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ABSTRACT
The task in judgment aggregation is to find a collective judgment

set based on the views of individual judges about a given set of

propositional formulas. One way of guaranteeing consistent out-

comes is the use of sequential rules. In each round, the decision on

a single formula is made either because the outcome is entailed by

the already obtained judgment set, or, if this is not the case, by some

underlying rule, e.g. the majority rule. Such rules are especially use-

ful for cases, where the agenda is not fixed in advance, and formulas

are added one by one. This paper investigates the computational

complexity of winner determination under a family of sequential

rules, and the manipulative influence of the processing order on

the final outcome.
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1 INTRODUCTION
Judgment Aggregation (JA) is the task of aggregating individual

judgments over logical formulas into a collective judgment set. The

doctrinal paradox by Kornhauser and Sager [13] shows that if the

majority rule is used, the outcome may be inconsistent, even if

all underlying individual judgment sets are consistent. Since then

research related to JA has been undertaken in different disciplines.

The book chapter by Endriss [6] provides an overview of recent

research on JA in computational social choice, where for example

computer science methods are used to analyze problems originating

from social choice. The investigation of JA from a computational

complexity point of view has been initiated by Endriss et al. [10].

They focused on the winner problem, manipulation, and safety

of the agenda problems. Subsequently, e.g. Baumeister et al. [1],

Endriss and de Haan [8], and de Haan and Slavkovik [4] studied

the complexity of different JA problems.

An important task is to generate consistent collective outcomes,

that can, for example, be obtained through the use of sequential

rules, see List [17]. A sequential rule works in rounds and uses

some underlying JA rule, for example the majority rule as proposed

by Dietrich and List [5] (see also Peleg and Zamir [21]). In each

round the decision on one specific formula is made by checking
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whether either the formulas already contained in the collective

outcome logically entail an assignment for the formula at hand,

or otherwise, the outcome of the underlying rule for this formula

will be taken. This is reasonable, since sequential procedures occur

naturally by incremental decision-making. Since many real-world

decisions (e.g. contract agreements) are binding, while reversing

may be either favorable but expensive or impracticable, reasoning

happens gradually. List [17] discusses similar use cases of such

path-dependent procedures in detail. We focus on sequential rules

that rely on underlying quota rules, where a formula is included in

the collective outcome if a certain fraction of the judges approves it.

This includes the two extreme cases where a single approval is suf-

ficient or where an approval of all judges is needed or the common

case of a majority of 2/3. Such a majority is needed for Senate votes

on a presidential Impeachment, for the College of Cardinals in the

papal conclave, or in some cases for constitutional amendments.

Political referenda are examples of more diverse quotas.

Since JA may also be used in security applications, as mentioned

by Jamroga and Slavkovik [12], it is particularly important to have

consistent collective judgment sets that are efficiently computable.

The complexity of winner determination for different JA rules has

been studied by Endriss et al. [10] for the premise-based procedure

and the distance-based procedure and by de Haan and Slavkovik [4]

for scoring and distance-based rules. Along with many other rules,

both, Endriss and de Haan [8] and Lang and Slavkovik [16], studied

winner determination for the ranked agenda rule
1
and the maxcard

subagenda rule
2
, which are closely related to some of our results. In

this paper we investigate the computational complexity of several

problems related to winner determination for sequential JA rules

that use a specific quota rule as the underlying rule. Furthermore,

we study the problem of manipulative design, i.e., the question

whether there is an order in which the formulas should be processed

that yields some desired outcome. Additionally, we study majority-

preservation for sequential JA rules, see Lang and Slavkovik [16].

The idea for sequential rules is to maintain a maximal agreement

with the outcome of the majority rule (or any other underlying rule),

when applied sequentially. In this context we identify a correlation

between majority-preservation of sequential rules and distance

based methods (in particular the maxcard subagenda rule). Our

results range from membership in P to completeness in the second

level of the polynomial hierarchy.

Compared to previous work on the ranked agenda rule (se-

quential majority rule, where the processing order is based on

the majority support), see Endriss and de Haan [8] and Lang and

1
Also known in JA as Tideman’s ranked pairs (see Endriss and de Haan [8]) and in

similar variations as support-based procedure (see Porello and Endriss [22]) or leximax

rule (see Lang et al. [15]).

2
Also known in JA as Slater rule (see Endriss and de Haan [8]), max-num rule (see

Endriss [7]) or endpoint rule (for the hamming distance as metric, see Miller et al. [18]).
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Slavkovik [16], our results generalize and supplement respective

complexity results, since lower bounds hold for any quota and even

for a constant number of judges, implying para-NP-hardness. Addi-

tionally, we established matching upper bounds for all sequential

rules that rely on a complete and complement-free rule.

2 PRELIMINARIES
The technical framework mainly follows the definitions in En-

driss [6]. In JA we talk about a group [r ] of r ∈ N judges, where
[r ] denotes the set {1, . . . , r }. The judges judge over an agenda
Φ, which consists of boolean formulas in standard propositional

logic. In order to avoid double negations let ∼φ denote the com-

plement of φ, i.e., ∼φ = ¬φ if φ is not negated, and ∼φ = ψ if

φ = ¬ψ . Thereby, we assume Φ to be finite, nonempty and closed

under complement, i.e., for every φ ∈ Φ it holds that ∼φ ∈ Φ. Fur-
thermore, we assume Φ to be nontrivial, i.e., there exist at least
two formulas {φ,ψ } ⊆ Φ, such that {φ,ψ }, {∼φ,ψ }, {φ,∼ψ } and
{∼φ,∼ψ } are consistent, and we foreclose tautologies and contra-

dictions from Φ. We split the agenda Φ into two disjoint subsets

Φ+ and Φ−, where for all φ ∈ Φ+ it holds that ∼φ ∈ Φ−. Having the

agenda introduced, we define an individual judgment J ⊆ Φ as

a subset of Φ. We say that J is complete, if it holds for all φ ∈ Φ
that φ ∈ J or ∼φ ∈ J is true. We say that J is complement-free,
if it holds for all φ ∈ Φ that |{φ,∼φ} ∩ J | ≤ 1. Lastly, we define

J to be consistent, if there exists a boolean assignment for the

formulas in J , such that all formulas are satisfied at the same time.

