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ABSTRACT

Artificial intelligence (AI) planning models play an important role in
decision support systems for disaster management e.g. typhoon con-
tingency plan development. However, constructing an Al planning
model always requires significant amount of manual effort, which
becomes a bottleneck to emergency response in a time-critical situa-
tion. In this demonstration, we present a framework of automating a
domain model of planning domain definition language from natural
language input through deep learning techniques. We implement
this framework in a typhoon response system and demonstrate
automatic generation of typhoon contingency plan from official
typhoon plan documents.
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1 INTRODUCTION

Typhoon response systems demand time-critical decision making,
which expects a planning model to be implemented in an emergency
mode. In particular, many inputs to build an AI planning model
in order to generate a situation-aware typhoon contingency plan
are presented in the form of text e.g. typhoon response manuals,
a situational report or even a collection of messages from social
media platforms. This needs an intelligent agent that is able to read
natural language inputs and build an Al planning model accordingly.
It challenges a fundamental research issue of automating an Al
planning model, most of which focuses on learning the planning
model from available data [13].

In this research application, we choose the classical Al plan-
ning model - Planning Domain Definition Language (PDDL) 4, 9],
which has been well studied and enjoys wide applications in many
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fields [6], as the typhoon contingency planning model in the demon-
stration. Another benefit of using PDDL arises from its clear se-
mantics that facilitates the learning process particularly involving
a free text. A PDDL plan model contains two basic files: a domain
file and a problem file. A problem file specifies a plan goal, initial
states and a collection of objects involving in a planning problem,
and it reflects decision makers’ needs in the plan. In contrast, a
domain file encodes important properties of the planning models,
namely Predicates and Actions, that compose the planning dynamics
under uncertainty. In principle, the domain file is the key element
of a PDDL model and decides the planning quality when the PDDL
model is executed. The domain file specification requires a large
amount of domain knowledge and can not be built by a general
user in a straightforward way. Hence, the automatic construction
of a PDDL model lies in learning both Predicates and Actionsin a
domain file, namely domain model learning, from domain inputs.

There has seen growing interest in building domain models of
PDDL from natural language inputs [7, 12, 14]. The model learn-
ing is either conducted through the standard natural language
processing (NLP) techniques [2], e.g. OpenNLP [3] and Stanford
CoreNLP [8], or developed using a deep reinforcement learning
method [15]. However, most of the previous work still demands to
annotate the inputs of the natural language sentences and treats
the sentences in a separated way. It leads to more duplicate actions
than what are needed in a PDDL domain model. In this research,
we consider a more natural input where a text document or a se-
ries of messages are presented to an autonomous planning system.
This is a general setting in a typhoon response system since a
typhoon contingency plan development mainly depends on both
official documents prescribing response strategies and a steam of
live information in an emergency situation.

2 FROM TEXT TO PLAN MODELS

We are building an autonomous typhoon response system (ATRS)
for the purpose of generating typhoon tracking charts and devel-
oping typhoon contingency plans in practice. The backbone is an
operational planning model that can be constructed from available
information including data and text inputs. In this demonstration,
we show the PDDL domain model learning from text.

We present the end-to-end PDDL planning model development
framework in Fig. 1. This framework aims to generate both predi-
cates and actions for a domain model in PDDL. Instead of dealing
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Figure 1: A deep learning based framework for automating
a PDDL domain model.

with the inputs of individual sentences, we receive an entire para-
graph of text and convert the action extraction into a sequence
labelling problem. To identify a set of correct words ( Predicates and
Actions), we resort to deep learning based NLP techniques, e.g. bidi-
rectional encoder representations from transformers (BERT) [1], to
process the inputs and use a bidirectional long-short term memory-
conditional random field (BiLSTM- CRF) model [11] to learn an
action representation with a triplet (subject, predicate, object) from
the processed text. The BERT model functions as a segmentation
mechanism to divide the input paragraphs and subsequently trans-
forms the sentences and associated words into a low-dimension
semantic representation in a hidden feature space. The BILSTM-
CRF model deals with the sequence labelling problem and identifies
a proper set of predicates and actions from the vectors that embed
the features of the paragraphs. In our text, we add the constraints
of typhoon states and relevant control strategies in the CRF model
so that it could learn the triplets in a more accurate manner.

As the learning process may still mis-understand some termi-
nologies in the typhoon context, we implement a user interaction
component where users have chance to refine the learned triplets.
The refined triplets become the inputs to learning PDDL domain
models. By using the triplets, the system fills in the domain models
following the PDDL structure. In addition, a problem file is specified
in the user interaction and is compiled together with the domain
model to build a PDDL model. By doing this, we can develop a
typhoon contingency plan based on the learned PDDL model. As
we use pre-trained BERT models, the actual execution of building
the PDDL model is rather efficient. In addition, we could transfer
the knowledge in the built PDDL model to cope with a typhoon con-
tingency plan in different cities. It builds up a timely and consistent
response in ATRS.

3 AUTONOMOUS TYPHOON RESPONSE
SYSTEM

We implement a web-based autonomous typhoon response sys-
tem (ATRS) that has the main functionalities of generating a ty-
phoon contingency plan, plotting typhoon tracks and maintaining
a knowledge graph of typhoon response systems in Fig. 2. Po-
tential end-users include decision makers for typhoon emergency
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response, academic researchers in disaster management and the
general public.

The system first asks for a text document to be uploaded and then
processes the document to retrieve the corresponding triplets using
the deep learning framework. The identified triplets are presented
to users who could add more fields into the list. Subsequently, the
users can upload a problem file that joins with the learned domain
file to compose the final PDDL plan model. The model is to be
downloaded and run by some well developed PDDL solvers [10],
which provides a typhoon contingency plan to the users.

In addition, we provide the comparison between our techniques
and the latest domain model learning methods that is used for the
purpose of generating a storyline [5]. The users can choose either
of them to learn the domain model and expect similar interactions
to refine the learned outputs. In the current format, our new frame-
work has better performance than others, and can deal with general
text inputs. We intend to accommodate more PDDL model learning
techniques in the future, and improve all the ATRS functionalities
to publish the external link for a general use. The link of our demon-
stration video could be found below [16]. We add elaborative text
at the bottom of every screen in the video.
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Figure 2: Web-based autonomous typhoon response sys-
tem (ATRS) provides an automatic generation of typhoon
contingency plan through the PDDL model learning frame-
work.

4 CONCLUSION

Our new learning framework makes a further step of widening the
type of inputs for learning the PDDL model when a text document
is provided to a typhoon response system. We have implemented it
to generate a proper typhoon contingency plan in the autonomous
typhoon response system. This work contributes into an automatic
generation of planning models for intelligent agent planning and
scheduling in intelligent systems. Learning PDDL domain mod-
els still faces many challenges and user interaction is needed to
remedy the learning process in order to generate a precise PDDL
model. We are continuously improving the PDDL model learning
and providing more friendly user interactions in ATRS.
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