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ABSTRACT
Agents that interact with other agents often do not know a priori
what the other agents’ strategies are, but have to maximise their
own online return while interacting with and learning about others.
The optimal adaptive behaviour under uncertainty over the other
agents’ strategies w.r.t. some prior can in principle be computed
using the Interactive Bayesian Reinforcement Learning framework.
Unfortunately, doing so is intractable in most settings, and existing
approximation methods are restricted to small tasks. To overcome
this, we propose to meta-learn (alongside the policy) approximate
belief inference by combining sequential and hierarchical VAEs. We
show empirically that our approach can learn a factorised belief
model that separates the other agent’s permanent and temporal
structure, and outperforms methods that sample from the approx-
imate posterior or do not have this hierarchical structure. A full
version of this work can be found in Zintgraf et al. [30].
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1 INTRODUCTION
A desirable capability of artificial agents that interact with other
(human or artificial) agents is the the ability to adapt to others in
an ad-hoc way, i.e., learn about the behaviour of others and adapt
accordingly. For example, playing a game of soccer with a new
team requires learning about each player’s role and coordinating
actions; driving a car through traffic requires anticipating other
drivers’ moves and reacting appropriately; and teaching a complex
subject to a student requires adjusting the teaching method to their
learning style. Many standard multi-agent reinforcement learning
(RL) methods are limited in their ability to adapt to unknown other
agents. In ad-hoc teamwork [27], agents trained to coordinate with
each other can fail to do so when paired with unseen partners [5, 7].
This is a critical limiting factor for real-world applications.
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When faced with unknown other agents, an agent should ideally
maximise online return incurredwhile learning about others. A prin-
cipled way to study this is from the perspective of decision-making
under uncertainty. An agent that acts optimally under uncertainty
given a prior belief is called Bayes-optimal [13, 21], and optimally
trades off exploration and exploitation. The framework for comput-
ing such agents in multi-agent settings is called Interactive Bayesian
RL [IBRL; 9, 17]. This approach requires maintaining a belief over
the other agents’ strategies, and computing the optimal action given
that belief. The policy that maximises the expected return in the
resulting belief MDP [19] optimally adapts to other agents.

Unfortunately, computing the solution is generally intractable
and existing work provides approximate solutions restricted to
small environments or restrictive assumptions [8, 10, 16, 17]. In the
single-agent setting, where the unknowns are the environment’s
transition and reward functions instead of the other agent’s policies,
meta-learning has recently been proposed as a scalable way to
compute approximately Bayes-optimal agents [18, 23, 31].

Contribution. We argue that the IBRL framework is a useful
proxy for learning adaptive policies, and proposeMeta Learning
Interactive BayesianAgents (MeLIBA), a method for meta-learning
approximately Bayes-optimal policies for a distribution of other
agents. We leverage recent advances in agent modelling, variational
inference, and meta-learning, to compute approximately Bayes-
optimal agents in a general and tractable way (Sec 2). Empirically,
we demonstrate that explicitly learning and conditioning on approx-
imate beliefs over other agents’ strategies can improve performance
in multi-agent settings, compared to relying on samples, or using
a model-free policy with memory. We show that MeLIBA learns a
hierarchical latent representation of other agent types, separating
the permanent and temporal internal states.

Our work differs from existing multi-agent Bayesian RL ap-
proaches [1, 6, 22, 26] in that we optimise for Bayes-optimal be-
haviour, as opposed to optimal behaviour that typically requires
knowledge of the other agents’ strategies. MeLIBA’s latent variables
can be seen as a continuous representation of agent types learned
in an unsupervised way via interaction, similar to type-based mod-
elling [2, 3, 27]. Closely related to our approach is the work of
Papoudakis and Albrecht [24], who focus on partially observable
settings, and approximating global from local (agent-specific) in-
formation. We allow full observability but focus on how to model
agents that are non-stationary, in contrast to many existing meth-
ods that consider the other agents to be Markov [7, 14, 14, 24].
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Swerve Straight
Swerve (1, 1) (0, 8)
Straight (8, 0) (-1, -1)

(a) Game of Chicken.

