
Autonomous Agents on the Edge of Things
Demonstration Track

Timotheus Kampik
Umeå University
Umeå, Sweden

tkampik@cs.umu.se

Andres Gomez, Andrei Ciortea, Simon Mayer∗
University of St. Gallen
St. Gallen, Switzerland

{andres.gomez,andrei.ciortea,simon.mayer}@unisg.ch

ABSTRACT
This paper describes a demonstration setup that integrates cogni-
tive agents with the latest W3C standardization efforts for the Web
of Things (WoT). The conceptual foundations of the implemented
system are the integration of cognitive agent abstractions withW3C
Web Things, which are generic abstractions of devices and virtual
services that provide agents with various interaction affordances
(e.g., actions, events). Together with the W3C WoT Scripting API,
which is an ECMAScript-compatible API for W3C WoT environ-
ments, these standards allow JavaScript-based agents to be deployed
and to operate in heterogeneous WoT environments. The agents
can then be effectively distributed across the physical-virtual space
in a write once, run anywhere manner: we deploy agents across a
heterogeneous information system landscape that includes Web
servers, browser-based front-ends, and constrained devices (micro-
controllers). The deployment only requires minor platform-specific
adjustments to consider resource and performance limitations on
constrained devices. As a running example, we demonstrate a semi-
autonomous assembly scenario with human-in-the-loop support.

KEYWORDS
Engineering Multi-Agent Systems, IoT, Constrained Devices

ACM Reference Format:
Timotheus Kampik and Andres Gomez, Andrei Ciortea, Simon Mayer. 2021.
Autonomous Agents on the Edge of Things: Demonstration Track. In Proc.
of the 20th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2021), Online, May 3–7, 2021, IFAAMAS, 3 pages.

1 INTRODUCTION
The vision of ubiquitous computing has become a reality: comput-
ing devices are omnipresent in a broad variety of manifestations,
from washing machines and kitchen appliances we use in our pri-
vate homes to self-checkouts in our grocery stores and produc-
tion lines in our factories. At the same time, computing devices
are becoming increasingly interconnected and autonomous, which
enables them to take over duties that used to require human con-
trol; for example, modern cars can autonomously park themselves
and communicate with their producer for faster troubleshooting
(or even for predictive maintenance [2]). These developments can

∗Andrei Ciortea is also with Inria, Université Côte d’Azur, CNRS, Sophia Antipolis,
France.

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

unlock new practical use cases for research on Engineering Multi-
Agent Systems (EMAS), which among others deals with the de-
velopment of design patterns, programming languages, and soft-
ware frameworks for autonomous agents and multi-agent systems
(MAS) [10]. Furthermore, the recent standardization of the Web of
Things (WoT) at the W3C1 and IETF2 can facilitate the deployment
of MAS across heterogeneous ubiquitous environments.

Nevertheless, according to a recent report of the EMAS commu-
nity, more work is required to bring MAS technologies closer to
mainstream software engineering [10]. Some recent initiatives are
looking at the integration and deployment of goal-directed agents
in WoT environments [3, 11, 13]. These works aim to narrow the
gap between MAS technologies andWeb/WoT standards, where the
latter are often pragmatically oriented towards industry adoption.

This demonstration works towards a similar objective to show-
case the integration of agent-oriented programming approaches
and technologies with ongoing standardization efforts for the W3C
WoT Scripting API [7]: we deploy cognitive agents across a hetero-
geneous information system landscape that includes Web servers,
browser-based front-ends, and constrained devices (microcontrollers).
The software used in our demonstrator is documented and avail-
able on GitHub.3 Table 1 provides a non-exhaustive overview of
environments that the implementation approach supports.

2 DEPLOYING AGENTS ACROSS A
HETEROGENEOUS SYSTEM LANDSCAPE

The promise of write once, run anywhere was initially used to pro-
mote the Java programming language, but it is now more closely
associated with JavaScript [9]: JavaScript applications are more con-
veniently deployable to many different platforms such as browsers,
all mainstream mobile phone platforms, desktop computers, WoT
gateways and devices, but also to servers and Function-as-a-Service
(FaaS) environments4. Recently, several JavaScript libraries emerged
that allow for the implementation of autonomous agents and multi-
agent systems in JavaScript: Eve [4] and the JavaScript Agent Ma-
chine Platform [1] are tools for implementing distributed systems,
whereas the JS-son library [6] provides design patterns for imple-
menting agent internals (e.g., BDI reasoning loops). In the JavaScript
ecosystem, distribution support is already provided by a range of
mature, industry-scale tools and frameworks.

