
Logic-based Specification and Verification of Homogeneous
Dynamic Multi-agent Systems

JAAMAS Track

Riccardo De Masellis
Uppsala University, Sweden
riccardo.demasellis@it.uu.se

Valentin Goranko
Stockholm University, Sweden

valentin.goranko@philisophy.su.se

ACM Reference Format:

Riccardo De Masellis and Valentin Goranko. 2021. Logic-based Specification
and Verification of Homogeneous Dynamic Multi-agent Systems: JAAMAS
Track. In Proc. of the 20th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2021), Online, May 3–7, 2021, IFAAMAS,
3 pages.

1 INTRODUCTION

We consider discrete concurrent multi-agent transition systems (cf.
[1] or [4]) which are homogeneous and dynamic. The homogeneity
means that all agents are essentially indistinguishable from each
other, as they have the same available actions at each state and
the effect of these actions depends not on which agents perform
them, but only on how many agents perform each action. Thus,
the state transitions are determined only by the vector of numbers
of agents performing each action and are specified symbolically,
by means of conditions on these numbers definable in Presburger
arithmetic [8]. The only distinction between the agents in such
homogeneous systems is whether they are controllable (by the
system supervisor/controller) or uncontrollable, representing the
environment or adversary. The dynamicity of the systems that we
consider means that the set (hence, the number) of agents being
present (or, just active) in the system may vary throughout the
system evolution, possibly at every transition from a state to a state.
Typical examples of homogeneous and dynamic systems include:
voting procedures [10, 13], sensor networks [15] and markets. We
model the dynamicity by assuming that there is an unbounded (and
possibly infinite) set of ‘potentially existing’ agents, but that only
finitely many of them are ‘actually existing/present’ at each stage
of the evolution of the system. We note, however, the difference
between such dynamic systems and simply parametric systems,
where the number of agents is taken as a parameter but remains
fixed during the whole evolution of the system.

We develop abstract models of homogeneous dynamic multi-
agent systems (hdmas), illustrated on Fig. 1 (explained further), and
a logic-based framework for formal specification and algorithmic
verification for them. We assume that the agents are divided into
controllable (by the system supervisor or controller) and uncontrol-
lable, representing the environment or an adversary. Both numbers,
of controllable and uncontrollable agents, may be fixed or varying
throughout the system evolution, possibly at every transition. As a
logical language for formal specification we introduce a suitably
extended version, Lhdmas, of the Alternating Time temporal Logic

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

s1

{}

s2

{𝑝 }

s3

{𝑝 }

s4

{𝑝 }

s5

{𝑞 }

s6

{𝑞 }

¬g1 ∧ ¬g2 g1

g2
¬g3

g3

¬g6
g6

¬g4 g4

¬g7
g7

g5

g1 := (𝑥1 ≥ 2𝑥2) ∧ (𝑥3 ≤ 3)
g2 := (𝑥1 + 𝑥2 + 𝑥3 ≤ 10) ∧ (𝑥3 > 3)
g3 := (𝑥1 > 5) ∧ (𝑥3 > 𝑥1)
g4 := 𝑥1 > 5 ∧ (3𝑥2 < 𝑥1 + 2𝑥3)
g5 := 𝑥1 = 𝑥1;
g6 := 𝑥1 + 2𝑥2 ≥ 𝑥3

g7 := 𝑥2 = 𝑥3;

Figure 1: An abstract example of a hdmas.

ATL [1] where the strategic operator takes two parameters: the
numbers (fixed or variable) of controllable and of uncontrollable
agents. We then present an algorithm for model checking Lhdmas
on hdmas and give worst-case complexity estimates.

Related work. Our framework shares with Open Multi-Agent
Systems (OMAS) [12] the characteristic ’dynamic’ feature of agents,
which can leave and join the system at runtime, however the two
frameworks differ both in models and specification languages.

Parametric systems [3, 7, 11], games for counting abstraction [14],
Modular Interpreted Systems [9], Homogeneous Systems [13] and
Population Protocols [2, 6] are also related, although they do not
consider the same kind of dynamicity: in the work above, the num-
ber of agents is fixed along system executions, possibly as a pa-
rameter and the formal specification languages do not explicitly
allow quantification over the number of agents. Also, the language
Lhdmas is original for our logical framework.

