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ABSTRACT
Recent impossibility results have shown that strategyproofness

is difficult to obtain for multiwinner voting rules, especially in

combination with proportionality. In this paper, we attempt to

identify cases where strategyproofness can be established by con-

sidering manipulation on party-list profiles. We distinguish be-

tween three types of manipulation—subset-manipulation, superset-

manipulation, and disjoint-set-manipulation. Our focus is the class

of irresolute Thiele rules. For all three types of manipulation, we

are able to establish that Thiele rules are strategyproof on party-list

profiles for several well-known preference extensions. For superset-

and disjoint-set-strategyproofness, we can extend this result to all

preference extensions. We are also able to show that Thiele rules

are fully strategyproof for optimistic agents on these profiles.
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1 INTRODUCTION
In multiwinner voting, agents vote on a set of candidates with the

goal of electing a committee, or a subset of the candidates [14].

Applications for multiwinner voting rules range from parliamen-

tary elections, to determining a list of nominees for an award, to

online recommender systems. This paper studies strategyproofness

of approval-based multiwinner voting rules [23]. In this setting,

each agent is asked to provide a subset of candidates that she ap-

proves of, and a set of winning candidates is chosen based on the

approvals of the agents. As with other areas of social choice the-

ory, and important aspect of studying multiwinner voting rules

is determining their susceptibility to strategic manipulation. For

single-winner voting rules, a seminal impossibilty result by Gib-

bard [19] and Satterthwaite [31] establishes the difficulty of finding

strategyproof voting rules. Similar impossibility results have re-

cently been obtained for approval-based multiwinner voting rules,

demonstrating that strategyproof rules are difficult to come by if

we would like them to ensure some level of proportional repre-

sentation.
1
Peters [30] establishes that no resolute approval-based

rule—one that always returns a single winning committee—can be

both proportional and strategyproof, even for very weak notions

1
We do not explicitly define any proportionality axioms in this paper. We refer to Aziz

et al. [1] and Fernández et al. [15] for an overview of proportional representation in

multiwinner voting.
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of proportionality and strategyproofness. Kluiving et al. [24] show

that the impossibility still remains when moving to irresolute rules.

Our aim in this paper is to examine whether there are any possible

“escape routes” for these impossibility results.

We study manipulation in general, but devote focus in particular

to three types of manipulation: the first, subset-manipulation, is

sometimes called free-riding [20, 32]. This is a simple and often

successful way of manipulating multiwinner elections. Free-riding

occurs when an agent omits some alternative from their set of

approved candidates, and in doing so, obtains a better outcome

for herself. We also study what we call superset-manipulation,

and disjoint-set-manipulation, defined analogously. We note that

immunity to free-riding is the strategyproofness notion used by

Peters [30], meaning their impossibility result holds even for this

limited type of manipulation. We give an example of free-riding

using Proportional Approval Voting (PAV), a rule known to satisfy

strong proportionality axioms [1]. PAV maximises the total utility

of agents, where an agent’s utility for a committee containingm of

her approved candidates is determined by the following formula.

1 +
1

2

+
1

3

+ . . .
1

m

Example 1.1 (Free Riding). Consider the profile depicted below.

Here, agents i1, i2, and i3 all approve the candidates a,b and c , while
agents i4 and i5 approve candidates b, c and d . Suppose we want to
elect a committee comprising three candidates. In this profile, PAV

will elect the committee {a,b, c} as the unique winning committee.

a b c d

i1

i2

i3

i4

i5

If the last voter i5 drops b and c from her approval set (represented

in light grey) and submits the approval set {d}, however, the unique
winner will be {b, c,d}—her most preferred committee. The candi-

dates b and c have enough support without agent i5, and dropping

them from her approval set results in the inclusion of candidate d
as PAV attempts to ensure all voters are represented in the outcome.

Thus i5 has an incentive to manipulate in this profile by submitting

a subset of her truthful approval set. ⋄

Because strategyproofness results for approval multiwinner vot-

ing have largely been negative, we consider weakening require-

ments to identify scenarios where we can obtain positive results.

We do this by considering strategyproofness on a particular type
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of input—so called, party-list profiles. These are profiles where

each candidate belongs to a single party, and agents approve of

parties as a whole rather than any subset of the candidates. We

examine whether manipulation is possible from such profiles to

any other profile, not just those in the party-list domain. Focusing

on a more well-behaved domain of profiles is one way to obtain

strategyproofness. The most well-known such domain restriction is

likely the single-peaked preference domain of Black [6], but many

others are found in the literature [11, 13]. Our approach differs

from the majority of such results as we do not stipulate that the

agent manipulates to a profile within the restricted domain. Study-

ing restricted domains has already been done for approval-based

multiwinner voting. For example, Elkind and Lackner [12] define

several novel restrictions for this setting, and give a polynomial

time algorithm for computing the result of PAV for many of these

restrictions, including the party-list domain.