In the context of theWoT, a range of emerging standards embrace
JavaScript. The W3C WoT Scripting API [7] is an ongoing effort to
standardize an ECMAScript-compatible interface for discovering,

1https://www.w3.org/WoT/
2https://datatracker.ietf.org/wg/core/about/
3https://github.com/TimKam/JS-son/tree/master/examples/wot
4https://www.martinfowler.com/articles/serverless.html, accessed: Jan 6, 2021.

Demonstration Track AAMAS 2021, May 3-7, 2021, Online

1767

https://www.w3.org/WoT/
https://datatracker.ietf.org/wg/core/about/
https://github.com/TimKam/JS-son/tree/master/examples/wot
https://www.martinfowler.com/articles/serverless.html


Deployment Target Type Example Instance API Peculiarities Limitations
Server WoT gateway Node.js JavaScript runtime4 APIs -

Web browser Web application, Google Chrome Vendor-specific browser APIs -
Device running mobile OS WoT device running on Android OS Vendor-specific APIs Indirect access to native APIs
Desktop computer/laptop Electron5 control panel client Framework-specific APIs Indirect access to native APIs
Function-as-a-Service Amazon Lamda function6 Vendor-specific subset of Node.js API -

Microcontroller Expruino Pixl.js device Espruino runtime APIs Sub-optimal performance

Table 1: Examples of potential deployment target types, the peculiarities of their APIs, and their limitations.

consuming, and exposing W3C Thing Descriptions [5], i.e. abstrac-
tions of devices and digital services in WoT environments. TheWoT
Scripting API targets primarily gateways and is part of the Abstract
WoT Servient Architecture [8], a software stack that implements
the W3C WoT standards and provides a runtime environment for
applications — in our case, for software agents. The WoT Scripting
API thus provides our agents with an abstract uniform interface for
discovering and interacting with local WoT environments.

In our demonstration, we use the JS-son library [6] to program
and deploy agents in any runtime environment that supports a
JavaScript interpreter. We implemented a JavaScript module that
can instantiate a JS-son agent based on a W3C Thing Description
obtained via the WoT Scripting API. We therefore model W3C Web
Things [8] as agents and extend them with autonomous behavior.
In this context, we can consider a WoT servient as a a gateway that
exposes a multi-agent system, i.e., a collection of passive things
(comparable to artifacts in the Agents & Artifacts meta-model [12]),
and pro-active, re-active and social agents. An agent can expose
selected (and possibly pre-processed) beliefs asWoT thing properties,
whereas WoT actions expose an agent’s services. Agents can either
run directly on gateways or devices. Agents running on devices
may be mirrored on gateways by mock agents. Table 1 provides
an overview of these deployment target types, the peculiarities of
their APIs and their limitations (if there are any limitations that
go beyond well-known limitations of the JavaScript programming
language and interpreter).

A particular challenge is to deploy agents and MAS on con-
strained devices that do not have the resources to run fully-fledged
MAS frameworks and platforms. As a starting point, we deploy
JS-son agents on an Espruino Pixl.js device5, which features an
64MHz ARM Cortex M4 microcontroller, 64kB RAM, 512kB Flash,
and a JavaScript interpreter. Although JS-son is a lightweight li-
brary, with no dependencies and less than 1000 lines of code in
its core, making JS-son agents run on an Espruino device requires
adjustments to the code base. For this reason, we created an Edge
JS-son variant of the library, which is (most notably) limited to
belief-plan deliberation and manages plans in a global array such
that agents merely need to maintain pointers to these plans.

3 DEMONSTRATION EXAMPLE
Our demonstrator6 brings together several physical devices (a
robotic arm; a low-power MCU-controlled display; various interac-
tive triggers) and several simulated sensors. The robot’s agent runs
in a WoT servient and uses the WoT Scripting API to access and
operate the robot, whereas the display’s agent runs directly on the

5https://shop.espruino.com/pixljs, accessed: Jan 6, 2021.
6The demonstration video is available at https://youtu.be/MUhUuqd2jt0.