(b) Latent variables during test rollout. (c) Learning Curves

Figure 1: (a) Payoff matrix for the Game of Chicken. (b) The latent variables of MeLIBA during 3 different games at meta-test
time, when playing against the different other agents T4T-1/2/3. Top: permanent latent variable𝑚, which separates the differ-
ent agent types. Bottom: temporal latent variable𝑚𝑡 which keeps track of how often the agents cooperate. (c) Learning curves
for MeLIBA and ablations/baselines. RL2 and MeLIBA learn the Bayes-optimal behaviour quickly. Using only a permanent la-
tent state (MeLIBA-m) leads to a performance drop since the other agent is not modelled appropriately. LIOM underperforms,
possibly due to the small latent dimension combined with the noise from the sampling.

2 MELIBA
We proposeMeta Learning Interactive Bayesian Agents (MeLIBA),
a method for meta-learning approximately Bayes-optimal agents
that adapt to other agents. Specifically, we jointly meta-train on
a given prior distribution over other agents: (1) a belief inference
network, and (2) a policy that conditions on the approximate belief.

Agent Models. We model each other agent by its own permanent
latent variable (𝑚, also called agent character) and a temporal latent
variable (𝑚𝑡 , also called mental state). The character𝑚 does not
change throughout the agent’s lifetime. The mental state𝑚𝑡 can
change in response to new observations at every timestep and
allows us to model agents with non-stationary policies. This can be
viewed as a probabilistic extension of Rabinowitz et al. [25], who
coined the terms agent character and mental state, and used this
split to model other agents in an observational setting. We instead
consider an interactive setting, which requires us to maintain beliefs
over the components of other agents.

Approximate Belief Inference. To perform approximate belief infer-
ence, we use a variational auto-encoder [VAE, 20] for sequential
data [11] combined with a hierarchical latent structure [29]. Like in
single-agent meta-learning approaches [18, 31] this VAE is trained
alongside the policy, but has a more complex structure due to the
possible non-stationarity of other agents.

Meta-Learning Bayes-Adaptive Policies. Given the approximate pos-
terior, we want to learn an approximately Bayes-optimal policy.
To this end, we condition our policy not only on the environment
state, but also on this approximate belief over the other agents’
policies. This enables approximately Bayes-optimal behaviour: the
policy can take into account its uncertainty over the other agents’
policies when choosing actions, and use it to trade off exploration
and exploitation. In practice, we approximate the posterior using
a Gaussian distribution which is fully characterised by the mean
and variance of the latent distribution in the VAE. The policy is
then trained using standard RL methods by conditioning on envi-
ronment states and approximate beliefs. In practice, we alternate
between updating the VAE, and the agent (using PPO).

3 EMPIRICAL EVALUATION
We consider a 2-player competitive matrix game, Game of Chicken
(Fig 1a) [4]. Imagine two cars driving towards each other: if nobody
swerves, they crash and get a penalty (−1); if they both swerve they
get a medium reward (1); if only one swerves it gets a low (0) and the
other a high (8) reward. We hand-code three Tit-4-Tat agents [15]
which swerve if the opponent swerved 1/2/3 times in a row. We
randomly sample an agent to playwith for 13 repetitions. The Bayes-
optimal strategy is to swerve until the other agent swerves and
thereby reveals its strategy, after which it can be exploited. Fig 1c
shows the performance of MeLIBA compared to other approaches.
An average policy that cannot adapt cannot solve this task. RL2
[12, 28] is a model-free meta-learning method with an architecture
similar to MeLIBA, but with no decoder and no explicit hierarchy in
the encoder. The RL loss is backpropagated through the encoder and
there is no bottleneck. RL2 learns to solve the task quickly, which is
unsurprising given the simplicity of the game and since it conditions
on the interaction history via the recurrent encoder. LIOM [24],
where the policy receives a sample from the approximate posterior,
and there is only a permanent latent (𝑚), performs poorly on this
task. To analyse why, we evaluate MeLIBA with only the fixed
latent𝑚. As Fig 1c shows, MeLIBA-m cannot solve the task given
the wrong model for the other agent. However it does outperform
LIOM by a largemargin, indicating that sampling the latent variable,
as opposed to conditioning the policy on the entire posterior, causes
poor performance here.

For MeLIBA we use a latent of size 1 each for the permanent
and temporal aspects. Fig 1b shows the latent mean and standard
deviation of the learned beliefs when rolling out the meta-learned
policy against the possible other agents. The top shows the per-
manent latent variable, which separates between agent types after
just 1-2 timesteps. The bottom shows the same visualisation for the
temporal latent variable, which counts the number of swerves.

In summary, MeLIBA builds on the IBRL framework and is a
general method for meta-learning Bayes-adaptive behaviour and
modelling beliefs over other agents that adapt within game. For
more details and results see [30].
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