Strategyproofness on party-list profiles is particularly appealing

as it provides an argument for using open party-lists in multiwinner

elections, rather than closed party-lists, without incurring needless

risk of strategic voting. A closed-party list election only allows

voters to approve a party as a whole—meaning they approve all

candidates from a given party, and only those candidates. An open

party-list election lets agents pick and choose candidates across all

parties, thereby allowing agents to express more nuanced opinions,

but also presenting them more opportunities for manipulation. Of

course, we cannot know ahead of time whether the closed-list

ballots are in fact expressive enough. Strategyproofness on party-

list profiles guarantees that we only risk strategic manipulation

under the open-list system if the closed-list system did not allow

voters to express their true opinion in the first place.

Our focus in this paper is a class of multiwinner voting rules

know as Thiele methods [21, 33].

Related Literature. Strategic manipulation in multiwinner elec-

tions has been studied from several angles. Lackner and Skowron

[25] study strategyproofness from an axiomatic point of view, show-

ing that Approval Voting is the only strategyproof rule that also

satisfies monotonicity and independence of irrelevant alternatives,

as well as the only rule satisfying their SD-strategyproofness axiom.

Yang and Wang [34] study strategic aspects of multiwinner voting

relative to various restrictions on the input. Laslier and Van der

Straeten [26] study strategic voting of multiwinner approval voting

in a probabilistic setting. Bredereck et al. [9] examine the related

notion of bribery in a multiwinner setting.

On the more computational side, Bartholdi and Orlin [5] show

that determining whether there exists a possible manipulation of

Single Transferable Vote is NP-complete, establishing that com-

putational complexity can be a barrier to manipulation also for

multiwinner voting. More recently, the computational complexity

of strategic manipulation in multiwinner voting has been studied

by Aziz et al. [2], Bredereck et al. [10] and Meir et al. [27]. As an

example of a more negative result, Obraztsova et al. [29] give poly-

nomial time algorithms for manipulation of multiwinner scoring

rules.

On the related notion of robustness, Bredereck et al. [8] examine

how robust the outcome of multiwinner voting rules are to small

changes in the input. While they interpret this as the possibility

of mistakes made by agents when submitting their preferences,

we can also think of these small perturbations as strategic actions

by the voters. Gawron and Faliszewski [18] study robustness in

approval-based multiwinner rules, and Misra and Sonar [28] study

robustness in restricted domains.

Contribution. We study three types of manipulation in multiwin-

ner elections of Thiele methods. We define a class of preference

extensions—functions extending agents’ preferences over commit-

tees to preferences over sets of committees—using the Gärdenfors

extension as a starting point. For this class of extensions, we show

that free-riding is not possible on party-list profiles when using

a Thiele method. We are also able to establish a corresponding

result for superset-manipulation and disjoint-set-manipulation for

all preference extensions. For the optimistic preference extension,

we show that Thiele methods are not manipulable in any manner

on party-list profiles, meaning they are fully strategyproof on these

profiles for optimistic agents.

Paper Structure. The rest of the paper is organised as follows. We

first present the framework and relevant definitions in Section 2.

In Section 3 we state our main result pertaining to free-riding.

We finally present our results on superset-strategyproofness and

disjoint-set-strategyprofness for all preference extensions in Sec-

tion 4, as well as our stronger strategyproofness result for optimistic

agents. We conclude in Section 5.

2 PRELIMINARIES
Let C be a finite set of candidates, and N = {1, . . . ,n} a finite set of
agents. A profileA = (A1, . . . ,An ) is a vector of approval sets, where
Ai ⊆ C is the set of candidates approved by agent i in the profileA.
The set of supporters NA

a of a candidate a in profile A is the set of

agents who approve it. We write P(C) to denote all subsets of C—in

other words, all possible approval sets—and P(C)n to denote the

set of all profiles for n agents. We write Pk (C) to mean the set of

all k-size subsets of C. We will often call these sets committees. For
two profilesA andA′

and an agent i ∈ N , we writeA =−i A′
—and

say they are i-variants—if Aj = A′
j for all j ∈ N \ {i}.

