
Strategy RV: A Tool to Approximate ATL Model Checking
under Imperfect Information and Perfect Recall

Demonstration Track

Angelo Ferrando
The University of Manchester
Manchester, United Kingdom

angelo.ferrando@manchester.ac.uk

Vadim Malvone
Télécom Paris
Paris, France

vadim.malvone@telecom-paris.fr

ABSTRACT
We present Strategy RV, a tool that allows to approximate the
verification of Alternating-time Temporal Logic under imperfect
information and perfect recall, which is known to be undecidable,
by using Runtime Verification. The tool uses an interface to enter
the game model and the specifications and to provide results. We
test Strategy RV in a variant of the Curiosity rover scenario and
provide some experimental results.

KEYWORDS
ATL Model Checking; Imperfect Information; Perfect Recall Strate-
gies; Runtime Verification
ACM Reference Format:
Angelo Ferrando and Vadim Malvone. 2021. Strategy RV: A Tool to Ap-
proximate ATL Model Checking under Imperfect Information and Perfect
Recall: Demonstration Track. In Proc. of the 20th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2021), Online, May
3–7, 2021, IFAAMAS, 3 pages.

1 INTRODUCTION
A well-known formalism for reasoning about strategic behaviours
in Multi-agent Systems (MAS) is Alternating-time Temporal Logic
(𝐴𝑇𝐿) [1]. An important feature of 𝐴𝑇𝐿 is the computational com-
plexity of its model checking, which is PTIME-complete under
perfect information. However, MAS typically exhibit imperfect in-
formation and the model checking against𝐴𝑇𝐿 specifications under
imperfect information and perfect recall is undecidable [8]. Given
the importance of the imperfect information setting, even partial
solutions to the problem can be useful. Previous approaches have
either focused on an approximation to perfect information [4, 5]
or developed notions of bounded recall [3]. The key idea of this
contribution is that, by using runtime verification, MAS with im-
perfect information and perfect recall can be evaluated via perfect
information and perfect recall (resp., imperfect information and
imperfect recall) variants. This give us to derive an approximation
procedure for 𝐴𝑇𝐿 under imperfect information and perfect recall.
Here, the sense of approximation is different from the one presented
in previous papers [3–5]. In fact, while in the other works the pro-
cedures respond only in certain conditions, our procedure replies
in all situations but the output is the verification of a strategic part
(which in the worst case can be null, that is we can not strategically
verify anything) and the remaining temporal part.

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

2 THE PROCEDURE
In this section, we present the intuition behind our procedure to
decide games with imperfect information and perfect recall strate-
gies, a problem in general undecidable. Note that, we assume as
imperfect information an equivalence relation over the state space
for each agent in the game and as perfect recall the capability for
each agent to remember the history of the game. In particular, by
using monitors as in runtime verification, we reduce games with
imperfect information and perfect recall strategies to games with
perfect information and perfect recall strategies (resp., imperfect
information and imperfect recall strategies). To do this, given a
model𝑀 and a formula 𝜑 in 𝐴𝑇𝐿∗, we need:

(1) to find the sub-models of𝑀 in which there is perfect infor-
mation (resp., imperfect recall strategies) and a sub-formula
𝜑 ′ of 𝜑 is satisfied;

(2) to use monitors to check whether the temporal remaining
part 𝜓 of 𝜑 can be satisfied and the related sub-model 𝑀 ′

identified by (1) can be reached.
The high level procedure is described in Algorithm 11. Given

a model 𝑀 and a formula 𝜑 , we use the variable 𝑐ℎ𝑜𝑖𝑐𝑒 to deter-
mine which algorithm we want to use for point (1). Then, we run
the monitors and return their verdict to accomplish point (2). We
present the overall algorithm in what follows.

Algorithm 1: Our verification procedure
Data: a Model𝑀 , a property 𝜑 , and a variable 𝑐ℎ𝑜𝑖𝑐𝑒
Result: the verification result

1 𝑐𝐼𝑅 = {};
2 𝑐𝑖𝑟 = {};
3 if 𝑐ℎ𝑜𝑖𝑐𝑒 = 0 then
4 𝑐𝐼𝑅 = FindSubModelsWithPerfectInfo(𝑀,𝜑) ;
5 end
6 else if 𝑐ℎ𝑜𝑖𝑐𝑒 = 1 then
7 𝑐𝑖𝑟 = FindSubModelsWithImperfectRecall(𝑀,𝜑) ;
8 end
9 else
10 𝑐𝐼𝑅 = FindSubModelsWithPerfectInfo(𝑀,𝜑) ;
11 𝑐𝑖𝑟 = FindSubModelsWithImperfectRecall(𝑀,𝜑) ;
12 end
13 return GenerateAndRunMonitors(𝑀,𝜑, 𝑐𝐼𝑅 ∪ 𝑐𝑖𝑟 );

1As usual in the verification process, we denote imperfect recall with 𝑟 , perfect recall
with 𝑅, imperfect information with 𝑖 , and perfect information with 𝐼 .