Figure 1: Hardware devices in the application scenario.

display’s MCU. Figure 1 depicts the scenario’s high-level architec-
ture. At run time, this setup demonstrates the discovery of things
via the WoT Scripting API and the deployment of an agent to an
Espruino device using a custom, Web-based deployment interface.
It then continues to show the sensor-based triggering of actions in
agentified things which are processed according to the agent’s own
procedural reasoning. Finally, through simulated sensor measure-
ments that trigger visual alerts and shut-down recommendations,
we show how the interaction with the MAS can be facilitated even
when parts of it are unavailable.

The demonstrator represents a setup that could potentially be
found in factory where mass individualized products are assem-
bled just-in-time according to customer requests. When an order
is received, the robot’s agent configures the manufacturing line to
produce any custom parts that are not in stock and then assembles
and packs the product(s). In this process, the robot’s agent needs
to interact with sensors to ensure its attainment of different goals
(e.g., keeping the assembly line from overheating) while assem-
bling the products as rapidly as possible. Humans receive guidance
through browser-based applications on personal computers as well
as through low-power displays that host user interface agents (and
which, for example, still work in case of a power outage).

4 CONCLUSION
This demonstration showcases agent-oriented programming (AOP)
for modern, standard-compliant ubiquitous computing ecosystems.
We speculate that a broader adoption of AOP for ubiquitous comput-
ing is primarily a question of aligning with the latest developments
in order to make agent-orientation abstractions available to indus-
try practitioners and the broader software engineering community.
This alignment would allow, in turn, to systematically evaluate the
benefits, shortcomings, and potential extensions of AOP.

Acknowledgments. This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation, as well as by a GFF-IPF Grant of the Basic
Research Fund of the University of St.Gallen.

Demonstration Track AAMAS 2021, May 3-7, 2021, Online

1768

https://shop.espruino.com/pixljs
https://youtu.be/MUhUuqd2jt0


REFERENCES
[1] Stefan Bosse. 2016. Mobile Multi-agent systems for the Internet-of-Things and

clouds using the JavaScript agent machine platform and machine learning as a
service. In 2016 IEEE 4th international conference on future internet of things and
cloud (FiCloud). IEEE, 244–253.

[2] Thyago P. Carvalho, Fabrízzio A. A. M. N. Soares, Roberto Vita, Roberto da P. Fran-
cisco, João P. Basto, and Symone G. S. Alcalá. 2019. A systematic literature review
of machine learning methods applied to predictive maintenance. Computers & In-
dustrial Engineering 137 (2019), 106024. https://doi.org/10.1016/j.cie.2019.106024

[3] Andrei Ciortea, Simon Mayer, and Florian Michahelles. 2018. Repurposing Man-
ufacturing Lines on the Fly with Multi-agent Systems for the Web of Things, In
Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS 2018, Stockholm, Sweden, July 10-15, 2018. Proceed-
ings of the 17th International Conference on Autonomous Agents and MultiAgent
Systems (AAMAS 2018), 813–822.

[4] J. d. Jong, L. Stellingwerff, and G. E. Pazienza. 2013. Eve: A Novel Open-Source
Web-Based Agent Platform. In 2013 IEEE International Conference on Systems,
Man, and Cybernetics. 1537–1541. https://doi.org/10.1109/SMC.2013.265

[5] Sebastian Kaebisch, Takuki Kamiya, Michael McCool, Victor Charpenay, and
Matthias Kovatsch. 2020. Web of Things (WoT) Thing Description, W3C Recom-
mendation 9 April 2020. W3C Recommendation. World Wide Web Consortium
(W3C). https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/

[6] Timotheus Kampik and Juan Carlos Nieves. 2020. JS-son - A Lean, Extensi-
ble JavaScript Agent Programming Library. In Engineering Multi-Agent Systems,
Louise A. Dennis, Rafael H. Bordini, and Yves Lespérance (Eds.). Springer Inter-
national Publishing, Cham, 215–234.

