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ABSTRACT
This paper focuses on the multi-agent credit assignment problem.
We propose a novel multi-agent reinforcement learning algorithm
called meta imitation counterfactual regret advantage (MICRA) and
a three-phase framework for training, adaptation, and execution of
MICRA. The key features are: (1) a counterfactual regret advantage
is proposed to optimize the target agents’ policy; (2) a meta-imitator
is designed to infer the external agents’ policies. Results show that
MICRA outperforms state-of-the-art algorithms.
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1 INTRODUCTION
Many multi-agent reinforcement learning (MARL) problems are
naturally modeled as mixed cooperative-competitive multi-agent
systems [8, 12, 15]. Such a system usually involves two teams of
agents, i.e., the target agents that are learning-based and therefore
controllable agents, and the external agents that are not controllable
by the learning algorithm. Multi-agent credit assignment is impor-
tant in this mixed setting, that is, how to deduce the target agent’s
contribution to the team from a global reward. The key challenge
in solving the problem is twofold, the confounding global reward
[3, 5], and the non-stationarity of the external agents [1, 6].
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For addressing the challenge, we design a meta-imitation coun-
terfactual regret advantage (MICRA) algorithm, and propose a three-
phase framework to support the training, adaptation, and execution
ofMICRA. Themain features of our proposal are: (1) The framework
introduces the training-adaptation paradigm in meta-learning, i.e.,
online adaptation, into the training paradigm in MARL, i.e., offline
training and online execution. That is for using the meta-learning
to avoid overfitting to certain policies of the external agents when
training the policies of the target agents. (2) MICRA adopts the
centralized critic to estimate the counterfactual regret advantage
(CRA) for optimizing the target agent’s policy. Here, we propose the
meta imitation learning (MI) by combining the imitation learning
with the meta learning to enable the algorithm being able to model
the non-stationary policies of the external agents. In this way, fast
adaptation to the changing policies is possible in online execution
as the learning algorithm has already taken the changing external
agents into account.
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Figure 1: The Proposed Framework
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2 METHODS
Framework. As shown in figure 1, the proposed framework inte-
grates the training paradigm in MARL, i.e., centralized training and
decentralized execution (CTDE) [5, 8, 11], with the meta-learning
process, i.e., training-adaptation procedures [4]. The features of the
three phases in this framework are: (1) In offline training phase,
MICRA (which consists of multiple independent actors, a meta-
imitator, and a centralized critic) learns a meta policy over different
external agents’ policies; (2) In online adaptation phase, MICRA
uses the meta policy to generate the real-taken policy in the real
environment with the real external agents; (3) In online execution
phase, each target agent takes actions independently by using the
real-taken policy to complete the tasks in a collaborative manner
without any centralized control.

Algorithm. A counterfactual regret advantage (CRA) is proposed
based on COMA [5]. The main ideas are (1) A centralized critic
evaluates a regret value for an agent with the assumption that
other agents follow the current policies; (2) Multiple decentralized
actors independently update their individual policies minimizing
the regret value. The immediate counterfactual regret advantage is:

A𝑇 ,𝑖,𝜋𝑇 (𝑠, ®𝑎) = 𝑣𝜋𝑇 |𝑠 ↦→𝑎𝑖
(𝑠) − 𝑣𝜋𝑇 (𝑠)

=
∑

®𝑎𝜏−𝑖 , ®𝑎𝜖

𝜋𝑇𝜏−𝑖 ( ®𝑎𝜏−𝑖 |𝑠)𝜋𝑇𝜖 ( ®𝑎𝜖 |𝑠)𝑄 (𝑠, [𝑎𝑖 , ®𝑎𝜏−𝑖 , ®𝑎𝜖 ])

−
∑
®𝑎𝜏 , ®𝑎𝜖

𝜋𝑇𝜏 ( ®𝑎𝜏 |𝑠)𝜋𝑇𝜖 ( ®𝑎𝜖 |𝑠)𝑄 (𝑠, [ ®𝑎𝜏 , ®𝑎𝜖 ])

(1)

where 𝜋𝑇 denotes the policy at 𝑇 learning episode, 𝜋𝑇 |𝑠 ↦→ 𝑎𝑖
denotes that action 𝑎𝑖 is always taken at state 𝑠 , and the policy 𝜋 is
otherwise followed [7]; ®𝑎𝜏 denotes the joint actions of target agents;
®𝑎𝜖 denotes the joint actions of external agents; 𝜋−𝑖 denotes the joint
policy for all agents except agent 𝑖; 𝜋𝜏−𝑖 denotes the joint policy
for target agents except agent 𝑖 . A𝑇,𝑖,𝜋𝑇 is analogous to immediate
counterfactual regret in counterfactual regret minimization (CFR)
[7, 16, 18]. Eq.(1) is a general form of the advantage function; the
advantage functions in previous works, e.g. [5, 13, 14], are in fact
the special cases of Eq.(1).