We denote the set of all complete and consistent judgments over

Φ by J(Φ). For the set of judges [r ] we denote their profile of

individual judgments over Φ as P = (P1, . . . , Pr ) ∈ J(Φ)r . We

define a (resolute) judgment aggregation rule for an agenda Φ
and r judges, as a function R : J(Φ)r → 2

Φ
, mapping a profile

P ∈ J(Φ)r of individual judgments to a subset R(P) of Φ. We

say that R is complete/complement-free/consistent, if for ev-
ery profile P ∈ J(Φ)r it holds that R(P) is complete/complement-

free/consistent. Furthermore, we say that R is anonymous if it is
independent of the order of judges, i.e., R(P) = R(Pπ (1), . . . , Pπ (r ))
for all P ∈ J(Φ)r permutation π : [r ] → [r ]. Now, we define a fam-

ily of JA rules. Within the subsequent definition we define a special

case of the quota rules as defined by Dietrich and List [5].

Definition 2.1 (Quota Rules). Let Φ = Φ+∪Φ−,Φ+∩Φ− = ∅ be an

agenda, P ∈ J(Φ)r a profile of individual judgments and q ∈ [0, 1].

We define a quota rule with quota q as a JA rule Fq satisfying

(1) ∀φ ∈ Φ+ : φ ∈ Fq (P) ⇔ |{i ∈ [r ] | φ ∈ Pi }| ≥ ⌈q(r + 1)⌉ and
(2) ∀φ ∈ Φ− : φ ∈ Fq (P) ⇔ |{i ∈ [r ] | φ ∈ Pi }| ≥ ⌊(1−q)(r+1)⌋.

Since ⌈q(r + 1)⌉ + ⌊(1−q)(r + 1)⌋ = r + 1 holds for all 0 ≤ q ≤ 1,

it follows by the results from Dietrich and List [5] that all quota

rules as previously defined are complete and complement-free. F

denotes the set of all quota rules.

For an odd number of judges the majority rule equals the quota

rule with quota q = 1/2. The difference for an even number of

judges is that in case of a tie for some formula φ the quota rule exe-

cutes some tie-breaking mechanism by choosing the corresponding

formula from Φ−, whereas the majority rule neglects completeness

and does neither include this formula nor its negation.

We study sequential judgment aggregation rules in this pa-

per. The basic idea is to ensure consistency by checking in each

round whether the formulas contained in the collective outcome al-

ready fix the value for the formula at hand. This is formally denoted

by the entailment relation, where a |= b means that the value for b
is determined by a. To begin, we define the subsequently studied

sequential JA rules in a general way.

Definition 2.2 (Sequential K-Judgment Aggregation Rule). Let K

be a complete and complement-free JA rule. Furthermore, let Φ
be an agenda, P ∈ J(Φ)r a profile and π = (φ1, . . . ,φm ) an order

over Φ+. In order to obtain the aggregated judgment SK(P, π ) of
the sequential K-judgment aggregation rule, we proceed as

follows for 1 ≤ i ≤ m:

(1) If either (φ∗
1
∧ . . . ∧ φ∗i−1) |= φi or (φ

∗
1
∧ . . . ∧ φ∗i−1) |= ∼φi

holds, where φ∗j ∈ {φ j ,∼φ j } is the formula added in the

j-th iteration to SK(P, π ), we add φi or ∼φi respectively to

SK(P, π ),
(2) otherwise, we add {φi ,∼φi } ∩ K(P) to SK(P, π ).

Afterm iterationswe obtain the final aggregated judgment SK(P, π ).

As an example consider an agenda Φ with Φ+ = {a,b,a ∧ b}
and three judges with J1 = {¬a,b,¬(a ∧b)}, J2 = {a,¬b,¬(a ∧b)},
and J3 = {a,b,a ∧ b}. The majority rule returns the inconsistent

judgment set {a,b,¬(a∧b)}. Now, consider the sequential majority

rule with order π = (a,a∧b,b). In the first two steps a and ¬(a∧b)
are added to the outcome by majority, then the decision for b is

entailed by the formulas already considered and ¬b is included.

Observe that by our definition (i) any output SK(P, π ) is com-

plete and consistent with respect to the agenda Φ and (ii) if K is

anonymous then SK is anonymous, too. Combining (i) and (ii) with

List’s impossibility result [17], we obtain for underlying anonymous

rules K that the resulting judgment of a sequential JA rule SK de-

pends on the processing order over Φ+. Therefore, all previously
defined (anonymous) sequential JA rules are path-dependent.

Whenever we address a sequential JA rule with respect to some

JA rule K , we assume K to be complement-free and complete.

Subsequently, we introduce one more notation to exactly express

partially aggregated judgments in order to simplify notation.

Definition 2.3 (Partially Aggregated Judgment). Let Φ be an agen-

da, P ∈ J(Φ)r a profile for r judges, π an order over Φ+ and ψ ∈

Φ. We define the partially aggregated judgment SKψ (P, π ) ⊂

SK(P, π ) as the subset of the final aggregated judgment, for which

the order π was processed until, but excludingψ or ∼ψ respectively.

Observe that for everyψ ∈ Φ eitherψ itself or ∼ψ appears in π ,
ensuring that the previous definition is well-defined. In the follow-

ing, we will focus on sequential JA rules based on quota rules. For

the remaining parts of the paper, we assume that the reader is famil-

iar with the basics of computational complexity such as the classes

P, NP, the polynomial hierarchy as well as polynomial-time many-

one reductions ≤
p

m
. SAT denotes the satisfiability problem and

SAT its complement. For further reading, we refer to the textbook

by Papadimitriou [20].

3 THEWINNER PROBLEM
The use of JA rules in artificial intelligence technologies raises im-

portant computational questions. As the number of judges and/or

the number of formulas in the agenda may be high, it is impor-

tant to design fast algorithms to determine the collective outcome.

Main Track AAMAS 2021, May 3-7, 2021, Online

188



The computational study of the winner problem for JA was initi-

ated by Endriss et al [10]. They showed that it is polynomial-time

solvable for quota rules and the premise-based procedure, while it

is Θ
p
2
-complete for the distance-based procedure. Endriss and de

Haan [8] showed that the winner problem is Θ
p
2
-complete for some

JA rules related to known voting rules (e.g. the maxcard rule), ∆P
2
-

complete for the ranked agenda rule with a fixed tie-breaking and

Σ
p
2
-complete without a fixed tie-breaking. Lang and Slavkovik [16]

defined a slightly different problem for winner determination and

obtained completeness results in Θ
p
2
(e.g. for the maxcard rule)

and Π
p
2
(e.g. for the ranked agenda rule without tie-breaking) for

majority-preserving rules. We will emphasize relationships to the

former results at relevant passages. The formal definition of the

winner problem for a sequential JA rule SK is as follows.

SK-Winner (SKW)

Instance: An agenda Φ, a profile P ∈ J(Φ)r , an order π over

Φ+, and a formula φ ∈ Φ.
Question: Is φ ∈ SK(P, π ) true?

In the following, we analyze the computational complexity of

this problem. We start with its upper bound.

