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ABSTRACT
Several frameworks for decentralized reasoning assume a junction
tree agent organization (JT-org). JT-org construction involves 3 re-
lated tasks on existence recognition, construction, and environment
re-decomposition, where re-decomposition incurs loss of JT-org
linked privacy, including privacy on agent, topology, private and
shared variables. We propose a novel algorithm DAER that accom-
plishes all 3 tasks distributively. For Tasks 1 and 2, DAER incurs
no loss of JT-org linked privacy. For Task 3, it incurs significantly
less privacy loss than existing JT-org construction methods. Its
performance is formally analyzed and empirically evaluated 1.
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1 INTRODUCTION
Decentralized probabilistic, constraint-based, and decision theoretic
reasonings are essential tasks of cooperative multiagent systems
(MAS). Many frameworks exist: Some do not assume specific orga-
nization, e.g., [5, 13]. Some assume a total order among agents, e.g.,
[3, 8]. Some are based on a lattice, e.g., [10]. Some use a pseudotree,
e.g., [4, 6, 11, 12]. Multiply Sectioned Bayesian Networks (MSBNs)
[15, 17] are earliest MAS based on JT-orgs. JT-orgs have now been
applied to other frameworks, e.g., distributed constraint optimiza-
tion [2, 14] and decentralized decision theoretic reasoning [19]. It
has been shown [14] that JT-orgs are superior than pseudotrees.
More generally, for a number of distinct information processing
tasks, JT-orgs are shown to guarantee exact answers [1].

Privacy is important in MAS [9, 21], e.g. four types of privacy are
identified [7] in distributed constraint reasoning on agent, topology,
constraint, and decision. Very fewworks exist on protecting privacy
during JT-org construction. Construction techniques employed by
several frameworks that depend on JT-orgs, e.g., [2, 14, 16], com-
promise privacy on private and shared variables, agent identities
and adjacency relations, as shown in [20]. The above four types of
privacy from distributed constraint reasoning do not adequately
capture these privacy losses. First, JT-org construction does not
involve constraint and decision privacy. Second, although loss on
1This is an extended abstract of [18].
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agent identities maps to agent privacy, and loss on agent adjacency
relations maps to topology privacy, privacy losses on private and
shared variables are not covered by any of the four types.

We refer to overall privacy related to JT-org construction as JT-
org linked privacy. It includes four specific types: We refer to those
on agent identities and adjacency relations as agent privacy and
topology privacy. We refer to the remaining two types as privacy on
private variables and privacy on shared variables.

A natural decomposition of agent environment (env) may not ad-
mit a JT-org. Hence, JT-org construction involves three related tasks:
(1) Recognize whether a JT-org exists for a given env decomposition.
(2) When JT-orgs exist, construct one. (3) If no JT-org exists, revise
env decomposition so that one exists and then construct it.

HTBS is an algorithm that performs Tasks 1 and 2 [20] without JT-
org linked privacy loss. When env admits JT-orgs, HTBS is superior
than alternative construction methods, such as those in Action-GDL
[14] and DCTE [2], which incur JT-org linked privacy loss. Action-
GDL and DCTE do not perform Task 1 explicitly. When no JT-orgs
exist for the given env decomposition, methods in Action-GDL and
DCTE perform Task 3, while incurring privacy loss. HTBS, on the
other hand, terminates after Task 1, without constructing a JT-org.

The main contribution is a novel algorithm DAER that integrates
and significantly extends HTBS to accomplish all three tasks. When
agent env decomposition admits no JT-orgs, DAER performs Task 3
by modifying the decomposition, as Action-GDL and DCTE do, but
with considerably less JT-org linked privacy loss. This advancement
significantly improves privacy in JT-org based MAS, such as MSBN
[15], Action-GDL [14], and DCTE [2].

2 BACKGROUND
Consider a set A = {A0, ...,Aη−1} of cooperative agents, whose
environment is described by a collection V of variables. The envi-
ronmentV is decomposed into a set of overlapping subenvironments
(subenv) Ω = {V0, ...,Vη−1}, where ∪

η−1
i=0Vi = V , such that agent

Ai controls Vi . A variable that appears in a unique subenv Vi is
a private variable. Otherwise, it is a shared variable. If Ai and Aj
(j , i) share variables, their border is the set of variables that they
share, Ii j = Vi ∩Vj , ∅, and the two agents are adjacent.

Figure 1: Env dec cluster graph (a) and commu graph (b)

Env decomposition Ω can be depicted by an env decomposition
cluster graph (Fig. 1 (a)), where each cluster is a subenv and each
link between two clusters is labeled by their border.
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For distributed probabilistic reasoning, knowledge over each Vi
can be encoded as a Bayes subnet, e.g., MSBN [17]. For decentralized
constraint optimization, constraints over each Vi can be encoded
as a constraint subnet, e.g., Action-GDL [14] and DCTE [2].

Boundary of an agent is the union of its borders. Boundary set
of a MAS is the collection of boundaries of its agents. A boundary
set can be depicted by a cluster graph, called communication graph
(CG), where each cluster is a boundary and each link between two
clusters is a border (Fig. 1 (b)). CG involves shared variables only.

