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ABSTRACT
Distributional reinforcement learning (RL) provides beneficial im-
pacts for the single-agent domain. However, distributional RL meth-
ods are not directly compatible with value function factorization
methods for multi-agent reinforcement learning. This work pro-
vides a distributional perspective on value function factorization,
offering a solution for bridging the gap between distributional RL
and value function factorization methods.
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1 INTRODUCTION
Value function factorization methods (e.g. VDN [1], QMIX [2, 3])
for multi-agent reinforcement learning (MARL) offer promising
performance in complex multi-agent scenarios [4]. In MARL set-
tings, the environments are highly stochastic due to each agent’s
partial observability and the continuously changing policies of the
other agents. To deal with the above issues, distributional reinforce-
ment learning (RL) is a potential solution that has been empirically
proven successful in a wide range of single-agent domains [5–9].
However, distributional RL has not been applied to value function
factorization methods in MARL domains to decompose the approx-
imation of joint return distributions into individual utility value
functions (or simply ’utilities’ hereafter). In this paper, we bridge the
gap between distributional RL and value function factorization by
decomposing the approximation of (1) the mean and (2) the shape
of joint return distributions. Based on such decomposition, we fur-
ther propose two practical implementations to generalize QMIX
to its distributional variants. The first implementation models the
probability mass function (PMF) of individual value function distri-
butions as categorical distributions, and combines them through
1D convolution. The second implementation models the quantile
functions of individual value function distributions, and combines
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them through quantile mixture. To validate the two implementa-
tions, we demonstrate their ability to factorize stochastic rewards
and present the visualizations of their approximation results.

2 BACKGROUND
2.1 Cooperative MARL and CTDE
A fully cooperative MARL environment can be modeled as a DEC-
POMDP [10], which is described as a tuple ⟨S,K,O,U, P,O,R,γ ⟩,
where S is the state space, K is the set of all agents, O is the set
of joint observations, U is the set of joint actions, P is the state
transition function. Each agent perceives a partial observation ac-
cording to an observation function O . All agents share the same
joint reward function R, and use γ as the discount factor. Under
such an MARL formulation, we focus on centralized training with
decentralized execution (CTDE) methods, where the agents are
trained in a centralized fashion and executed in a decentralized
manner. In other words, the agents can freely share information
during the training phase, while each agent’s policy must condition
on its own observation during execution.

2.2 Value-based Learning Methods for MARL
IQL [11] is the simplest value-based learning method for MARL,
where each agent attempts to maximize the total rewards individ-
ually. Such a method causes nonstationarity due to the changing
policies of the other agents and may not converge. Thus, value func-
tion factorization methods (e.g., VDN and QMIX) are introduced to
enable centralized training of factorizable tasks [12] based on the
IGM condition [12], where optimal individual actions result in the
optimal joint actions. In this work, we focus on extending QMIX.

2.3 Distributional Reinforcement Learning
A number of distributional RL methods are proposed in the single-
agent RL (SARL) domain to generalize expected RL methods. In [5],
the distributional Bellman operator is proved to be a contraction
in p-Wasserstein distance. Based on the proof, the authors further
introduced C51 [5] to approximate the PMF of return distributions
by categorical distributions. In [6], quantile regression (QR) is pro-
posed to approximate the quantile function of return distributions,
while ensuring the contraction theoretically. IQN [7] further im-
proves the data efficiency of QR-DQN [6] by forming an implicit
distribution through randomly selecting quantile samples. Distri-
butional RL methods have been proved empirically to outperform
expected RL methods in various environments [5–9], and enable
additional improvements [13–15] that require the information of
full return distributions.
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(a) Factorized PMFs of N(7, 0). (b) Factorized PMFs of N(8, 29).
Figure 1: (a) and (b) illustrate the value function factoriza-
tion of different states. The black line/curve shows the true
return PMFs. The blue bars denote agent 1’s learned utilities,
while the orange bars depict agent 2’s learned utilities. The
green bars indicate the estimation of the joint return.