We define voting rules relative to an outcome size k . An (irres-

olute) approval-based k-committee rule f takes as input a profile

A and returns a set f (A) of k-sized committees—or k-committees.
Formally f is a function from profiles to k-sized subsets of C:

f : P(C)n → 2
Pk (C) \ {∅}

2.1 Thiele Methods
The rules we will examine in this paper are all so-called Thiele
methods [21, 33]. Given a vector of weightsw = (w1,w2, . . . ), we

define the utility

uAi (C,w) =

|Ai∩C |∑
x=1

wx

of agent i for committee C , given the approval set Ai . Thew-score

of a committee C in a profile A is

uAN (C,w) =
∑
i ∈N

uAi (C,w)

When the weight vector w is clear from context, we will omit

it from the notation and simply write uAi (C). A k-committee rule

Main Track AAMAS 2021, May 3-7, 2021, Online

224



f is a Thiele method (or Thiele rule) if for a (nonincreasing) vector

of nonnegative weightsw = (w1,w2, . . . ), wherewi ≥ wi+1, and a

profile A, the rule f includes a committee C in the outcome if and

only if C is a k-committee with a maximalw-score in A.
Thiele methods are based on the notion of diminishing returns

for the agents—the second representative gained does not increase

the agents’ utility as much as the first representative. Thus, tasked

with deciding whether to give one agent a second representative

or to give another agent their first, Thiele rules will never opt for

the former over the latter.

Proportional Approval Voting (PAV) is the Thiele method defined

by weights (1, 1
2
, 1
3
, . . . ). PAV has been shown by Aziz et al. [1]

to satisfy a strong proportional representation axiom—extended

justified representation, and is therefore of particular interest.

2.2 Preferences and Strategyproofness
As agents submit approval sets, we need to explicitly specify their

preference ranking over committees. We define agent i’s prefer-
ences over k-committees ⪰i (with strict part ≻i ) as follows: For

two k-committees C and C ′
, it is the case that C ⪰i C

′
if and only

if |Ai ∩C | ≥ |Ai ∩C ′ |. We write C ∼i C
′
if C ⪰i C

′
and C ′ ⪰i C—

meaning agent i is indifferent between the two sets. Agents will

never be confronted with committees of different sizes, so such

committees are considered incomparable. Note that ⪰i is defined

relative to Ai , what we take to be the agent’s truthful approval set.

Preference Extensions. Because the committee rules we consider

are irresolute—meaning they sometimes return multiple winning

committees—we need to account for preferences over sets of com-

mittees. We do this by defining a preference extension.2 A prefer-

ence extension e maps any given preference relation ⪰ over k-
committees in Pk (C), to a relation ⪰e (with strict part ≻e ) over

sets of k-committees. For an agent i with preference relation ⪰i
over committees in A, we write ⪰ei to denote her preferences over

sets of committees, extended according to e . We say an agent has

e-preferences, if ⪰ei is her preference relation over sets of alterna-

tives. For all preference orders we have X ≻ei Y if X ⪰ei Y and

Y ⪰̸e
i X . For preference extensions, we have the following (very

weak) requirement:

▶ X ≻ei Y implies that there exist some x ∈ X and y ∈ Y such

that x ≻i y and {x ,y} ⊈ X ∩ Y .

We highlight—and define—two well-known preference exten-

sions, the Optimistic extension, which we refer to as o, and the

Gärdenfors preference extension [17], which we refer to as д. For any
X and Y in Pk (C), where ⪰i is a preference order over committees

of size k , we have

X ⪰oi Y if and only if there is some x ∈ X s.t. x ⪰i y for all y ∈ Y

We say an agent has optimistic preferences (or is an optimistic

agent) if her preferences are extended according to the Optimistic

extension. This extension has a very natural interpretation, as is

implied by the name; when comparing two sets, an optimistic agent

operates under the assumption that their top choice within each

set will be chosen. For the Gärdenfors extension, we have X ⪰
д
i Y

if and only if one of the following three conditions is satisfied:

2
For a thorough treatment of preference extensions we refer the reader to Barberà

et al. [4], and for their relevance to strategyproofness we refer to Barberà [3].

(i) X ⊂ Y and x ⪰i y for all x ∈ X and y ∈ Y \ X
(ii) Y ⊂ X and x ⪰i y for all x ∈ X \ Y and y ∈ Y
(iii) Neither X ⊂ Y nor Y ⊂ X , and x ⪰i y for all x ∈ X \ Y and

y ∈ Y \ X

The Gärdenfors extension dictates that if one set is to be preferred

over another, then new elements added should be preferred to

those already in the initial set. Similarly, the elements removed

should be less preferred. The elements the two sets have in common

are therefore not included in any comparison, as the Gärdenfors

extension only looks at how the two sets differ. We say an agent

has Gärdenfors-preferences if her preferences are extended to sets

of alternatives according to the Gärdenfors extension.