Theorem 3.1. SK-Winner is in ∆
p
2
ifK is efficiently computable.

Proof. Let I = (Φ, P, π ,φ) be a SKW instance and denote the

order by π = (φ1, . . . ,φm ). Without loss of generality we may

assume φ = φ j for one j ∈ {1, . . . ,m}, because if φ = ∼φk for some

k ∈ {1, . . . ,m}, we simply solve the instance I ′ = (Φ, P, π ,∼φ) and
invert its result.

First, we compute K(P) = {φ ′
1
, . . . ,φ ′m } in polynomial time.

Now, forφ1 wewill use the result ofK based on P to decide whether

to add φ1 or ∼φ1 to SK(P, π ). Furthermore, denote by φ∗
1
, . . . ,φ∗i−1

the elements added to SKφi (P, π ) in the first i − 1 iterations. Note,

that we add any φ ′i approved byK , if and only if we cannot deduce

∼φ ′i from the partially aggregated judgment. Consequently, in the

i-th iteration, we ask whether (φ∗
1
∧ . . .∧φ∗i−1) |= ∼φ ′i holds, which

is equivalent to asking whether there is no satisfying assignment for

(φ∗
1
∧ . . .∧φ∗i−1)∧φ

′
i , which can be verified in coNP. Consequently,

asking an NP-oracle whether this formula is satisfiable implies that

∼φ ′i is not entailed by previously added formulas. In this case, we

may add φ ′i ∈ K(P) directly to SK(P, π ), since it is irrelevant for
our purpose whether φ ′i is deduced or added by application of K .

Therefore, we require one NP-query per iteration, except for i = 1.

In the worst case, we have j =m and must posem − 1 consecutive

NP-queries overm iterations during our computation. Note that

m−1 is in O(|I|) and thus, we can solve I in ∆
p
2
. Thereby, it follows

that SKW∈ ∆
p
2
holds. □

In the construction above all queries rely on previous iterations

and therefore, cannot be parallelized. Hence, Θ
p
2
membership does

not follow, which is in line with the general assumption of ΘP
2
⊂

∆
p
2
. Now, having shown an upper bound for the computational

complexity of the general winner problem, we like to introduce

a lower bound for the computational complexity of the winner

problem with respect to quota rules from F . In order to do so, we

first introduce the ∆
p
2
-complete problem Odd Max Satisfiability,

as defined by Krentel [14] (see also Große et al. [11]).

Odd Max Satisfiability (OMS)

Instance: A set X = {x1, . . . , xn } of boolean variables and a

boolean formula α(x1, . . . , xn ).
Question: Is α satisfiable and xn = 1 in α ’s lexicographically

maximum satisfying assignment x1 . . . xn ∈ {0, 1}n?

Theorem 3.2. Let Fq ∈ F . Then, SFq -Winner is ∆
p
2
-complete.

Proof. From the previous theorem we know that SFqW ∈ ∆
p
2

holds, since Fq is efficiently computable, complement-free and com-

plete. Therefore, it is sufficient to show OMS ≤
p

m
SFq -Winner.

Let I = (X ,α) be an OMS instance with X = {x1, . . . , xn }.
We construct in time polynomial in |I | a SFqW instance I ′ =

(Φ, P, π ,φ) as follows. Thereby, we separate the construction into

two cases depending on the value of Fq ’s quota q. Due to space

constraints, we only present the proof for q ≤ 1/3, the remaining

case can be shown by a similar approach.

Assumeq ≤ 1/3.We defineΦ+ = {β1, β2,α
′,α ′∧x1, . . . ,α

′∧xn },
where β1, β2, and γ are new variables, and α ′ = (α ∧γ )∨¬β1∨¬β2.
Furthermore, we define the order π over Φ+ as π = (β1, β2,α

′,

α ′ ∧ x1, . . . ,α
′ ∧ xn ) and the judges’ profile P as follows.

P β1 β2 α ′ α ′ ∧ x1 . . . α ′ ∧ xn

P1 0 1 1 1 . . . 1

P2 1 0 1 1 . . . 1

We add a formulaψ ∈ Φ+ to the aggregated judgment Fq (P) if
and only if |{i ∈ [r ] | ψ ∈ Pi }| ≥ ⌈q(r + 1)⌉ holds. For r = 2 and

q ≤ 1/3 we have ⌈q(r + 1)⌉ ≤ 1, so that Fq (P) = Φ+ holds.
We set φ = α ′ ∧ xn . Furthermore, no consistency condition is

violated since α ′
can be satisfied for every individual judgment via

β1, β2, even when α is unsatisfiable. In order to prevent α ′
from

turning into a tautology when α is one, we added γ .
Now, we prove that I ∈ OMS ⇔ I ′ ∈ SFq -Winner holds. For

the direction from left to right assume that I is a yes-instance.

After the first two iterations of the SFq -rule we have SF
α ′

q (P, π ) =

{β1, β2}. By assumption, there exists a satisfying assignment for

α and trivially also for ¬γ . Therefore, in the third round we can

neither entail ¬α ′ ∈ SFq (P, π ) nor α
′ ∈ SFq (P, π ). Thus, we add

α ′
by applying the Fq -rule. Consequently, after the third iteration

we have SFα
′∧x1

q (P, π ) = {β1, β2,α
′}. From this fact it follows that

SFα
′∧x1

q (P, π ) |= α ∧ γ |= α,γ holds, which is in accordance with

our assumption that α is satisfiable. Now, we would like to decide

whether to add α ′∧x1 or ¬(α
′∧x1) to SFq (P, π ). Given the current

aggregated judgment and knowing that γ ≡ true, it holds that

α ′∧x1 = [(α∧γ )∨¬β1∨¬β2]∧x1 ≡ α∧x1. Furthermore, knowing

from α ∧ γ ≡ α ′ ∈ SFq (P, π ) that α should be true, we distinguish

three cases for α ∧x1: (i) If x1 = 1 is the only option for a satisfying

assignment of α , we can deduce α ′ ∧ x1 ∈ SFq (P, π ). (ii) If x1 = 0

is the only option for a satisfying assignment of α , we can deduce

¬(α ′ ∧ x1) ∈ SFq (P, π ). (iii) If there are satisfying assignments

for α with both, x1 = 1 and x1 = 0, we must apply the Fq -rule
and obtain α ′ ∧ x1 ∈ SFq (P, π ). Note that the last option always

favors the bigger satisfying assignment, i.e., preferring x1 = 1 over

x1 = 0. We can apply the previous argument for j ∈ {1, . . . ,n}
and deduce for all formulas α ′ ∧ x j whether to add them or their
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corresponding negation ¬(α ′ ∧ x j ) to SFq (P, π ). Doing so yields a

maximum satisfying assignment for α , represented by [xi = 1] ⇔

[α ′∧xi ∈ SFq (P, π )]. By assumption, we know that xn = 1 holds for

a maximum satisfying assignment of α . Thus, α ′ ∧ xn ∈ SFq (P, π )
holds after the last iteration and therefore, I ′ ∈ SFq -Winner is

true.