Demonstration Track AAMAS 2021, May 3-7, 2021, Online

1764



Figure 1: Parsing of the input model and visualisation.

Figure 2: Extraction, visualisation, and RV of sub-models.

3 THE TOOL
The algorithms presented previously have been implemented in
Java2. The resulting tool implementing Algorithm 1 allows to ex-
tract all sub-models with perfect information (FindSubModelsWith-
PerfectInfo) and/or imperfect recall (FindSubModelsWithImperfec-
tRecall) that satisfy a strategic objective from amodel given in input.
The extracted sub-models are then used by the tool to generate
and execute the corresponding monitors. In more detail, the tool
expects a model and a specification in input formatted as a Json file.
This file is then parsed and an internal representation of the model
is generated. In Fig. 1, we show the GUI of our tool to support this
phase. On the left, the user inputs the Json model, and on the right,
its graphical representation is visualised. After that, depending
on the user’s choice, the proper procedure is called to extract the
sub-models of interest (checkbox in Fig. 1). In both cases the verifi-
cation of a sub-model against a sub-formula is achieved translating
the sub-model into its equivalent ISPL (Interpreted Systems Pro-
gramming Language) program, which then is verified by the model
checker MCMAS3[12]. The sub-models that satisfy this verification
step are reported to the user (see Fig. 2). By clicking on a sub-model
inside the list, the user can visualise the sub-model (on the right)
and its corresponding verified formula. The entire manipulation,
from parsing the model formatted in Json, to translating the latter
to its equivalent ISPL program, has been performed by extending an
existent Java library [6]; the rest of the tool is novel. Upon selection
of a sub-model, the user can test a trace of events against the cor-
responding runtime monitor (GenerateAndRunMonitors is called).
The latter is implemented using LamaConv [14], a Java library that
translates temporal logic expressions into equivalent automata and
generates monitors out of these automata. For generating monitors,
LamaConv uses the algorithm presented in [2]. Finally, the result
of the runtime verification process is reported to the user.
2The resulting tool can be found at https://github.com/AngeloFerrando/StrategyRV
3https://vas.doc.ic.ac.uk/software/mcmas/

4 CURIOSITY ROVER SCENARIO
The Curiosity rover is one of the most complex systems successfully
deployed in a planetary exploration mission to date. Differently
from the original [13], in our setting the rover is equipped with
decision making capabilities, which make it autonomous and with-
out the need of human teleoperations. We simulate an inspection
mission, where the Curiosity patrols a topological map of the sur-
face of Mars. We begin with the deployment of the Curiosity and a
start-up period where it initialises all three of its control modules.
After the agent receives confirmation that the modules are ready,
the mission may start. In one of the missions analysed, the rover
starts behind the ship. So, its aim is to move from its position, makes
a picture of a sample rock and then returns to the initial position.
More in detail, it can decide to move left or right. Then, the rover
can make the photo. At this point, the rover has to repeat the same
moving action chosen the step before (left or right) to conclude
the mission. The mission and the start-up period are modelled in
Fig. 1. An important property to check should be if there exists a
strategy for the rover such that sooner or later it can finish the
mission. This property can be written in ATL and checked in the
context of perfect recall strategies (see Fig. 2).

5 EXPERIMENTS
We tested our tool over some variants of the Curiosity rover sce-
nario, on a machine with the following specifications: Intel(R)
Core(TM) i7-7700HQCPU@2.80GHz, 4 cores 8 threads, 16 GBRAM
DDR4. We report the results obtained applying both FindSubMod-
elsWithPerfectInfo and FindSubModelsWithImperfectRecall to the
scenario presented in Section 4. The tool found 6 sub-models with
perfect information in 0.6 [sec] and 452 sub-models with imperfect
recall in 6.8 [sec]. The monitors generation for all the sub-models
took 2.1 [sec] and 62.4 [sec], respectively. The tool has been applied
to other scenarios as well, where it has been tested with different
combinations of models and properties. The obtained results are in
the same order of magnitude, and empirically confirmed our expec-
tations. The extraction procedures applied to models of similar size
took averagely less than 10 [sec], while the monitors generation
required averagely ~60 [sec]. Note that, the latter was only a stress
test, in fact our tool allows to generate and execute a monitor at a
time to improve performance.