We now define a larger class of preference extensions which

includes both the Gärdenfors and Optimistic preference extensions,

as well as the Fishburn and Kelly preference extensions [16, 22].
3

We say a preference extension e is a general Gärdenfors preference
extension in case that X ≻ei Y only if one of the following holds:

(i) X 1 Y and there exists x ∈ X \Y and y ∈ Y such that x ≻i y
(ii) X ⊂ Y , x ⪰i y for all x ∈ X and y ∈ Y \ X , and there exists

x ∈ X and y ∈ Y \ X such that x ≻i y.

Note that while the Gärdenfors preference extension is one specific

preference extension, general Gärdenfors extensions are a class

of preference extensions, of which the Gärdenfors extension is a

member. We give an example below of preferences that fall into

the class of general Gärdenfors preferences that are not captured

by the specific extensions we have mentioned.

Example 2.1 (General Gärdenfors Preference). Suppose we

have an agent i with preferences over shapes (represented on the

left), who prefers all triangles to all circles. We can define the fol-

lowing preference over sets of shapes: If X is a subset of Y , X ≻i Y
if and only if condition (ii) above is satisfied—the agent only wants

to move to a subset—thereby excluding some possibilities without

adding new ones—when certain guarantees are met. Otherwise, the

agent prefers the outcome with the best ratio of triangles to circles.

△1,△2,△3,△4

⃝1,⃝2,⃝3

△1 △2 △3 ⃝1 ⃝2

△3 △4 ⃝2 ⃝3

With such preferences, agent i would prefer a set of three triangles

and two circle to one with two of each (represented on the right).

This is an example of a type of preference that can be captured by

the class of general Gärdenfors preferences. In this specific instance,

the Gärdenfors extension would not be able to compare the two

sets, as each set contains an element that is strictly preferred to an

element (only) in the other; △4 ≻i ⃝1, and △1 ≻i ⃝3. An optimistic

agent would be indifferent between the two outcomes. ⋄

3
In the interest of space, we do not define the Fishburn and Kelly extensions. Their

membership in the class is implied by their relation to the Gärdenfors extension (see,

for example, Brandt and Brill [7]).
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Strategyproofness.We now define the three types of manipula-

tion we consider in this paper: subset-manipulation—or free-riding,

superset-manipulation, and disjoint-set-manipulation. We then de-

fine their corresponding strategyproofness axioms.

A rule f is manipulable by agent i in the profile A, under pref-
erence extension e , if there exists another profile A′ =−i A such

that f (A′) ≻ei f (A). We say an agent is able to free-ride if A′
i ⊂ Ai .

Free-riding is particularly relevant for rules that attempt to achieve

some level of representation for all voters. A free-rider omits a

popular candidate from their approvals so this candidate does not

count toward their representation. A rule f is superset-manipulable
by agent i if A′

i ⊃ Ai , and disjoint-set-manipulable if A′
i ∩Ai = ∅.

A rule f is strategyproof for a preference extension e if it cannot
be manipulated in any profile by an agent with e-preferences. It is
immune to free-riding for a preference extension e if no agent with

e-preferences can free-ride in any profile, superset-strategyproof if it
cannot be superset-manipulated, and disjoint-set-strategyproofness
if it cannot be disjoint-set-manipulated.

2.3 The Party-List Domain
We restrict our attention in this paper to manipulation on party-list

profiles. A profile A is a party-list profile if for all i, j ∈ N , either

Ai = Aj or Ai ∩Aj = ∅. We say a rule is strategyproof on party-list
profiles—or party-list-strategyproof—for a preference extension e if
no agent with e-preferences can manipulate in a party-list profile.

As we touched up in Section 1, party-list profiles have practical

relevance for multiwinner elections. We can also show that our

strategyproofness result do not hold for other domain restrictions

that exist for dichotomous preferences [12], independent of the

preference extension. The following example demonstrates this,

suggesting that the party-list domain is indeed the most fruitful

avenue to explore.
4

Example 2.2. Recall the profile from Example 1.1. When agent

i5 submits her truthful approval set, PAV elects {a,b, c} as the

unique winning committee. If she submits a subset of her true

approval set she obtains a better outcome. Both outcomes are single

commitees, making the preference extension irrelevant. The initial

profile in the example satisfies restrictions based on orderings of

both candidates and voters such as the Candidate Extremal Interval,

Voter Extremal Interval, and Weakly single-crossing requirements

defined by Elkind and Lackner [12]. This of course means PAV

cannot be immune to free riding on any of these restricted domains

or for any weaker restriction. ⋄

3 FREE-RIDING
Recall that free-riding describes when an agent submits a subset of

their truthful approval set, in order to obtain a better outcome. We

show that free-riding on party-list profiles is not possible for agents

with general Gärdenfors preferences. We will also see, however,

that there are quite reasonable scenarios where such manipulation,

even on party-list profiles, remains possible. We first establish two

Lemmas.

