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ABSTRACT
We present a substantially expanded version of our tool STV for
strategy synthesis and verification of strategic abilities. The new
version adds user-definable models and support for model reduc-
tion through partial order reduction and checking for bisimulation.
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1 INTRODUCTION
Formal analysis of multi-agent systems is becoming increasingly
important as the procedures, protocols, and technology that sur-
round us get more and more complex. Alternating-time temporal
logic ATL [3, 4, 43] is probably the most popular logic to describe
interaction in MAS. Formulas ofATL allow to express statements
about what agents (or groups of agents) can achieve. For example,
⟨⟨𝑡𝑎𝑥𝑖⟩⟩G¬fatality says that the autonomous cab can drive in such
a way that nobody is ever killed, and ⟨⟨𝑡𝑎𝑥𝑖, 𝑝𝑎𝑠𝑠𝑔⟩⟩F destination
expresses that the cab and the passenger have a joint strategy to
arrive at the destination, no matter what any other agents do.

Algorithms and tools for verification of such properties have
been in development for over 20 years [1, 2, 7, 8, 11, 13–15, 21, 26,
32, 33, 37, 38, 40]. Unfortunately, model checking of agents with im-
perfect information is∆P

2 - to PSPACE-complete for memoryless
strategies [9, 22, 43] and EXPTIME-complete to undecidable for
agents with perfect recall [18, 20]; also, the problem does not admit
simple incremental solutions [10, 16, 17]. This has been confirmed
in experiments [11, 12, 21, 26, 40] and case studies [23, 25, 28].

Much of the complexity is due to the size of the model, and
in particular to state space explosion [5]. To address the problem,
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we have extended our experimental tool STV (STrategic Veri-
fier) [33] with support formodel reductions. Twomethods are used:
(i) checking for equivalence of models according to a handcrafted
relation of𝐴-bisimulation [6], and (ii) fully automated partial order
reduction (POR) [29, 31]. We also add a simple model specification
language that allows the user to define their own inputs for verifi-
cation, which was not available in the previous version [33].

The purpose of the extension is twofold. First, it should facilitate
practical verification of MAS, as the theoretical and experimental
results for POR and bisimulation-based reduction suggest [6, 31].
No less importantly, it serves a pedagogical objective, as we put
emphasis on visualisation of the reductions, so that the tool can
be also used in the classroom to show how the reduction works.
Finally, checking strategic bisimulation by hand is difficult and
prone to errors; here, the user can both see the idea of the bisimu-
lation, and automatically check if it is indeed correct.

2 APPLICATION DOMAIN
STV+Reductions is aimed at verification of agents’ abilities – in
particular, synthesis of memoryless imperfect information strate-
gies that guarantee a given temporal goal.This includes bothmodel
checking of functionality requirements (understood as the ability of
legitimate users to achieve their goals), and security properties de-
fined by the inability of an intruder to compromise the system.

A good example of a specific domain is formal verification of
voting procedures and elections, with a number of classical require-
ments, such as election integrity, ballot secrecy, receipt-freeness, and
voter-verifiability [42, 44]. Some recent case studies [23, 25, 28]
have shown that practical verification of such scenarios is still out-
side of reach. Some tools do not support intuitive specification and
validation of models; some others have limited property specifica-
tion languages. In all cases, the state-space explosion is a major
obstacle that prevents verification of anything but toy models.

3 SCENARIOS
The new version of STV provides a flexible specification language
for asynchronous models. The following examples are included:
Train-Gate-Controller (TGC) [2, 31, 45], Two-Stage Voting [6], and
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Figure 1: Trains, Gate, and Controller benchmark (TGC):
asynchronous MAS (left); full and reduced model (right).

Asynchronous Simple Voting [31]. Some built-in synchronousmod-
els are also included, such as TianJi [37], Castles [41], Bridge End-
play [24], and Drones [27].