For the direction from right to left assume now that I is a no-

instance. We study two separate cases.

Case 1:α is satisfiable but for itsmaximum satisfying assignment

xn = 0 holds. In the third iteration we add α ′
to SFq (P, π ). As

already argued in the first part of the proof, for 1 ≤ j ≤ n we add

α ′ ∧ x j to SFq (P, π ) if and only if x j = 1 holds in α ’s maximum

satisfying assignment. By assumption, we know that xn = 0 is true

in α ’s maximum satisfying assignment. Therefore, we end up with

α ′∧xn < SFq (P, π ) and can conclude that I ′ < SFq -Winner holds.

Case 2: α is not satisfiable. After the first two iterations of the

SFq -rule we have SF
α ′

q (P, π ) = {β1, β2}. By assumption, in the third

iteration it holds that

α ′ = (α ∧ γ ) ∨ ¬β1 ∨ ¬β2 ≡ (false ∧ γ ) ∨ ¬β1 ∨ ¬β2 ≡ false.

Consequently, we deduce that ¬α ′
must hold and thus add ¬α ′

to

SFq (P, π ). Obviously, this leads to the fact that we add ¬(α ′ ∧ x j )
to SFq (P, π ) for 1 ≤ j ≤ n. Therefore, we have α ′ ∧ xn < SFq (P, π )
and hence, I ′ < SFq -Winner.

Finally, we have I ∈ OMS if and only if I ′ ∈ SFq -Winner and

obtain OMS ≤
p

m
SFq -Winner. □

Endriss and de Haan [8] showed that the winner problem for the

ranked agenda rule (with fixed tie-breaking) is ∆
p
2
-hard. However,

the corresponding proof requires a linear number of judges.We note

that slightly modifying our previous proof by adding a third judge,

supporting both, β1 and β2, but no other formula, allows us to reuse

the same proof (i.e., the given order π ) for the ranked agenda rule.

This yields an even stricter result for the ranked agenda’s winner

problem’s complexity, namely para-∆
p
2
-hardness with respect to

the number of judges.

Corollary 3.3. The winner problem for the ranked agenda rule

with fixed tie-breaking is para-∆
p
2
-hard when parameterized by the

number of judges.

Note that our lower bound proofs in Section 5may be adapted in a

similar way (by adding a third judge only approving corresponding

βj ) to also handle the ranked agenda rule.

4 COUNTING TECHNIQUE
Within this section, we introduce a polynomial-time computable

technique used to construct a boolean formulaψB
k . The formula is

able to count the number of satisfied boolean variables for a given

boolean assignment T of a set of boolean variables B in the sense

that a truth assignment evaluates the formula to true if and only if

at most k ∈ N of the variables in B for T are true.

In some sense our technique generalizes the already known

technique used by Cook in his famous theorem to prove that SAT is

NP-complete, cf. [2]. Cook’s technique describes an approach how

to formulate a boolean formula for a set of boolean variables which

is true if and only if exactly one of the boolean variables is true.

Lemma 4.1. Let B = {x1, . . . , xn } be a set of boolean variables and
k ≤ n. We can construct a formulaψB

k from a set of boolean variables

B′
with |B′ | = nk in time polynomial in n, such thatψB

k evaluates to

true if and only if at most k of the n boolean variables in B are set to

true.

Proof. In a first step, we create k copies {x1i , . . . , x
k
i } for every

boolean variable xi in B. Then, we define a boolean formula Xi for

every 1 ≤ i ≤ n as follows Xi =
[∨

j ∈[k ]

(
x
j
i ∧

∧
ℓ∈[k]\{j } ¬x

ℓ
i

)]
∨[∧

j ∈[k ] ¬x
j
i

]
. Consequently, Xi is satisfied if and only if at most

one of the k copies of xi is satisfied. Note that every Xi can be

constructed in time in O(n2) since |Xi | = k(k + 1) ≤ n(n + 1) holds.
In a second step, we construct k boolean formulas Yj for 1 ≤ j ≤

k as follows Yj =
[∨

i ∈[n]

(
x
j
i ∧

∧
ℓ∈[n]\{i } ¬x

j
ℓ

)]
∨

[∧
i ∈[n] ¬x

j
i

]
.

Thereby, Yj is satisfied if and only if at most one of the n variables

in the j-th set of copies {x
j
1
, . . . , x

j
n } is satisfied. Note that we can

also construct Yj in time in O(n2) since |Yj | = n(n + 1) holds.
In a third step, we define two more boolean formulas, namely

Y =
∧k
j=1 Yj and X =

∧n
i=1 Xi . Consequently, Y is satisfied if and

only if for every j, 1 ≤ j ≤ k , at most one variable in the set

{x
j
1
, . . . , x

j
n } is satisfied. Analogously, X is satisfied if and only if at

most one of the copies for every xi , 1 ≤ i ≤ n, is satisfied. Finally,
settingψB

k = Y ∧ X obviously completes the construction.

It remains to show the correctness of the construction. To do

so, first we explain how to derive a boolean assignment T ′
for

B′ = {x1
1
, . . . , xk

1
, . . . , x1n, . . . , x

k
n } out of a boolean assignment T

for B = {x1, . . . , xn }. Therefore, denote by ρ(B,T ) = {x ∈ B |

T (x) = true} the set of variables set to true byT . We constructT ′

as follows. Write ρ(B,T ) = {xi1 , . . . , xim } form ≤ n. For 1 ≤ j ≤ m,

we set x
(j mod k )+1
i j

to true and all other variables in B′
to false.

The formal proof of correctness is omitted due to space con-

straints. □

We will use this technique as follows. Let B = {x1, . . . , xn } be
a set of boolean variables, k ∈ N and α(B) some boolean formula

over B. At some point, we must know whether a given assignment

T satisfies α(B), while no more than k of the boolean variables in

B should be set to true. In order to decide this fact efficiently, we

first globally replace each variable xi ∈ B that appears in α by∨
j ∈[k ] x

j
i and denote the result as αk . Then, we construct a new

boolean formula α ′
k = αk ∧ψB

k and check whether α ′
k is true for

the corresponding assignment T ′
. If this is the case, we know that

α(T (B)) is true, while no more than k of the n variables in B are

true for T . In order to keep our notation as simple as possible, we

write α ′ = α ∧ψB
k .