[7] Zoltan Kis, Daniel Peinter, Cristiano Aguzzi, Johannes Hund, and Kazuaki Nimura.
2020. Web of Things (WoT) Scripting API, W3C Working Group Note 24 November
2020. W3C Working Group Note. World Wide Web Consortium (W3C). https:
//www.w3.org/TR/2020/NOTE-wot-scripting-api-20201124/

[8] Matthias Kovatsch, Ryuichi Matsukura, Michael Lagally, Toru Kawaguchi, Kuni-
hiko Toumura, and Kazuo Kajimoto. 2020. Web of Things (WoT) Architecture, W3C
Recommendation 9 April 2020. W3C Recommendation. World Wide Web Consor-
tium (W3C). https://www.w3.org/TR/2020/REC-wot-architecture-20200409/

[9] J. Lin and K. El Gebaly. 2016. The Future of Big Data Is ... JavaScript? IEEE
Internet Computing 20, 5 (2016), 82–88. https://doi.org/10.1109/MIC.2016.109

[10] Viviana Mascardi, Danny Weyns, Alessandro Ricci, Clara Benac Earle, Arthur
Casals, Moharram Challenger, Amit Chopra, Andrei Ciortea, Louise A. Dennis,
Álvaro Fernández Díaz, Amal El Fallah-Seghrouchni, Angelo Ferrando, Lars-Åke
Fredlund, Eleonora Giunchiglia, Zahia Guessoum, Akin Günay, Koen Hindriks,
Carlos A. Iglesias, Brian Logan, Timotheus Kampik, Geylani Kardas, Vincent J.
Koeman, John Bruntse Larsen, Simon Mayer, Tasio Méndez, Juan Carlos Nieves,
Valeria Seidita, Baris Tekin Teze, László Z. Varga, and Michael Winikoff. 2019.
Engineering Multi-Agent Systems: State of Affairs and the Road Ahead. SIGSOFT
Softw. Eng. Notes 44, 1 (March 2019), 18–28. https://doi.org/10.1145/3310013.
3322175

[11] Simon Mayer, Dominic Plangger, Florian Michahelles, and Simon Rothfuss. 2016.
UberManufacturing: A Goal-Driven Collaborative Industrial Manufacturing Mar-
ketplace, In Proceedings of the 6th International Conference on the Internet of
Things. Proceedings of the 6th International Conference on the Internet of Things
(IOT 2016), 111–119.

[12] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. 2007. Give Agents Their
Artifacts: The A&A Approach for Engineering Working Environments in MAS.
In Proceedings of the 6th International Joint Conference on Autonomous Agents and
Multiagent Systems (Honolulu, Hawaii) (AAMAS ’07). Association for Computing
Machinery, New York, NY, USA, Article 150, 3 pages. https://doi.org/10.1145/
1329125.1329308

[13] Ahmed Shafei, Jack Hodges, and Simon Mayer. 2018. Ensuring Workplace Safety
in Goal-based Industrial Manufacturing Systems, In Proceedings of the 14th
International Conference on Semantic Systems, SEMANTICS 2018, Vienna, Aus-
tria, September 10-13, 2018. Proceedings of the 14th International Conference on
Semantic Systems (SEMANTICS 2018), 90–101.

Demonstration Track AAMAS 2021, May 3-7, 2021, Online

1769

https://doi.org/10.1016/j.cie.2019.106024
https://doi.org/10.1109/SMC.2013.265
https://www.w3.org/TR/2020/REC-wot-thing-description-20200409/
https://www.w3.org/TR/2020/NOTE-wot-scripting-api-20201124/
https://www.w3.org/TR/2020/NOTE-wot-scripting-api-20201124/
https://www.w3.org/TR/2020/REC-wot-architecture-20200409/
https://doi.org/10.1109/MIC.2016.109
https://doi.org/10.1145/3310013.3322175
https://doi.org/10.1145/3310013.3322175
https://doi.org/10.1145/1329125.1329308
https://doi.org/10.1145/1329125.1329308

	Abstract
	1 Introduction
	2 Deploying Agents across a Heterogeneous System Landscape
	3 Demonstration Example
	4 Conclusion
	References