6 CONCLUSIONS
As remarked in the introduction one of the key issues in employing
logics for strategic reasoning in the context of MAS is that their
model checking problem is undecidable under perfect recall and
imperfect information. However, this is one of the most natural
setup in real applications. So, finding appropriate approximations
remains an open problem. In this paper we presented Strategy RV,
a tool that partially overcomes this difficulty by extracting sub-
models with perfect information and/or imperfect recall that satisfy
a strategic objective; then it uses runtime verification to check the
remaining temporal objectives and to reach one of the sub-models
so generated. We try to answer what is currently not possible to
answer with an innovative technique that requires the use of two
verification techniques already considered in the temporal context
[7, 9–11] but which it has never been used in the strategic context.

Demonstration Track AAMAS 2021, May 3-7, 2021, Online

1765

https://github.com/AngeloFerrando/StrategyRV
https://vas.doc.ic.ac.uk/software/mcmas/


REFERENCES
[1] R. Alur, T.A. Henzinger, and O. Kupferman. 2002. Alternating-time temporal

logic. J. ACM 49, 5 (2002), 672–713.
[2] A. Bauer, M. Leucker, and C. Schallhart. 2011. Runtime Verification for LTL and

TLTL. ACM Trans. Softw. Eng. Methodol. 20, 4 (2011), 14:1–14:64.
[3] F. Belardinelli, A. Lomuscio, and V. Malvone. 2018. Approximating Perfect Recall

when Model Checking Strategic Abilities. In KR2018, 435–444.
[4] F. Belardinelli, A. Lomuscio, and V. Malvone. 2019. An Abstraction-based Method

for Verifying Strategic Properties in Multi-agent Systems with Imperfect Infor-
mation. In AAAI2019. 6030–6037.

[5] F. Belardinelli and V. Malvone. 2020. A Three-valued Approach to Strategic
Abilities under Imperfect Information. In KR2020. 89–98.

[6] F. Belardinelli, V. Malvone, and A. Slimani. 2020. A Tool for Verifying Strategic Prop-
erties in MAS with Imperfect Information. https://github.com/VadimMalvone/A-
Tool-for-Verifying-Strategic-Properties-in-MAS-with-Imperfect-Information

[7] E. Bodden, P. Lam, and L. J. Hendren. 2010. Clara: A Framework for Partially
Evaluating Finite-State Runtime Monitors Ahead of Time. In Runtime Verification

2010, 183–197.
[8] C. Dima and F.L. Tiplea. 2011. Model-checking ATL under Imperfect Information

and Perfect Recall Semantics is Undecidable. CoRR abs/1102.4225 (2011).
[9] A. Ferrando, L. A. Dennis, D. Ancona, M. Fisher, and V. Mascardi. 2018. Verify-

ing and Validating Autonomous Systems: Towards an Integrated Approach. In
Runtime Verification 2018, 263–281.

[10] V. G. Lekshmy and J. M. Kannimoola. 2021. Formal Verification of IoT Protocol:
In Design-Time and Run-Time Perspective. In Inventive Communication and
Computational Technologies, 873–884.

[11] T. L. Hinrichs, A. P. Sistla, and L. D. Zuck. 2014. Model Check What You Can,
Runtime Verify the Rest. In HOWARD-60, 234–244.

[12] A. Lomuscio and F. Raimondi. 2006. Model checking knowledge, strategies, and
games in multi-agent systems. In (AAMAS06), 161–168.

[13] NASA. 2012. Mars Curiosity Rover. https://mars.nasa.gov/msl/home/
[14] T. Scheffel and M. Schmitz et al. 2016. LamaConv- Logics and Automata Converter

Library. http://www.isp.uni-luebeck.de/lamaconv

Demonstration Track AAMAS 2021, May 3-7, 2021, Online

1766

https://github.com/VadimMalvone/A-Tool-for-Verifying-Strategic-Properties-in-MAS-with-Imperfect-Information
https://github.com/VadimMalvone/A-Tool-for-Verifying-Strategic-Properties-in-MAS-with-Imperfect-Information
https://mars.nasa.gov/msl/home/
http://www.isp.uni-luebeck.de/lamaconv

	Abstract
	1 Introduction
	2 The Procedure
	3 The Tool
	4 Curiosity rover scenario
	5 Experiments
	6 Conclusions
	References