5 PROBLEMS OF MANIPULATIVE DESIGN
While the usage of sequential rules guarantees consistency, at the

same time the gradual aggregation approach leads to problems

of manipulative design for anonymous underlying rules. Follow-

ing the impossibility result by List [17], sequential quota rules are

path-dependent, i.e., the aggregated judgment is determined by

the processing order of formulas and might be altered at will if

said order is chosen accordingly. Realizing the amount of power
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a manipulator in control over the processing order has, we study

how hard it is to compute whether at least one (respectively ev-

ery) order guarantees a partial judgment to be included into the

aggregated one. Although List already proposed said approach

as Manipulation by Agenda Setting, we deviate in studying two

variants. In particular, we study the SK-Winner-Design and the

SK-Winner-Robustness problem and will show that it is more

inefficient for sequential quota rules to solve proposed problems of

manipulative design than the corresponding winner problem. The

formal definition of the Winner-Design problem is as follows for

a given sequential JA rule SK .

SK-Winner-Design (SKD)

Instance: An agenda Φ, a profile P ∈ J(Φ)r , and a set of formu-

las J ⊆ Φ.
Question: Is there an order π = (φ1, . . . ,φm ) over Φ+ such that

J ⊆ SK(P, π )?

Analogously we formulate the almost complementary decision

problem SK-Winner-Robustness (SKR). The input remains un-

changed but the question is whether J ⊆ SK(P, π ) holds for every
processing order π over Φ+. In order to determine the computa-

tional complexity of SKD and SKR, we require some notation.

Definition 5.1. LetK be a complete and complement-free JA rule,

Φ an agenda, and P ∈ J(Φ)r a profile for r judges. Furthermore,

slightly abusing notation, let π = (φ1, . . . ,φm ) be an order over

K(P) and denote by SK(P, π ) the corresponding aggregated judg-

ment. LetKπ = K(P)∩SK(P, π ) denote the set of formulas in the ag-

gregated judgment also supported byK , and Dπ = SK(P, π )\K(P)
those not supported by K . For Kπ = {k1, . . . ,kp } and Dπ =
{d1, . . . ,dm−p } let (Kπ ,Dπ ) = (k1, . . . ,kp ,d1, . . . ,dm−p ) denote

an order, where all formulas in Kπ are permuted arbitrarily at the

first p places.

This enables us to formulate the following lemma.

Lemma 5.2. Let K be a complete and complement-free JA rule, Φ
an agenda and P ∈ J(Φ)r a profile for r judges. Then, for every order
of the form π ′ = (Kπ ,Dπ ) it holds that SK(P, π ′) = SK(P, π ).

The intuition is, that we can rearrange every order π in such a

way that all formulas supported byK are at the beginning of π and

all remaining formulas follow afterwards. Hence, instead of looking

for a specific order it is sufficient to search for a consistent subset

K ⊆ K(P), such that K |=
∧
φ ∈J φ holds. Doing so enables us to

solve a SK-Winner-Design instance by setting π = (K, J , . . .).
Note that for q = 1/2, the problems SFq -Winner-Design and

SFq -Winner-Robustness are closely related to the winner deter-

mination problem for the ranked agenda rule without fixed tie-

breaking as studied by Endriss and de Haan [8] and Lang and

Slavkovik [16]. Both investigate hardness for similar decision prob-

lems, where the processing order is additionally required to be in

accordance with the number of supporting judges (i.e., for any order

π = (φ1, . . . ,φm ) over F
1/2(P) it holds that |{i ∈ [r ] | φ j ∈ Pi }| ≥

|{i ∈ [r ] | φ j+1 ∈ Pi }|). We continue to study the complexity for

two widely separated cases, namely manipulative design for com-

plete judgment sets (Section 5.1) and for single formulas (Section

5.2). An overview of our results is given in Table 1.

5.1 Manipulative Design for Judgment Sets
First, let us investigate the introduced problems of manipulative

design for a given judgment which is complete and consistent.

Note that we do not consider inconsistent judgments, since those

are neither desirable nor a possible output. The ensuing theorem

derives an upper bound of coNP for a broad class of sequential JA

rules.

Theorem 5.3. For every polynomial-time computable JA rule K

that is complete and complement-free, it holds that SKD ∈ coNP

if the desired subset of formulas equals a complete and consistent

judgment J ∈ J(Φ).

Proof. We precompute K = J ∩ K(P) and D = J \ K(P) in
polynomial time. Since J ∈ J(Φ),K andD are consistent. Following

Lemma 5.2 it is sufficient to verify whether each formula in D can

be derived from K , since we then may construct an order of the

form π ′ = (K,D). Hence, we have to check whether

(∧
φ ∈K φ

)
|=(∧

ψ ∈D ψ
)
. This is equivalent to checking whether there is no

assignment satisfying

(∧
φ ∈K φ

)
∧¬

(∧
ψ ∈D ψ

)
and hence in coNP.

□

For the class of quota rules the following theorem establishes

the matching lower bound and proves coNP-hardness.

Theorem 5.4. For every quota rule Fq ∈ F and every given com-

plete and consistent judgment J ∈ J(Φ) it is coNP-complete to solve

the corresponding SFqD problem.

Proof. Recall that we assume every quota rule Fq to be complete

and complement-free for every quota q. To show coNP-hardness,

we reduce a SAT instance I = (α) to a SFqD instance I ′ = (Φ, P, J ).
We define Φq = {(α ∧ γ ) ∨ ¬β1 ∨ ¬β2, β1, β2}, where γ , β1, and β2
are new literals, and choose Φ+ = Φq for q ≤ 1/3 and Φ− = Φq
otherwise. We consider a profile consisting of two judges with

Pi = {(α ∧ γ ) ∨ ¬β1 ∨ ¬β2, βi ,¬β3−i } for i ∈ [2]. Note that by

construction it holds that Fq (P) = Φq . Lastly, we set J = P1 and
show that equivalence holds. For the direction from left to right

assume I is a yes-instance and thus, α is unsatisfiable. Choosing

the order π = ((α ∧ γ ) ∨ ¬β1 ∨ ¬β2, β1, β2) over Φq results in

SFq (P, π ) = J . For the direction from right to left assume I is a no-

instance and thus, α is satisfiable. Then, Fq (P) is already consistent

and SFq (P, π ) = Fq (P) , J holds for every order π . Together with
Theorem 5.3 we obtain coNP-completeness. □

Turning to the robustness problem, we require that the desired

judgment set J is contained in the collective outcome for every pos-

sible order. This is only possible if each of the formulas is contained

in the collective judgment set of the underlying formula.