2 MODELLING FRAMEWORK

The formal definition of hdmas models can be found in the full
paper [5]. Here we illustrate them with the example in Figure 1,
where the circles represent states of the system, labeled with sets
of atomic propositions that are true in them, and arrows are tran-
sitions, labeled by Presburger arithmetic formulas called guards,
which determine the transitions depending on the number of agents

JAAMAS Track AAMAS 2021, May 3-7, 2021, Online

1727

performing each possible action. For instance guard g1 states that
transition from s1 to s2 is performed when the number of agents
performing action 1 (represented by the variable 𝑥1) is greater or
equal twice the number of agents performing action 2 (variable 𝑥2)
and the number of agents performing action 3 (variable 𝑥3) is less
than or equal 3. The set of agents is possibly infinite and the action
availability function (not shown on the figure) assigns to each state
the set of actions that are available to all agents at that state. A
special “empty” action 𝜀, which has no impact and is not mentioned
in the guards, is always available. Also, the guards are defined so
that for every state and every tuple of numbers of agents perform-
ing the actions available in that specific state, there is exactly one
guard that is satisfied by that tuple, so that the system can always
progress, in a deterministic way.

3 SPECIFICATION LANGUAGE AND LOGIC

The logical language Lhdmas used for specifying and verifying
properties of hdmas is based on the Alternating-time Temporal
Logic ATL. However, the strategic operator ⟨⟨𝐶, 𝑁 ⟩⟩ employed in
Lhdmas takes two arguments: 𝐶 represents the number of control-
lable agents and 𝑁 represents the number of uncontrollable agents
currently present in the system. Each of the arguments 𝐶 and 𝑁

may be a concrete number or a variable that can be quantified over.
We now fix a set of atomic propositions Φ = {𝑝1, 𝑝2,} and

a set of two special variables 𝑌 = {𝑦1, 𝑦2} ranging over N and
representing the numbers of controllable and uncontrollable agents
respectively. Then we define the set of terms 𝑇 = 𝑌 ∪N which will
be used as arguments of the strategic operators.

The logic Lhdmas has two sorts of formulae, defined by mu-
tual induction by the following formal grammars, where free (and
bound) occurrences of variables are defined like in first-order logic:
path formulae:

𝜒 ::= X𝜑 | G𝜑 | 𝜓 U𝜑

where 𝜑,𝜓 are state formulae, defined by:

𝜑 ::= ⊤ | 𝑝 | ¬𝜑 | (𝜑 ∧ 𝜑) | (𝜑 ∨ 𝜑) | ⟨⟨𝑡1, 𝑡2⟩⟩ 𝜒 | ∀𝑦𝜑 | ∃𝑦𝜑

where 𝑝 ∈ Φ, 𝑡1 ∈ 𝑇 \ {𝑦2}, 𝑡2 ∈ 𝑇 \ {𝑦1}, 𝑦 ∈ 𝑌 , and 𝜒 is a path
formula. The cases of ∀𝑦𝜑 and ∃𝑦𝜑 are subject to the following
syntactic constraint: all free occurrences of 𝑦 in 𝜑 must have a
positive polarity, viz. must be in the scope of an even number of
negations. The propositional connectives ⊥,→,↔ are defined as
usual, as well as F𝜓 := ⊤U𝜓 .

The semantics of the temporal operators is like in LTL and ATL,
and the semantics of the quantifiers is like in first-order logic. In-
tuitively, the formula ⟨⟨𝑡1, 𝑡2⟩⟩ 𝜒 says that “a coalition of (at least)
𝑡1 controllable agents can ensure against (at most) 𝑡2 uncontrollable
agents that any possible evolution of the system satisfies the objective
𝜒”, For the formal semantics, we refer to the full paper [5].

As an example, the closed formula 𝜑 = ⟨⟨7, 5⟩⟩ X 𝑝 is satisfied in
state s1 of M in Figure 1. Indeed, any joint strategy that prescribes
𝜀 to 3 of the controllable agents and act3 to 4 of them guarantees
that guard g2 is satisfied, enforcing transition from s1 to s3.