A JT-org is a tree subgraph (including all clusters) of env decom-
position cluster graph, such that intersection of any two subenv
is contained in every subenv on the path between the two. Fig. 2
(b) is a JT-org of (a). A JT-org can be expressed (without private
variables) as a tree subgraph of communication graph, as in (c).

Figure 2: Env decomposition cluster graph (a), JT-org (b), and
JT-org over boundaries (c)

An env decomposition may not admit a JT-org, e.g., subenvs of
Fig. 1 (a) cannot be organized into a JT-org. Hence, construction of
JT-org involves the three related tasks in Section 1.

HTBS is an algorithm for Tasks 1 and 2 without privacy loss
[20]. It consists of recursive agent self-elimination. Agent Ai with
boundaryWi can self-eliminate relative to adjacentAj withWj , ifWi
equals their borderWi = Ii j . After Ai is eliminated,Wj is updated
by removing any variable that Aj uniquely shared with Ai .

3 ENV RE-DECOMPOSITION BY DAER
For a MAS based on JT-org, if env decomposition does not admit
a JT-org, it must be revised. Assuming that no variable can be
removed, the only option is to share some variables beyond original
scope, resulting in privacy loss. If they are shared with non-adjacent
agents, privacy loss occurs on agent identity, as well as on agent
adjacency relations. The challenge is to minimize such loss.

We present DAER, a novel algorithm, that integrates and signifi-
cantly extends HTBS to accomplish all 3 tasks of JT-org construc-
tion distributively. DAER performs Tasks 1 and 2 without privacy
loss. When agent env decomposition admits no JT-org, DAER re-
decomposes env and constructs a JT-org, with significantly lower
privacy loss than Action-GDL and DCTE. It differs from methods
in Action-GDL and DCTE: (1) DAER operates on CGs, rather than
env decomposition cluster graphs. Hence, DAER is free from pri-
vacy loss on private variables. (2) DAER is based on a numerical
evaluation of privacy loss, so that agent developers can influence
privacy loss and trade among different types of privacy loss.

DAER assumes reliable communication: no message loss, and
receiving in order of sending. Agents are honest but curious: They
follow intended protocol, but are interested in learning private
information of other agents from messages.

Given an agent environment (A,Ω,W ), DAER runs in multiple
rounds. Each round consists of an HTBS stage and an elimination-
expansion (EE) stage. During HTBS stage, agents self-eliminate

(becoming inactive), until no such elimination is possible. If a single
active agent is left, then (A,Ω,W ) admits a JT-org that emerges
distributively [20], completing Tasks 1 and 2. Otherwise, (A,Ω,W )

does not admit JT-org (Task 1) and EE stage starts, in which only
remaining active agents participate. The EE stage of the first round
and remaining rounds of DAER perform Task 3.

During EE stage, active agents operate on a reduced CG with-
out boundaries of eliminated agents. During the EE stage, each
active agent generates a boundary expansion plan that enables
self-elimination and has the minimum privacy loss among alterna-
tive (local) plans. Subsequently, active agents select a best (global)
expansion plan through a distributed depth-first-search (DFS) over
the CG. A best plan is one with the (global) minimum privacy loss.
The winning agent then performs the expansion and self-eliminates,
terminating the current round of DAER.

Each new round of DAER repeats the HTBS stage and EE stage.
When the HTBS stags ends with a single active agent, the new env
decomposition defined by all boundary expansions performed so
far admits a JT-org that emerges distributively.

The boundary expansion plan that an agent Ai generates is
selected locally among alternatives, one per neighbor agent Ak .
For each Ak , there exists a boundary expansion that enables self-
elimination ofAi by sharing a mininum number of private variables.
To evaluate its privacy loss, a numerical measure is desirable.

JT-org constructionmay suffer privacy loss on private and shared
variables, agent identities and adjacency relations. Few measures
exist to evaluate such loss. Agent identities are assumed publicly
known in [9]. Four types of privacy are identified in [7], but JT-org
does not involve constraint and decision privacy, and the 4 types
do not cover loss on private and shared variables. Leak of each
piece of private info counts 1 unit to total loss in [20]. It does not
admit difference in info sensitivity. It is suited for loss evaluation
at system level, not agent level. We develop a new measure of
privacy loss: (1) It allows agents to trade off disclosure of private
info of different sensitivity, and (2) privacy loss of each boundary
expansion is evaluated locally.

We formally show that DAER accomplishes all 3 tasks of JT-org
construction, and upon termination, the final expanded env decom-
position has a JT-org, while privacy loss is greedily minimized.

4 EXPERIMENTAL EVALUATION
To evaluate effectiveness of DAER in preserving JT-org linked pri-
vacy and its efficiency, we empirically compare DAER with alter-
native distributed JT-org construction methods in ActionGDL and
DCTE. DAER dominates the alternative methods with significantly
lower privacy loss (up to 4 orders of magnitude relative to DCTE).
It is categorically superior over alternative methods by being im-
mune to privacy loss over private variables. DAER is efficient with
linear time on the number of agents and the number of adjacent
agent pairs. Experimentally, its runtime is significantly less than
alternative methods across a range of values for number of agents,
size of subenvs, and ratio of private variables.
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