Theorem 5.5. For every agenda Φ, profile P ∈ J(Φ)r and com-

plete and consistent judgment J ∈ J(Φ), the corresponding SKR-

instance (Φ, P, J ) is satisfiable if and only if K(P) = J for a complete

and complement-free procedure K .

Note that for efficiently computable underlying rules and partic-

ularly for sequential quota rules SFq the corresponding problem is

decidable in P.
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Table 1: Summary of complexity results for different problems regarding sequential JA rules SFq .

Winner Winner-Design Winner-Robustness Supported-Judgment

J ∈ J(Φ) φ ∈ Φ J ∈ J(Φ) φ ∈ Φ

∆
p
2
-c., Thm. 3.1, 3.2 coNP-c., Thm. 5.3, 5.4 Σ

p
2
-c., Thm. 5.7, 5.9 in P, Thm. 5.5 Π

p
2
-c., Lem. 5.6 NP-c., Thm. 5.12, 5.13

5.2 Manipulative Design for Single Formulas
Before investigating the complexity of SKD and SKR separately,

we want to point out that they are tied closely together, when

testing whether a single formula is in the aggregated judgment.

Lemma 5.6. For every complete and complement-free procedureK ,

every agenda Φ, every profile P ∈ J(Φ)r and every formula φ ∈ Φ,

it holds that (Φ, P, {φ}) ∈ SKR ⇔ (Φ, P, {∼φ}) ∈ SKD.

Above lemma follows from complement-freeness and complete-

ness and has also been shown by Lang and Slavkovik [16]. In the

following, we will only show complexity results for SKD, while

results for SKR follow directly. We continue to establish upper

bounds.

Theorem 5.7. For every polynomial-time computable, complete

and complement-free JA rule K and a judgment J = {φ} ⊂ Φ

containing a single formula, it holds that SK-Winner-Design ∈ Σ
p
2
.

Proof. In order to solve an instance I = (Φ, P, {φ}) of the de-
cision problem SK-Winner-Design, we must determine whether

there exists an order π such that φ ∈ SK(P, π ) holds. Exploiting our
previous observations, we know from Lemma 5.2 that it is sufficient

to identify a consistent subset K ⊆ K(P) with K |= φ.
Thus, we first calculate K(P) in polynomial time and can nonde-

terministically guess a subset K = {φ1, . . . ,φk } ⊆ K(P). Next, we
verify whether K is consistent by asking our NP-oracle whether

there exists a satisfying assignment for φ1 ∧ . . . ∧ φk . In a last

step, we must determine whether K |= φ holds. Thereby, we have

(φ1∧ . . .∧φk ) |= φ. To determine whether this formula is satisfiable

can again be solved in coNP. Consequently, we can pose a second

NP-query to find out whetherK entails φ, resulting in φ ∈ SK(P, π )
for π = (K,φ, . . .). Overall, we require a polynomial amount of non-

deterministic computation steps as well as two NP-oracle queries

to calculate an answer for I and thus, SK-Winner-Design ∈ Σ
p
2

holds. □

Combining the former theorem with Lemma 5.6, we derive the

following corollary.

Corollary 5.8. For every complete and complement-free JA rule

K computable in polynomial time and a judgment J = {φ} ⊂ Φ, it

holds that SK-Winner-Robustness ∈ Π
p
2
.

In order to identify lower bounds for sequential quota rules, let

us first define the decision problem Succinct Set Cover (SSC),

which was proven to be Σ
p
2
-complete by Umans [23]. The instance

consists of a collection of 3-DNF formulas S = {φ1, . . . ,φn } over
m variables and k ∈ N. The question is whether there is a subset

N ′ ⊆ [n] with |N ′ | ≤ k and

∨
i ∈N ′ φi ≡ true?

Theorem 5.9. For every quota rule Fq ∈ F and a judgment J =
{φ} ⊂ Φ consisting of a single formula, it holds that the problem

SFq -Winner-Design is Σ
p
2
-complete.

Proof. Due to Theorem 5.7 it is enough to show Σ
p
2
-hardness.

We reduce Succinct Set Cover to SFq -Winner-Design. Let I =

({φ1, . . . ,φn },k) be a SSC instance. To construct I ′ = (Φ, P, {φ}),
we first introduce some auxiliary variables. Let B = {x1, . . . , xn }
be a set of boolean literals, ψB

k defined as described in Section 4

and φ ′i = (φi ∧ xi ) for 1 ≤ i ≤ n. For our construction we set

φ = ψB
k ∧

[(∨
i ∈[n] φ

′
i

)
∨ γ

]
∧β1∧β2 and Φq = B∪{β1, β2}∪{ψB

k ∨

¬β1∨¬β2,∼φ} with new literals βj and γ . Note that by including γ ,
the agenda cannot contain any contradictions or tautologies. More

precisely, bothψB
k ,φ and their negations are satisfiable, even if every

φi is a contradiction. The judges’ profile consists of two judgments

Pi = Φq \ {βi } ∪ {¬βi } for i ∈ {1, 2} and the individual judgments’

consistency is not violated, since ∼φ is always satisfiable by any

¬βj . Finally, we set Φ+ = Φq for q ≤ 1/3 and Φ− = Φq otherwise.

By construction it holds that Fq (P) = Φq and, slightly abusing

notation, we consider any order π over Φq instead of Φ+. Clearly,
this construction can be done in polynomial time. Subsequently,

we prove I ∈ SSC ⇔ I ′ ∈ SFqD.

(⇒) Assume I is a yes-instance. Consequently, there exists a set

N ′ = {i1, . . . , im } ⊆ [n]withm ≤ k such that
∨
i ∈N ′ φi ≡ true. As

order we choose π = (β1, β2,ψ
B
k ∨¬β1 ∨¬β2, xi1 , . . . , xim ,∼φ, . . .),

where the order of the elements after ∼φ is irrelevant. Applying

the SFq -rule, we may add each formula in the firstm + 3 iterations

by using the quota rule Fq , since ψ
B
k and m ≤ k variables from

B are satisfiable simultaneously, even if both βj are set to true.

Now, we show that φ = ψB
k ∧

[(∨
i ∈[n] φ

′
i

)
∨ γ

]
∧ β1 ∧ β2 may be

deduced from the initial assumption by showing that each formula

in {ψB
k ,

∨
i ∈[n] φ

′
i , β1, β2} can be deduced separately. First, note that

each βj trivially entails itself and β1∧β2∧
(
ψB
k ∨ ¬β1 ∨ ¬β2

)
|= ψB

k
holds. For the remaining formula it holds that∧

i ∈N ′

xi ⇒
∨
i ∈[n]

φ ′i

⇔
∨
i ∈N ′

¬xi ∨
∨
i ∈[n]

(φi ∧ xi )

⇔
∨
i ∈N ′

((¬xi ∧ φi ) ∨ (¬xi ∧ ∼φi )) ∨
∨
i ∈[n]

(φi ∧ xi )

⇔
∨
i ∈N ′

φi ∨
∨
i ∈N ′

(¬xi ∧ ∼φi ) ∨
∨

i ∈[n]\N ′

(φi ∧ xi ), (1)

where the left disjunction in (1) already is a tautology by assumption.