4
We do not define these restrictions, and refer to the original paper by Elkind and

Lackner [12] for a full overview.

Ai

A′
i

C

S

Figure 1: Approval setsAi andA′
i in relation to committeeC.

Grey area is Cstart. To construct C∗, add candidates from A′
i

until the set reaches desired size or we run out of candidates.

We write ⪰′
i to mean agent i’s preference order over committees,

under the assumption that A′
i is the agent’s truthful approval set—

i.e.C ′ ⪰′
i C if |A′

i ∩C
′ | ≥ |A′

i ∩C |. Lemma 3.1 identifies cases where

the preference orders ⪰i and ⪰′
i coincide.

Lemma 3.1. For profiles A =−i A′ and a Thiele rule f such that
C ∈ f (A) and C ′ ∈ f (A′), C ′ ≻i C implies C ′ ≻′

i C .

Proof. Let f be a Thiele rule defined by weight vector w . As

C ∈ f (A), we know thew-score of C in profile Amust be at least

as high as that ofC ′
. We write this as follows, separating the utility

of agent i from the utilities of agents in N \ {i}:

uAi (C) +
∑

j ∈N \{i }

uAj (C) ≥ uAi (C) +
∑

j ∈N \{i }

uAj (C
′)

By assumption, we know that uAi (C) < uAi (C
′), so in order for the

w-score of C to be at least as high as that of C ′
, agents in N \ {i}

must—in a sense—collectively prefer C to C ′
:∑

j ∈N \{i }

uAj (C) >
∑

j ∈N \{i }

uAj (C
′)

AsA =−i A′
, the utility of an agent in N \ {i} for any committee

remains the same relative to A and A′
—in other words uAj (C) =

uA
′

j (C), and uAj (C
′) = uA

′
j (C ′) for all j ∈ N \ {i}. Thus, we have∑

j ∈N \{i }

uA
′

j (C) >
∑

j ∈N \{i }

uA
′

j (C ′). (1)

Finally, C ′ ∈ f (A′) implies thatw-score of C ′
in profile A′

is at

least as high as that of C . This, together with Equation (1) implies

uA
′

i (C ′) > uA
′

i (C)—or C ′ ≻′
i C—as desired. □

We now prove a slightly more complex lemma that we will

utilise multiple times throughout the paper. Lemma 3.2 establishes

the existence of a particular committee C∗
in the initial outcome,

whenever an agent submits a subset of their initial approvals.

Lemma 3.2. Let f be a Thiele rule. For a party-list profile A, and
an i-variant A′ =−i A where A′

i ⊂ Ai , C ∈ f (A) implies that there
is some k-committee C∗ ∈ f (A) such that

▶ C∗ ∼i C , and
▶ for C ′ ∈ f (A′) we have that C ′ ≻i C implies (Ai ∩C∗) ⊆ A′

i .

Proof. Let S = (Ai ∩ C) \ A′
i . This is the set of all candidates

that Ai and C agree on, except those also approved by A′
i . We will

be buildingC∗
by starting withCstart = C \S and adding candidates
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until we reach a committee of size k . See Figure 1 for a visual

representation of these sets and how they relate to each other.

We add candidates to Cstart as follows:

▶ If |A′
i \Cstart | ≥ |S |—meaning if there are enough candidates

in A′
i to fill the |S | “open spots”—we add candidates from

A′
i \Cstart until we reach a committee C∗

such that |C∗ | = k .
▶ Otherwise, we add all candidates inA′

i to the committee. We

then fill the remaining “open slots” with candidates from S
until we reach a committee C∗

of size k .

Because A is a party-list profile, it is clear from the construction

of C∗
that uAj (C

∗) = uAj (C) for all j ∈ N—as C and C∗
only differ

on alternatives in Ai , and the two committees are of equal size. As

C ∈ f (P), it must therefore also be the case that C∗ ∈ f (P).
In order to prove the second part of the statement, suppose

C ′ ∈ f (A′) and C ′ ≻i C . Suppose further |A
′
i \Cstart | ≱ |S |. This

means we exhausted all candidates in A′
i when building C∗

, and so

A′
i ⊆ C∗

. Because A′
i is contained in C∗

, we know that C∗ ⪰′
i C

′
.

However as C∗ ∈ f (A) and C ′ ≻i C∗
, Lemma 3.1 tells us that

C ′ ≻′
i C

∗
, which is, of course, a contradiction.

As it cannot be the case that C ′ ≻i C
∗
and |A′

i \Cstart | ≱ |S |, it
remains only to show that |A′

i \Cstart | ≥ |S | implies (A ∩C∗) ⊆ A′
.