4 FORMAL BACKGROUND
Models. The main part of the input is given by an asynchronous
multi-agent system (AMAS) [30, 31, 35], i.e., a network of local au-
tomata (one automaton per agent). From the AMAS, the global
model is generated, where nodes are tuples of local states. The
knowledge/uncertainty of an agent is defined by the agent’s lo-
cal state. An example AMAS is shown in Figure 1(left). The global
model generated from the AMAS is shown in Figure 1(right).
Strategies. A strategy is a conditional plan that specifies what the
agent(s) are going to do in every possible situation. Here, we con-
sider the case of imperfect information memoryless strategies, rep-
resented by functions from the agent’s local states (formally, ab-
straction classes of its indistinguishability relations) to its available
actions. The outcome of a strategy from state 𝑞 consists of all the
infinite paths starting from 𝑞 and consistent with the strategy.
Formulas. Given a model𝑀 and a state 𝑞 in the model, the formula
⟨⟨𝐴⟩⟩𝜑 holds in (𝑀,𝑞) iff there exists a strategy for 𝐴 that makes 𝜑
true on all the outcome paths starting from any state indistinguish-
able from 𝑞. For more details, we refer the reader to [4, 43].
Model reduction and bisimulation. State space explosion is a ma-
jor factor that prevents practical model checking [5]. A possible
way out is model reduction, i.e., using a smaller equivalent model
for verification instead of the original one. A suitable notion of
𝐴-bisimulation has been proposed in [6]. Unfortunately, synthesiz-
ing a reduced 𝐴-bisimilar model is at least as hard as the verifica-
tion itself [6]. However, checking if a handcrafted relation is an
𝐴-bisimulation can be done in polynomial time, which offers valu-
able help especially for larger models.
Partial-order reduction.A fully automated model reduction is possi-
ble if the state space explosion is due to asynchronous interleaving
of agents’ actions. The method is called partial order reduction, and

has been been recently extended to verification of strategic abili-
ties under imperfect information [31]. The reduced model for the
TGC scenario is highlighted in blue color in Figure 1(right).

5 TECHNOLOGY
STV+Reductions does explicit-state model checking. That is, the
global states and transitions of the model are represented explicitly
in the memory of the verification process. The tool includes the
following new functionalities.
User-defined input.The user can load and parse the input specifica-
tion from a text file that defines: the local automata in the AMAS,
the formula to be verified, the propositional variables, persistent
propositions, agent names relevant for POR, and/or the mapping
for bisimulation checking. Based on that, the global model is gen-
erated and displayed in the GUI and can be verified bymeans of fix-
point approximation [26] or dominance-based strategy search [34].
When using partial-order reduction, the reduced model is also dis-
played, and highlighted in the full model.
Partial-order reduction. The fully automated reduction method is
based on POR [39] and implemented according to the algorithms
proposed in [31, 36]. The reduced model is generated based on the
AMAS specification, together with two additional parameters: the
coalition and the set of proposition variables.
Bisimulation checking.The tool allows to check if twomodels are𝐴-
bisimilar for a given coalition𝐴 [6]. Apart from the specification of
the two models, the bisimulation relation between the correspond-
ing states must also be provided, along with the selected coalition.

6 USAGE
The current version of STV+Reductions is available for download
here, and allows to:

• Select and display a model specification from a text file,
• Generate and display the explicit state-transition graph,
• Generate and display the reduced model using POR,
• Select specifications of two models and a relation from text
files, and check if the models are 𝐴-bisimilar wrt the rela-
tion,

• Verify the selected full or reduced model by means of fix-
point approximation or dominance-based verification (Domin-
oDFS),

• Alternatively, run the verification for a predefined parame-
terized model and formula,

• Display the verification result, including the relevant truth
values and the winning strategy.

7 CONCLUSIONS
Model checking strategic abilities under imperfect information is
notoriously hard. STV+Reductions addresses the state explosion
problem by an implementation of partial-order reduction and bisim-
ulation checking. This should not only facilitate verification, but
also make the techniques easier to use and understand.
Acknowledgements. The authors acknowledge the support of the
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