agent type

The total number of walking agents is 45,000 for a large-scale
crowd problem and 4,500 for a small-scale crowd problem. The
number of pacing agents is set to 900 for a large-scale and 90 for
a small-scale. The departure agent ratio is 0.01 for both problems.
We used a calculator of Intel CPU Core i9-9900K (3.5GHz, 10 cores,
20 threads), which can calculate up to 20 input parameter sets si-
multaneously per calculation or one minute for an input parameter
set.

3.2 Results of MAS-Bench Use Case
Table 1 lists the results of evaluating the small-scale crowding prob-
lem (Number of the walking agents 4,500) by dimension, showing
the mean and variance values after five iterations of optimization.
The best solution among the five optimization methods is shown
in red bold, and the next best solution is shown in bold. From the
experimental results, for observable data, CMA-ES performed bet-
ter than the other algorithms. For unobservable data, TPE is better
for low-dimensional problems (2D and 5D), and SHADE is better
for high-dimensional problems (8D and 17D). For RS and PSO, the
results for Observable and Unobservable are both poor except for
2D. This suggests that this benchmark can estimate parameters
closer to the original values by minimizing Observable data’s error.

4 CONCLUSION
This study proposed MAS-Bench, a parameter optimization bench-
mark to enable users to evaluate their optimization methods. MAS-
Bench provides MAS-simulation modeling of crowd flows from the
origin to the destination of the small-scale and large-scale prob-
lems. The MAS-Bench crowd simulator controls the crowd flows
by varying in a set of input parameters. Users can optimize the un-
observable parameter set by applying their optimization methods
to MAS-Bench to fairly analyze the candidate methods under the
same model and settings.

The present MAS-Bench uses estimates by the simulator as origi-
nal values. In the future study, we will introduce MAS-Bench using
original values and examine the multidisciplinary correlation of
real-world phenomena.
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