If |A′
i \ Cstart | ≥ |S |, then we know that all candidates added to

Cstart to create C∗
must come from A′

i . In other words, we know

that C∗ \Cstart ⊆ A′
i—so Ai ∩ (C∗ \Cstart) ⊆ A′

i . Additionally, the

candidates that remain in Cstart ∩ Ai are only those that are also

in A′
i—so (Cstart ∩Ai ) ⊆ A′

i . Putting this together, we can see that

(Ai ∩C∗) ⊆ A′
i Thus, we have shown that C ′ ∈ f (A′) and C ′ ≻i C

implies (Ai ∩C∗) ⊆ A′
i . □

Broadly, Proposition 3.3 establishes two things. If free-riding

brings about a ‘more preferred’ committee in the manipulated out-

come, then 1) that committee will already have been in the initial

outcome, and 2) this committee will be accompanied by a ‘less pre-

ferred’ committee in the manipulated outcome. We take advantage

of both these facts, separately, in results that will build on this one.

Proposition 3.3. Let f be a Thiele rule. Given an agent i ∈ N ,
profiles A =−i A′—where A is a party-list profile, and approval sets
A′
i ⊂ Ai : if C ′ ≻i C for committees C ′ ∈ f (A′) and C ∈ f (A),

then there exists a committee C∗ such that C ∼i C
∗, and {C∗,C ′} ⊆

f (A) ∩ f (A′).

Proof. Let f be a Thiele rule. Suppose we have two profiles A
and A′

—where A is a party-list profile—and an agent i such that

A =−i A, and A′
i ⊂ Ai . Suppose further that we have committees

C ′ ∈ f (A′) and C ∈ f (A), such that C ′ ≻i C . As A is a party-list

profile, Lemma 3.2 tells us there must be someC∗ ∈ f (A) such that

C∗ ∼i C and (Ai ∩C∗) ⊆ A′
i .

We first show that C∗ ∈ f (A′). Note that (Ai ∩ C∗) ⊆ A′
i and

A′
i ⊂ Ai implies that |Ai ∩ C∗ | = |A′

i ∩ C∗ |. We also know that

Aj = A′
j for all agents j , i . Sowe conclude that |Aj∩C

∗ | = |A′
j∩C

∗ |

for all j ∈ N . We can express this in terms of agents’ utilities.

uAN (C∗) = uA
′

N (C∗) (2)

Because C∗ ∈ f (A), it must hold that uAN (C∗) ≥ uAN (C ′). This

together with Equation 2 implies that

uA
′

N (C∗) ≥ uAN (C ′)

Additionally, as A′
i ⊂ Ai , we know that |Ai ∩C ′ | ≥ |A′

i ∩C ′ |. Since

all other agents submit the same approval set in both profiles, we

have uAN (C ′) ≥ uA
′

N (C ′), which means

uA
′

N (C∗) ≥ uA
′

N (C ′)

As f is a Thiele rule, and C ′ ∈ f (A′), this implies that C∗ ∈ f (A′).
We show that C ′ ∈ f (A) in a similar manner. First, since C ′ ∈

f (A′), by definition of f we know that uA
′

N (C ′) ≥ uA
′

N (C∗). We use

Equation 2 again to conclude uA
′

N (C ′) ≥ uAN (C∗). Since A =−i A′

and A′
i ⊂ Ai , we have u

A
N (C ′) ≥ uA

′
N (C ′), which implies uAN (C ′) ≥

uAN (C∗). As f is a Thiele rule and C∗ ∈ f (A), it must be the case

that C ′ ∈ f (A).
So we have {C∗,C ′} ⊆ f (A) ∩ f (A′), as desired. □

We will build on Proposition 3.3 in several of our strategyproof-

ness results. Theorem 3.5 below is the first of these. We first state a

Corollary that follows from Proposition 3.3 alone.

Corollary 3.4. On party-list profiles, Thiele methods are immune
to free-riding by optimistic agents.

We are now ready to state the main result of this section.

Theorem 3.5. On party-list profiles, Thiele methods are immune
to free-riding by agents with general Gärdenfors preferences.

Proof. Let f be a Thiele rule defined by weight vectorw . Sup-

pose we have a party-list profile A, and profile A′
such that A =−i

A′
, and A′

i ⊂ Ai . Let e be a general Gärdenfors extension. We want

to show that f (A′) ⊁e
i f (A). To this end, suppose we have commit-

tees C ∈ f (A) and C ′ ∈ f (A′) such that C ′ ≻i C . Proposition 3.3

then tells us that C ′ ∈ f (A). Thus, if f (A′) 1 f (A), it cannot be
the case that f (A′) ≻ei f (A) for any general Gärdenfors preference

e—as f (A′) ≻ei f (A) implies there is some C ′ ∈ f (A′) \ f (A) that
is strictly preferred by agent i to some C ∈ f (A).