Consequently, it holds that SF
∼φ
q (P, π ) ⇒ φ. Hence, we conclude

φ ∈ SFq (P, π ), resulting in I ′ ∈ SFqD.
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(⇐) Assume I is a no-instance. Consequently, there does not

exist any N ′ ⊆ [n]with |N ′ | ≤ k , such that
∨
i ∈N ′ φi ≡ true holds.

By contradiction, we assume I ′
to still be a yes-instance. Then,

there exists an order π over Φq such that

φ = ψB
k ∧

©­«
∨
i ∈[n]

φ ′i
ª®¬ ∨ γ

 ∧ β1 ∧ β2 ∈ SFq (P, π )

holds. We deduce that β1, β2 ∈ SFq (P, π ) and ψ
B
k ∨ ¬β1 ∨ ¬β2 ∈

SFq (P, π ) hold as well due to consistency. Hence, at most k of the

variables xi , 1 ≤ i ≤ n, are satisfied. Let us denote the satisfied
variables by M = {xi1 , . . . , xik′ } and the unsatisfied variables by

B\M = {xik′+1 , . . . , xin }. Furthermore, we can imply the following

out of φ ∈ SFq (P, π ):

true ≡


∨
i ∈[n]

φ ′i

 ∨ γ ≡


∨
i ∈[n]

(φi ∧ xi )

 ∨ γ
≡

[∨
i ∈M

(φi ∧ xi )

]
∨


∨

i ∈[n]\M

(φi ∧ xi )

 ∨ γ
≡

[∨
i ∈M

(φi ∧ true)

]
∨


∨

i ∈[n]\M

(φi ∧ false)

 ∨ γ
≡

[∨
i ∈M

φi

]
∨ false ∨ γ ≡

[∨
i ∈M

φi

]
∨ γ .

Yet, we know that φ must have been entailed by previously added

formulas because φ < Fq (P). Hence, we conclude that for the given

order π it holds that SF
∼φ
q (P, π ) |= (

∨
i ∈M φi )∨γ , although neither

γ nor any φi shares any literals with formulas from SF
∼φ
q (P, π ).

Overall, (
∨
i ∈M φi ) ∨ γ can only be entailed if the disjunction con-

tains a tautology. Since γ is a literal, this implies that

∨
i ∈M φi ≡

true with |M | ≤ k would be a solution to I, which is a contradic-

tion to our assumption. Therefore, such an order π cannot exist

and I ′
must be a no-instance, too. □

Again, we derive a corollary for SFqR from the previous theorem

and Lemma 5.6.

Corollary 5.10. For every quota rule Fq ∈ F and a judgment

J = {φ} ⊂ Φ, it holds that SFq -Winner-Robustness is Π
p
2
-complete.

Endriss and de Haan [8] investigate the complexity of existential

winner-determination for the ranked agenda rule without a fixed tie-

breaking which is shown to be Σ
p
2
-hard. Similarly to corollary 3.3,

we may improve this result, as our proof of Theorem 5.9 can easily

be adapted (by adding a third judge only approving βj ) to also hold
for the ranked agenda rule without fixed tie-breaking.

Corollary 5.11. The winner problem for the ranked agenda rule

without fixed tie-breaking is para-Σ
p
2
-hard when parameterized by

the number of judges.

5.3 Supported Judgment
We conclude this section by formulating a problem, which formally

relates to problems of manipulative design, although it is clearly

motivated contrarily. In terms of acceptance, it is desirable for an

aggregated judgment to be reasonable for the participating judges.

Hence, for sequential JA rules it should be preferable to choose

an order such that at least k formulas supported by a rule K are

included in the aggregated judgment.

SK-Supported-Judgment (SKSJ)

Instance: An agenda Φ with |Φ+ | =m, a profile P ∈ J(Φ)r for
r judges and an integer k ≤ m.

Question: Is there an order π = (φ1, . . . ,φm ) over Φ+ such that

|K(P) ∩ SK(P, π )| ≥ k holds?

We start by establishing a general upper bound.

Theorem 5.12. For every efficiently computable JA ruleK it holds

that SK-Supported-Judgment is in NP.

The omitted proof relies on Lemma 5.2. For the class of sequential

quota rules we provide a matching lower bound by adapting the

proof of Theorem 5.4.

Theorem 5.13. For every quota rule Fq ∈ F it holds that SFq -
Supported-Judgment is NP-complete.

Lastly, we highlight the significance of Lemma 5.2 for building a

connection between our sequential rules and distance based rules.

While it is not directly obvious, for q = 1/2, SFqSJ is related to the

maxcard subagenda rule as studied by Lang and Slavkovik [16]. In

general, SKSJ coincides with askingwhether there exists a complete

and consistent judgment J ∈ J(Φ), such that h(K(P), J ) ≤ m − k
(where h(K(P), J ) denotes the hamming distance between K(P)
and J ). If there exists such an order π , for the resulting outcome

SK(P, π ) it clearly holds thath(K(P), SK(P, π )) ≤ m−k . Vice versa,
if there exists a judgment J ∈ J(Φ)withh(K(P), J ) ≤ m−k , we con-
struct a valid order π following Lemma 5.2 by arbitrarily positioning

the supported formulas at the beginning. These observations may

be an interesting tool for further research on computational com-

plexity for counting problems.

6 SEQUENTIAL RULES AND THE MAXIMUM
SUBAGENDA RULE

In this section we describe how we can link the sequential JA rules

that we’ve studied to other well-known majority preserving JA

rules. Particularly, we highlight the case with the majority rule

as underlying rule to our sequential procedure. Hereby, we show

that the maximum subagenda rule
3
(MSA), as defined by Lang and

Slavkovik [16], exactly outputs the set of aggregated judgments

which can also be derived by the sequential majority rule with

suitable processing orders applied. This connection enables us to

transfer some of our complexity results to related non-sequential

procedures. In order to make the most out of this connection, we

slightly generalize the MSA rule defined in [16] as described after-

wards.

