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ABSTRACT
Agents can individually devise plans and coordinate to achieve
common goals. Methods exist to factor planning problems into sep-
arate tasks and distribute the plan synthesis process, while reducing
the overall planning complexity. Merging distributedly generated
plans becomes computationally costly when task plans are tightly
coupled, and conflicts arise due to dependencies between plan ac-
tions. New plan merging algorithms allow factoring and solving
large problems with a growing number of agents and tasks, but are
yet to be demonstrated in physical real-world systems. This Demo
presents an architecture that deploys plan merging algorithms in a
physical multi-robot setting and emulates a First Response Domain.
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1 INTRODUCTION
The growing number of robot capabilities enables robots to accom-
plish complex tasks and assist in first response to major disasters.
Integrating those individual capabilities into a coherent effort to
accomplish specific goals requires complex decision making and
planning. Real-world applications predominantly rely on a human
operator for reasoning, because automated methods fail to scale and
solve complex real-world problems [1]. Multiple robot systems can
factor and resolve large problems distributedly, but must coordinate
to resolve conflicts. New plan merging algorithms, such as the Tem-
poral Optimal Conflict Resolution Algorithm (TCRA∗) [7], resolve
conflicts across individually-generated plans and allow robots to
simultaneously execute their actions and accomplish tasks faster.
Task allocation combined with plan merging algorithms enable
factored planning and allow complex problems to be solved using a
large number of robots and tasks [7], but remain to be demonstrated
in real-world settings. This demo introduces a domain-independent
approach to deploy a factored planning method and coordinate
heterogeneous multiple robot systems, while executing complex
plans. The system deploys the Coalition Formation then Planning
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framework [4] in a physical real-world multiple robot system and
evaluates multiple plan merging algorithms.

2 ARCHITECTURE
The multiple robot system’s architecture is domain independent.
The available robots’ capabilities and initial states are gathered
before planning in order to generate a planning problem, which
is solved using the Coalition Formation then Planning framework
[4]. Each robot executes an independent and distributed instance of
the execution system, which is composed of the Robot Operating
System (ROS) [8] Communication Node and the Plan Execution
Node. The robots follow the plan, and coordinate using their inter-
nal Robot Execution System, which controls each robot’s behavior
at a high level during plan execution.

Robots use the Communication Node to request information
from other robots, as ROS does not support multiple robots natively.
The Communication Node contains a knowledge database with all
the information relevant for plan execution, including the global
plan and messages from other robots. A robot can query another
robot, which in turn reads its internal knowledge database and
sends a reply. Robots are allowed a high level of autonomy during
plan execution and the communication between robots is limited
to disseminating plans and announcing action completions.

The Plan Execution Node commands a robot’s actions and inter-
faces with the Communication Node to obtain information about
other robots and standard ROS nodes for robot localization, naviga-
tion, etc. Plan execution begins as soon as a plan is received.

The Plan Execution Node implements the Plan Execution Al-
gorithm, Algorithm 1, in order to coordinate plan execution. The
pending action set, 𝐴𝑝𝑒𝑛𝑑𝑖𝑛𝑔 , represents the actions that remain to
be executed, and is initialized with all the plan actions (line 1). The
set of plan actions involving the robot, 𝐴𝑟 , are identified (line 2).
The set intersection between the pending actions and the robot
actions, 𝐴𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ∩ 𝐴𝑟 , represents the actions involving the robot
that remain to be executed (i.e., the robot pending actions). While
there are robot pending actions (line 3), each pending action is eval-
uated (line 4). Actions that have no pending predecessors (line 5)
are executed and removed from the pending action set 𝐴𝑝𝑒𝑛𝑑𝑖𝑛𝑔

(line 6). When the action is completed, it is announced (line 7) to
all robots whose actions are successors of the completed action.
The pending action set, 𝐴𝑝𝑒𝑛𝑑𝑖𝑛𝑔 , is updated by accounting for the
action completion announcements issued by other robots (line 8).
The predecessors of an action 𝑎 are the actions 𝑎0 that are ordered
before action 𝑎, 𝑎0 ≺ 𝑎. The successors of an action 𝑎 are the actions
𝑎0 that are ordered after action 𝑎, 𝑎 ≺ 𝑎0.
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Data: A multiagent plan 𝜋 ;
1 Initialize the pending action set 𝐴𝑝𝑒𝑛𝑑𝑖𝑛𝑔 with all the

actions in plan 𝜋 ;
2 Identify the robots’ actions, 𝐴𝑟 , in plan 𝜋 ;
3 while 𝐴𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ∩ 𝐴𝑟 is not empty do
4 foreach action 𝑎 ∈ 𝐴𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ∩ 𝐴𝑟 do
5 if action 𝑎 does not have predecessors in 𝐴𝑝𝑒𝑛𝑑𝑖𝑛𝑔

then
6 Execute and remove action 𝑎 from 𝐴𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ;
7 Announce that action 𝑎 is completed;
8 Update the pending action set 𝐴𝑝𝑒𝑛𝑑𝑖𝑛𝑔 ;

Algorithm 1: The Plan Execution Algorithm.