So suppose f (A′) ⊂ f (A). From Lemma 3.2 we know there exists

a committee C∗ ∈ f (A) such that C∗ ∼i C , and (Ai ∩ C∗) ⊂ A′
i .

Note that because A′
i ⊂ Ai we also have that |A′

i ∩C∗ | = |Ai ∩C∗ |.

To prove our claim, we need to consider two cases.

Case 1: Suppose Ai ⊆ C ′
—meaning C ′

is one of agent i’s top
choices. We show that this implies C ′ < f (A′), reaching a contra-
diction. We know that uA

′
N (C∗) = uAN (C∗) as |A′

i ∩C∗ | = |Ai ∩C∗ |

and A =−i A′
. As {C∗,C ′} ⊆ f (A), we also know that uAN (C∗) =

uAN (C ′), so we can conclude

uA
′

N (C∗) = uAN (C ′) (3)

Finally, as Ai ⊆ C ′
by assumption, we know that |Ai ∩C ′ | = |Ai |.

As A′
i ⊂ Ai , this implies that |A′

i ∩C ′ | < |Ai ∩C ′ |, which, asA and

A′
are i-variants, implies that uA

′
N (C ′) < uAN (C ′). Using Equation 3,

we can thus conclude that uA
′

N (C ′) < uA
′

N (C∗), meaning C ′ < f (A′).
So we have reached a contradiction.

Case 2: Suppose instead that Ai ⊈ C ′
. We then need to consider

two sub-cases.

▶ If for all a ∈ Ai \ A
′
i we have a ∈ C ′

, then this means that

Ai \C
′ ⊆ A′

i . Because A
′
i ⊂ Ai , there must exist candidates

a ∈ Ai ∩ C ′
such that a < A′

i , and b ∈ Ai \ C
′
such that

b ∈ A′
i . Let C̃ = C ′ \ {a} ∪ {b}. Consider that for all j , i ,

Main Track AAMAS 2021, May 3-7, 2021, Online

227



C̃ ∼′
i C

′
—candidates a and b are either both accepted by j or

both rejected. For agent i , clearly C̃ ≻′
i C

′
, so we have that

uA
′

N (C̃) > uA
′

N (C ′)

This implies C ′ < f (A′), contradiction our initial assump-

tion.

▶ Suppose instead that there exists some a ∈ Ai \A
′
i such that

a < C ′
. Because Lemma 3.1 tells us that |A′

i ∩C ′ | > |A′
i ∩C |,

we know thatA′
i∩C

′
is nonempty. Thus there must also exist

an alternative b ∈ A′
i ∩C

′
, and clearly b ∈ Ai . We construct a

committee C̃ = C ′\{b}∪{a}. Because thew-score of the two

committees C ′
and C̃ are the same in A, and we know that

C ′ ∈ f (A), it must also be the case that C̃ ∈ f (A). However,
C̃ < f (A′), as C ′ ∼′

j C̃ for all j , i , and C ′ ≻′
i C̃ , meaning C ′

has a strictly higherw-score in A′
. So C̃ ∈ f (A) \ f (A′). We

know from Proposition 3.3 that there is some C∗ ∈ f (A′) s.t.
C∗ ∼i C . As C̃ ∼i C

′
, we know that C̃ ≻i C

∗
. Therefore it

cannot be the case that f (A′) ≻ei f (A).

Thus we can conclude that for any general Gärdenfors preference

e , we have f (A′) ⊁e
i f (A). □

The following is an immediate consequence of Theorem 3.5, and

covers three very well-known preference extensions.

Corollary 3.6. On party-list profiles, Thiele methods are im-
mune to free-riding for the Gärdenfors, Fishburn, and Kelly preference
extensions.

We now give an example of a specific preference extension that

is not captured by our definition of general Gärdenfors preferences,

and show free-riding on party-list profiles becomes possible. Our

example also shows that if tie-breaking is based on a linear or-

der that is known by the agents, then free-riding again becomes

possible—meaning our results do not extend to resolute rules that

are based on lexicographic tie-breaking.

Example 3.1 (Preferences not Covered by Theorem 3.5). Let

A be the profile depicted below where agents i1 and i2 approve of
the candidates a,b and c , while agent i3 approves of only d , and
agent i4 approves of only e . Clearly A is a party list profile.