Some remarks on the formulae in Lhdmas:

(1) 𝑦1 can only occur in the first position of ⟨⟨𝑡1, 𝑡2⟩⟩ and 𝑦2 can
only occur in the second position;

(2) by virtue of its semantics, the strategic operator is mono-
tonic with respect to the number of controllable agents and
anti-monotonic with respect to the number of uncontrol-
lable agents, i.e. if ⟨⟨𝑡1, 𝑡2⟩⟩ 𝜒 holds in a hdmas model, then
⟨⟨𝑡 ′1, 𝑡

′
2⟩⟩ 𝜒 also holds for every 𝑡 ′1 ≥ 𝑡1 and 𝑡 ′2 ≤ 𝑡2.

4 TRANSFORMATION TO NORMAL FORM

Using these properties, we prove that on finite models (viz., with a
finite number of states) every formula in Lhdmas is equivalent to
one in normal form, in the fragment LNF

hdmas, where the formulae
are defined as before except that the clauses for ∀𝑦𝜑 and ∃𝑦𝜑 are
replaced with the following (where 𝜒 is a temporal objective)

∃𝑦1⟨⟨𝑦1, 𝑡2⟩⟩𝜒 | ∀𝑦2∃𝑦1⟨⟨𝑦1, 𝑦2⟩⟩𝜒 | ∀𝑦2⟨⟨𝑡1, 𝑦2⟩⟩𝜒 | ∃𝑦1∀𝑦2⟨⟨𝑦1, 𝑦2⟩⟩𝜒

In addition, in each case above no variable quantified in the pre-
fix of the formula may occur free in 𝜒 . The equivalence between the
two languages is of crucial importance, as our model checking algo-
rithm applies only to LNF

hdmas formulae. The restriction that quan-
tification in formulae in normal form does not span across multiple
temporal objectives enables us to obtain fixpoint characterizations
for formulae of the types listed above. That, in turn, allows us to
retain the basic structure of the recursive model checking algorithm
for ATL (cf. [1] or [4]). A linear-time procedure to transform any for-
mula in Lhdmas to one in LNF

hdmas is presented in the full paper [5].
Essentially, it pushes the quantifications in front of temporal oper-
ators and eliminates some of them by using monotonicity-based
equivalences such as (among others)∀𝑦1⟨⟨𝑦1, 𝑡⟩⟩ 𝜒 ≡ ⟨⟨0, 𝑡⟩⟩ 𝜒 [0/𝑦1]
and ∃𝑦2⟨⟨𝑡, 𝑦2⟩⟩ 𝜒 ≡ ⟨⟨𝑡, 0⟩⟩ 𝜒 [0/𝑦2] (where 𝜒 [𝑡1/𝑡2] is the formula
obtained by substituting all occurrences of 𝑡2 with 𝑡1 in 𝜒) and by
using standard boolean transformations. For example, the normal
form of ∀𝑦1

(
⟨⟨𝑦1, 5⟩⟩ (∀𝑦2⟨⟨𝑦1, 𝑦2⟩⟩ X𝑝1) U (∃𝑦2⟨⟨𝑦1, 𝑦2⟩⟩ F𝑝2)

)
is ⟨⟨0, 5⟩⟩

(
(∀𝑦2⟨⟨0, 𝑦2⟩⟩ X 𝑝1) U (∀𝑦2⟨⟨0, 𝑦2⟩⟩ F𝑝2)

)
5 SYMBOLIC MODEL CHECKING OF LNF

hdmas

The (global) model checking algorithm for LNF
hdmas is very simi-

lar in structure to that for global model checking of ATL, but is
performed symbolically, by involving translation to Presburger
arithmetic (PrA). It is an iterative procedures of computing control-
lable pre-images that the fixpoint characterizations of the temporal
operatorsG and U yield. The main difference is in the computation
of the controllable pre-images of a set of states, which is now based
on checking the truth of formulae of Presburger arithmetic that
describe the effect of the guards on the transitions in the model.
Therefore, the complexity of the (global) model checking problem
for LNF

hdmas is bounded above by the complexity of checking the
truth of a PrA-formula, which in turns depends not just on its size,
but more precisely on the numbers of quantifier alternations and
of quantified variables in any quantifier block (cf. [8]). For the full
language LNF

hdmas the worst-case complexity is ΣEXP3 , but when
the number of either controllable or uncontrollable agents is fixed
or bounded, it drops to NP-complete if the number of actions is
unbounded, resp. P-complete if that number is fixed or bounded.