(a) Factorized CDFs of N(7, 0). (b) Factorized CDFs of N(8, 29).
Figure 2: (a) and (b) illustrate the value function factoriza-
tion of different states. The black line/curve shows the true
return CDFs. The blue bars denote agent 1’s learned utilities,
while the orange bars depict agent 2’s learned utilities. The
green bars indicate the estimation of the joint return.

3 DECOMPOSING THE MEAN AND SHAPE
The procedure of applying distributional RL to value function factor-
ization methods must satisfy the IGM condition for the correctness
of CTDE. Given an arbitrary factorization function (e.g., monotonic
network in QMIX), the IGM condition may be violated when model-
ing the stochasticity in individual utilities. In order to enable the use
of distributional RL methods while maintaining the IGM condition,
we propose the decomposition of the mean and the shape of joint
return distributions. Given a stochastic joint return Zjt, it can be
decomposed as follows:

Zjt = E[Zjt] + (Zjt − E[Zjt])

= Zmean + Zshape ,

where Var(Zmean) = 0 and E[Zshape] = 0. We decompose a joint
return Z jt into its deterministic part Zmean (i.e., the expected value)
and stochastic part Z shape (i.e., the higher moments), which are
approximated by two different functions Ψ and Φ, respectively. To
satisfy IGM, the factorization function Ψ is required to precisely
factorize the joint expectation E[Z jt] into individual expectations
[E[Zk ]]k ∈K. On the other hand, the shape function Φ is allowed to
roughly factorize the shape of Z jt into shapes of [Zk ]k ∈K, since the
main objective of modeling the return distribution is to assist non-
linear approximation of the joint expectation E[Z jt], rather than
accurately model the shape of Z jt [16]. Under this formulation, Ψ
can be selected from existing value function factorization methods
(e.g., VDN or QMIX), and Φ can be defined as 1D convolution or
quantile mixture. Based on the chosen Ψ and Φ, individual utilities
can be approximated by distributional RL methods (e.g., C51 and
IQN), while maintaining the IGM condition for CTDE.

4 EXPERIMENTAL RESULTS
In this section, we present two possible shape decomposition meth-
ods based on QMIX, and show the visualized results. We choose
two different implementations of approximating the shape. The
first implementation uses C51 to approximate the probability mass
functions (PMFs) of individual utilities, and combine their shapes
through 1D convolution. The second implementation uses IQN
to approximate the quantile functions of individual utilities, and

combine their shapes through quantile mixture. We focus on two
terminal states in our environment, with rewards sampled from
normal distributions: N(7, 0) and N(8, 29). Fig. 1 illustrates the fac-
torized PMFs of the two states under the first implementation, while
Fig. 2 illustrates the factorized cumulative distribution functions
(CDFs) of the two states under the second implementation.

In Figs. 1-2, we can observe that both implementations can suc-
cessfully factorize the joint return distributions into individual
utilities. The deterministic rewards in the first state can be modeled
accurately in Fig. 2 (a) since IQN models the distribution implicitly,
while there are some approximation errors observed in Fig. 1 (a)
due to the limited categories of C51 when modeling the PMF. The
stochastic rewards in the second state can be modeled accurately
in both Fig. 1 (b) and Fig. 2 (b).

5 DISCUSSION
In more complex scenarios, joint return distributions may be multi-
modal distributions instead of normal distributions. In such cases,
the shape of the distributions may not be modeled as precisely as
in Figs. 1-2 due to the use of 1D convolution and quantile mixture.
Nevertheless, the expectation can still be modeled accurately due
to the decomposition of mean and shape. As for the representable
tasks, the distributional variant share the same set of representable
tasks as its base value function factorization method (in our case,
QMIX). Therefore, value function factorization methods proposed
in the future can be similarly extended to its distributional variant
under our formulation.

6 CONCLUSION
In this paper, we provided a distributional perspective on value
function factorization methods, and decompose the approximation
of the joint return’s mean and shape to ensure the IGM condition
holds. Then, we propose two practical implementations based on
QMIX to demonstrate the ability to factorize return distributions.
The decomposition concept can be extended to more value func-
tion factorization methods, and can be extended to factorize all
factorizable tasks. Please refer to the full paper [17] for the detailed
descriptions and the formal proofs of our method.
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