The Plan Execution Algorithm allows parallel action execution,
as multiple robots execute their plan actions independently, and
global coordination only occurs during the planning process, as the
robots execute their actions according to each action’s predecessors.

3 EXPERIMENTS AND RESULTS
The experimental methodology was designed to evaluate the plan
merging algorithms [7] using a simulated real-world mission and
multiple robots with specific capabilities. The experiments were
performed in an indoor environment that offers a combination of
large open spaces, narrow hallways, doorways, and an office space
with three separate, but variable sized rooms.

Pioneer P3-DX robots, fitted with laser range finders, were used
for the demo. A metric map of the environment was created using
a Rao-Blackwellized particle filter simultaneous localization and
mapping package [5]. The map was created in real-time by a single
robot traversing the environment, while collecting range sensor
and wheel odometry data. The map was partitioned using a Voronoi
segmentation [3], resulting in a topological map of the environment
that allows for high-level planning.

Tasks were allocated to robots according to the robots’ capabil-
ities and the tasks’ requirements using a dynamic programming
coalition formation algorithm [9]. Each task was solved individu-
ally using the Actions Concurrency and Time Uncertainty Planner
(ActuPlan) [2], which was selected because it supports concurrent
durative actions with uncertain action durations.

A First Response Domain [4], was used for the experiments. Each
robot was assigned a rescuer, ambulance, or hazard collector role,
which did not change. The robots are unable to physically load and
unload the simulated victims or hazardous material objects, but
they waited (5 seconds) and vocalized the completion of these and
all tasks. The six robots, including two rescuers, two ambulances,
and two hazard collectors, began each plan execution from the
rescue base. Two victim rescue tasks and two hazard collection
tasks were solved. The coalition formation algorithm allocated each
ambulance to each victim rescue task and each hazard collector to
each hazard collection task. Rescuers were allocated two tasks each,
as all tasks require a rescuer.

The coupling between tasks requires algorithms that systemati-
cally address conflicts while merging task plans [7]. Conflicts arise
between plans’ actions, as the effects of one action can make other
actions infeasible. Plan merging algorithms are also responsible for

minimizing the total plan execution duration, or makespan, while
addressing plans’ conflicts. The Serial Algorithm, the Solution Test
Algorithm (STA), and TCRA∗ (𝜖 = 1) [7] were evaluated.

The robots were timed while executing their plans. The plan
execution outcomes are: Success, all robots have completed their
tasks and returned to the base successfully; and Failure, robots failed
to finish within a one-hour time limit or collided with one another
and the experiment is terminated to prevent physical damage. All
failures were due to collisions, as all trials finished with success or
collision before the time limit expired. The rate of success and the
makespan are the dependent variables.

The plan merging algorithm used to merge the various task plans
are the independent variables. The Serial, STA, and TCRA∗ merging
algorithms were evaluated with the direct and transitive conflict
models, with and without the transitive closure [6].

The TCRA∗ plan, which was identical for all TCRA∗ instances
and for STA using the direct model, with and without closure, had
the overall best makespan, as shown in Table 1. STA using the tran-
sitive model without transitive closure resulted in the second best
makespan and the STA using the transitive model with transitive
closure resulted in the third best. The Serial plan was the worst.
Success was generally higher for plans with longer makespan due
to a more serialized action execution, which minimizes the chances
of collisions between robots.

Table 1: Multiple Robot Makespan Descriptive Statistics.

Trans. Std.
Alg. Model Clos. Succ. Mean Dev. Med.

TCRA∗
Direct No

5/10 12m46s 00m51s 12m49s

Yes

Trans. No
Yes

STA
Direct No

Yes

Trans. No 6/10 15m56s 00m28s 16m01s
Yes 8/10 18m26s 01m02s 18m10s

Serial N/A N/A 7/10 25m40s 01m22s 26m00s

4 CONCLUSION
A multiple robot coordination system was introduced to deploy
and demonstrate plan merging algorithms in a physical real-world
setting. The demo showcases different plan merging algorithms
[7]. The multiple robot results were consistent with the simulated
evaluation results [7]. The TCRA∗ algorithm maximized simulta-
neous action execution and resulted in the shortest plan execution
duration. STA and the Serial Algorithm resulted in longer plan
execution duration. The algorithms support temporal uncertainty,
but do not address uncertain action outcomes. New algorithms will
be necessary due to the exponential growth in the action outcomes.
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