ACKNOWLEDGMENTS

This work was supported by research grant 2015-04388 of the
Swedish Research Council.

JAAMAS Track AAMAS 2021, May 3-7, 2021, Online

1728

REFERENCES

[1] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. 2002. Alternating-Time
Temporal Logic. J. ACM 49, 5 (2002), 672–713.

[2] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta.
2004. Computation in networks of passively mobile finite-state sensors. In
Proceedings of the Twenty-Third ACM PODC St. John’s, Canada. 290–299.

[3] Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut
Veith, and Josef Widder. 2016. Decidability in Parameterized Verification. SIGACT
News 47, 2 (2016), 53–64.

[4] Nils Bulling, Valentin Goranko, andWojciech Jamroga. 2015. Logics for Reasoning
About Strategic Abilities in Multi-player Games. In Models of Strategic Reasoning:
Logics, Games, and Communities, J. van Benthem, S. Ghosh, and R. Verbrugge
(Eds.). Springer Berlin Heidelberg, 93–136.

[5] Riccardo De Masellis and Valentin Goranko. 2020. Logic-based specification and
verification of homogeneous dynamic multi-agent systems. Autonomous Agents
and Multi-Agent Systems 34, 2 (2020), 34. https://doi.org/10.1007/s10458-020-
09457-8

[6] Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. 2016. Model
Checking Population Protocols. In Proc. of 36th IARCS Annual Conference on
FSTTCS, Chennai, India. 27:1–27:14.

[7] Steven M. German and A. Prasad Sistla. 1992. Reasoning about Systems with
Many Processes. J. ACM 39, 3 (1992), 675–735.

[8] Christoph Haase. 2018. A survival guide to Presburger Arithmetic. SIGLOG News
5, 3 (2018), 67–82.

[9] Wojciech Jamroga and Thomas Ågotnes. 2007. Modular Interpreted Systems. In
Proceedings of AAMAS. ACM, 131:1–131:8.

[10] Wojciech Jamroga, Michal Knapik, and Damian Kurpiewski. 2018. Model Check-
ing the SELENE E-Voting Protocol in Multi-agent Logics. In Proceedings of the
Third International Joint Conference on Electronic Voting, E-Vote-ID 2018 (Lecture
Notes in Computer Science, Vol. 11143). Springer, 100–116.

[11] Panagiotis Kouvaros and Alessio Lomuscio. 2016. Parameterised verification for
multi-agent systems. Artificial Intelligence 234 (2016), 152–189.

[12] Panagiotis Kouvaros, Alessio Lomuscio, Edoardo Pirovano, and Hashan Punchi-
hewa. 2019. Formal Verification of Open Multi-Agent Systems. In Proc. of AAMAS
’19. 179–187.

[13] Truls Pedersen and Sjur Kristoffer Dyrkolbotn. 2013. Agents Homogeneous: A
Procedurally Anonymous Semantics Characterizing the Homogeneous Fragment
of ATL. In Proc. of PRIMA 2013. 245–259.

[14] Jean-François Raskin, Mathias Samuelides, and Laurent Van Begin. 2005. Games
for Counting Abstractions. Electr. Notes Theor. Comput. Sci. 128, 6 (2005), 69–85.

[15] Meritxell Vinyals, Juan A. Rodriguez-Aguilar, and Jesus Cerquides. 2011. A Survey
on Sensor Networks from a Multiagent Perspective. The Computer Journal 54, 3
(March 2011), 455–470. https://doi.org/10.1093/comjnl/bxq018

JAAMAS Track AAMAS 2021, May 3-7, 2021, Online

1729

https://doi.org/10.1007/s10458-020-09457-8
https://doi.org/10.1007/s10458-020-09457-8
https://doi.org/10.1093/comjnl/bxq018

	1 Introduction
	2 Modelling framework
	3 Specification language and logic
	4 Transformation to normal form
	5 Symbolic model checking of LhdmasNF
	Acknowledgments
	References