Definition 6.1 (Generalized Maximum Subagenda Rule). For an

agenda Φ and a set S ⊆ Φ we define max(S, ⊆) ⊂ 2
S
as the set

consisting of inclusion maximal subsets of S with respect to con-

sistency. More formally, for S ′ ⊆ S it holds that S ′ ∈ max(S, ⊆)
if and only if S ′ is consistent and there exists no consistent set

3
Also known in JA as maximal Condorcet rule (see Lang et al. [15]), while the outcome

is also denoted as Condorcet admissible set (see Nehring et al. [19]).
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S ′′ ⊆ S with S ′ ⊂ S ′′. For any complete and resolute JA rule K , we

define the (irresolute) generalized maximum subagenda rule
MSAK : J(Φ)r → 2

J(Φ)
as follows. Let P ∈ J(Φ)r be a profile of

judgments and J ∈ J(Φ) a judgment, then J ∈ MSAK (P) holds if
and only if there exists a set S ∈max(K(P), ⊆) with S ⊆ J .

The MSA rule is irresolute, i.e., it returns a set of judgments as re-

sult, and equals the definition presented by Lang and Slavkovik [16]

for K = F
1/2. Having the MSA rule defined, we make the subse-

quent observation, establishing a connection between the MSA rule

and our earlier studied sequential quota JA rules.

Theorem 6.2. Let P ∈ J(Φ)r be a profile and J ∈ J(Φ) a com-

plete and consistent judgment. Then, J ∈ MSAK (P) holds if and only
if there exists an order π over Φ+ with SK(P, π ) = J .

Proof. We begin with the direction from left to right. By defini-

tion,MSAK (P) contains every complete and consistent judgment

J , such that there doesn’t exist a consistent set K ⊆ K(P) satisfying
J∩K(P) ⊂ K . Note that this especially holds for |K | = |J∩K(P)|+1,
i.e., J ∩ K(P) cannot be extended by a single formula from K(P).
Due to consistency of J there is a satisfying truth assignment for

J ∩ K(P). Yet, no such truth assignment satisfies any formula in

K(P) \ J and must thus satisfy its complement. Hence, it holds that

J ∩ K(P) must entail J \ K(P). Now, following a similar argumen-

tation as in Lemma 5.2, for π = (J ∩ K(P), J \ K(P)) we obtain

SK(P, π ) = J and therefore, the right side holds, too.

For the direction from right to left assume that there is an out-

come J = SK(P, π ) with J < MSAK (P). Note that J is consistent
by definition and hence, its intersection with K(P) is consistent,
too. By assumption, J ∩K(P) cannot be inclusion maximal inK(P)
with respect to consistency as otherwise J ∈ MSAK (P) would fol-

low. Therefore, let K ∈ max(K(P), ⊆), such that J ∩ K(P) ⊂ K ⊆

K(P) holds. Now, we construct an order π ′
where J ∩ K(P) is at

the beginning of π ′
, immediately followed by K \ J ∩ K(P), and

all remaining formulas afterwards. With Lemma 5.2 it holds that

J = SK(P, π ′) is true. Yet, K ⊆ SK(P, π ′) holds as well since K is a

consistent subset of K(P) processed at the beginning of π ′
. Hence

we conclude that K ⊆ J must hold, which is a contradiction to

J ∩ K(P) ⊂ K ⊆ K(P). □

The previous theorem can be applied to transfer complexity

results for our decision problems in Section 5. For complete and

resolute JA rules K , asking whether there exists an order π , such
that some condition on the output SK(P, π ) is satisfied, coincides
with asking whether there is a judgment J ∈ MSAK (P) satisfying
the same condition. In particular, for Fq = 1/2 and a single formula

φ the problem SFq -Winner-Design coincides with the existential

MSA-Winner problem, while SFq -Winner-Robustness coincides

with the universal variant.
4

This observation has multiple consequences. First of all, Lang

and Slavkovik [16] showed the universal MSA-Winner problem

is Π
p
2
-complete, which aligns with our result from Corollary 5.10.

However, the referenced result by Lang and Slavkovik requires a

linear number of judges while two judges are sufficient for our

4
Slightly abusing notation, we consider existential (∃J ∈ MSAK (P ) : {φ } ⊆ J ) and
universal variants of MSAK -Winner (∀J ∈ MSAK (P ) : {φ } ⊆ J ) for irresolute
rules.

proof. Consequently, our proof allows a stricter result than the one

by Lang and Slavkovik. On the other hand our results also hold

if we do not restrict MSA to the majority rule as underlying JA

rule. In particular, upper bounds hold for every complete, efficiently

computable, resolute rule, while hardness results hold for every of

our quota rules.

The following corollaries follow from Theorems 5.7, 5.9 and 6.2,

and only refer to existential problems, which imply related Π
p
2
re-

sults for the universal variants, by additionally following Lemma 5.6.

Corollary 6.3. For any complete, efficiently computable, resolute

JA rule K it holds that MSAK -Winner is in Σ
p
2
.

Corollary 6.4. For every quota rule Fq ∈ F and even a constant

number of judges it holds that MSAFq -Winner is Σ
p
2
-complete.

We explicitly highlight that the previous corollary holds for

q = 1/2, and thereby enhances previous results on MSA.

7 CONCLUSION
We introduced the complexity theoretic study of problems related

to sequential JA rules with a special focus on quota rules as the

underlying rule. Our results are summarized in Table 1.We obtained

completeness for a number of different complexity classes which

show that the problems differ substantially even though they are

very related. The study of sequential rules is very important since

they model real-world decision making. To ensure consistency with

the already decided formulas, it is important to solve the winner

problem. On the other hand, we studied the manipulative power a

designer of such a procedure possesses. The increase in complexity

for the case where a single formula is the desired set indicates that

the problem is actually harder than winner determination itself. As

a task for future research other problems related to sequential JA

rules have to be studied. Our study was mostly limited to the class of

quota rules as underlying procedures and this should obviously be

extended to more diverse underlying rules. De Haan [3] follows an

approach to identify new ways of representing agendas via specific

boolean formulas, such that the complexity of various problems

related to JA becomes tractable, when the agenda is represented in a

more limited way. Furthermore, he formulated the determination of

the complexity of the winner problem for until yet unconsidered JA

rules, which he hasn’t studied, as future work. In a second step, the

author suggests that one can use the tractable languages identified

in his paper to study whether the complexity of the problems for

the newly investigated JA rules can be decreased. Within our paper

we have done the first part and determined the complexity of the

winner problem for complete and consistent sequential JA rules.

As future work we like to study how the tractable languages as

defined by de Haan [3] affect our complexity results and possibly

could even enable lower bounds. These results, when enabling

tractability, might have enormous impact on the practical usage of

the sequential JA rules we studied, since they are used in various

scenarios and situations, as described earlier.
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