A discount cumulative CRA is:A𝛾

𝑇 ,𝑖,𝜋𝑇
= 𝛾cA𝛾

𝑇−1,𝑖,𝜋𝑇−1 +A𝑇,𝑖,𝜋𝑇

where 𝛾c ∈ [0, 1] is the discount rate. We further use the target
Q-network to estimate discount cumulative CRA: A𝛾

𝑇 ,𝑖,𝜋𝑇
(𝑠, ®𝑎) ≈

𝛾c
(
𝑄 (𝑠, ®𝑎;𝜃 ) −∑𝑎∈𝐴𝑖

(𝜋𝑖 (𝑎 |𝑜𝑖 )𝑄 (𝑠, 𝑎, ®𝑎−𝑖 ;𝜃 ))
)
+A𝑇,𝑖,𝜋𝑇 (𝑠, ®𝑎). Then

the CRA based policy gradient for agent 𝑖 on trajectory data 𝐷 is:

𝑔cr,𝑖 = E𝑠𝑡∼𝐷, ®𝑎𝑡∼𝜋
[ 𝐻∑
𝑡=0

∇𝜃𝑎
𝑖
log(𝜋𝑖 (𝑎𝑡𝑖 |𝑜𝑡𝑖 ;𝜃𝑎𝑖 ))A

𝛾

𝑖,𝜋
(𝑠𝑡 , ®𝑎𝑡 )

]
(2)

By following the line of agent modeling [2, 9], we propose ameta
imitation learning (MI) to learn an inference model 𝛿𝑖 (𝑜𝑖 ;𝜃𝑖, 𝑗 ) :
𝑂𝑖 → Δ(𝐴𝑖 ) based on MAML [4]. It is used to predict the action
taken by external agent 𝑖 . External agents’ joint policy 𝜋𝜖 is com-
puted with 𝜋𝜖 ( ®𝑎𝜖 |𝑠) =

∑
𝑖∈𝜖 𝛿𝑖 (𝑎𝑖 |𝑜𝑖 ). The loss function of 𝛿𝑖 (·)

is:

𝐿𝑖𝑚H𝑖
(𝛿𝑖 ( ·;𝜃𝑖 )) = −E(𝑜𝑡 ,𝑎𝑡 )∼H𝑖

[ |𝐴𝑖 |∑
𝑘=1

𝐼 (𝑎 (𝑘 ) , 𝑎𝑡 ) log𝛿𝑖 (𝑜𝑡 ;𝜃𝑖 )
]

(3)

where H𝑖 is the history behavior set of external agent 𝑖 , 𝐼 (·) is
the ground truth indicator function. 𝛿𝑖 (·) is performed via a multi-
layer perceptron (MLP), of which the output layer is softmax. The

objective of MI is:
min
𝜃𝑖

∑
T𝑖∼𝑝 (T)

𝐿𝑖𝑚H𝑖
(𝛿 (·;𝜃 ′𝑖 ))

s.t. 𝜃 ′𝑖 = 𝜃𝑖 − 𝛼adp∇𝜃𝑖𝐿
𝑖𝑚
H𝑖

(𝛿 (·;𝜃𝑖 ))
(4)

where 𝑝 (T ) is the distribution of all external agents’ policies. 𝜃𝑖
is the meta parameters which will be used as initial parameters in
online adaptation phase.

3 EVALUATION
We conduct several experiments, i.e. two standard MARL bench-
marking tasks (traffic control and predator-prey game) in a grid
environment [10, 17] and a practical application (electronic coun-
termeasure based real-time strategy game). Three baseline MARL
algorithms (COMA [5], DPIQN [6], and ARM [7]) are chosen for the
experimental comparison. Figure 2 gives the results which show
that our algorithm outperforms three baseline algorithms.
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(a) Single-plank bridge (traffic)
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(b) Lanes selection (traffic)
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(c) Large-scale traffic networks
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(d) Predator-prey game

(e) The environment of ECM-RTS game
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(f) Learning curves in ECM-RTS game

Figure 2: Offline training: the learning curves on different
tasks (red line is ours).

4 FUTUREWORK
How to deal with the dynamics of the system environment and the
self-adaptation of the system is an important challenge in design
complex cyber-physical systems. The proposed framework takes
into account both concerns and is potentially evolved into a refer-
ence architecture. Modeling real cyber-physical system applications
to verify its adaptability will be within our future work.
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