Let k = 3. We use PAV to demonstrate that a manipulation is pos-

sible in this profile for agent i1. The outcome under PAV comprises

nine committees total; six with two candidates from agent i1’s
approval set: {a,b,d}, {a,b, e}, {a, c,d}, {a, c, e}, {b, c,d}, {b, c, e},
and three with a single candidate each from agent i1’s approval set:
{a,d, e}, {b,d, e}, {c,d, e}. Suppose agent i1 prefers smaller sets to

larger ones, provided that for any C in the larger set, there is some

C ′
in the smaller set such that C ∼i C

′
.

a b c d e

i1

i2

i3

i4

Ai

C ′

Ĉ

C

a

b

Figure 2: Representation of committeesC,C ′ and Ĉ, and can-
didates a and b used in proof of Theorem 4.1.

Consider what happens when agent i1 drops c from their judg-

ment set (represented in light grey). Because committees containing

c will now have a lowerw-score, the new outcome will contain a to-

tal of four committees; two committees {a,b,d}, {a,b, e} with two

of agent i’s approved candidates, and two—{a,d, e}, {b,d, e}—each
with a single candidate from Ai . We can see from agent i1’s prefer-
ences that she would prefer the second (manipulated) outcome in

this case. Thus i1 has an incentive to free-ride in this profile.

This example also demonstrates that our results do not hold

for resolute rules that break ties according to a linear order over

committees. Suppose for example that the tie-breaking order > is

such that {c,d, e} > {a,b,d}, and {a,b,d} > {a,b, e} > {a,d, e} >
{b,d, e}. Then the outcome in the first profile is {c,d, e}, while the
outcome in the second is {a,b,d}—an improvement for agent i1. ⋄

4 FURTHER STRATEGYPROOFNESS RESULTS
We explore if it is possible to strenghten the main result of the pre-

ceding section. We find that on party-list profiles, we can establish

superset-strategyproofness and disjoint-set-strategyproofness for

all preference extensions. For the Optimistic extension, we extend

the result to all types of manipulation.

4.1 Superset- and Disjoint-set Manipulation
Wewill show strategyproofness for two additional types of manipu-

lation, superset-strategyprofness and disjoint-set-strategyproofness.

This result holds for all preference extensions, including, of course,

all general Gärdenfors preferences.

Theorem 4.1. On party-list profiles, Thiele methods are immune
to superset-manipulation and disjoint-set-manipulation for all prefer-
ence extensions.

Proof. Let A be a party-list profile, and f a Thiele rule defined

by a weight vectorw . Suppose there is a profileA′
, and committees

C and C ′
such that A =−i A′

, C ∈ f (A), and C ′ ∈ f (A′). Suppose
also that either A′

i ⊃ Ai , or Ai ∩ A′
i = ∅. We want to show that

C ′ ≻i C implies {C,C ′} ⊆ f (A) ∩ f (A′). With this goal in mind,

suppose C ′ ≻i C .
We first show that C ′ ∈ f (A). Because A is a party-list profile

and C ′ ≻i C , there must be some Ĉ ∈ f (A) such that Ĉ ∼i C and

(Ai ∩ C ′) ⊃ (Ai ∩ Ĉ), where C and Ĉ only differ on alternatives

in Ai . To see why this is the case, note that the differences among

C and Ĉ pertain only to candidates in Ai , and as such Ĉ will have

the samew-score as C in A. We use the fact that Ĉ ∈ f (A) to show
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C ′ ∈ f (A). For a visual representation of these committees and the

candidates we will reference, see Figure 2.

Let a ∈ Ai be an alternative such that a ∈ C ′ \ Ĉ . Such an

alternative must exist as C ′ ≻i Ĉ . Because A is a party-list profile,

and |C ′ | = |Ĉ |, we know there must be some party with (strictly)

fewer representatives in C ′
than in Ĉ . In other words, there exists

some alternative b < Ai such that b ∈ Ĉ \C ′
and |Aj ∩Ĉ | > |Aj ∩C

′ |

for all j ∈ NA
b . We define a k-committee C1 = Ĉ \ {b} ∪ {a}.

Our immediate goal is to showC1 ∈ f (A). Note that thew-score

of C1 in A cannot be higher than that of Ĉ , as this would imply

Ĉ < f (A). Because the two committees differ only with regard to

alternatives a and b, we can express this as follows:∑
j ∈NA

b

w
|Aj∩Ĉ |

≥
∑
j ∈NA

a

w
|Aj∩Ĉ |+1

Similarly, the committeeC ′\{a}∪{b} cannot have a higherw-score

than C ′
in A′

, so it must hold that∑
j ∈NA′

a

w |A′
j∩C

′ | ≥
∑

j ∈NA′
b

w |A′
j∩C

′ |+1

We want to connect the two inequalities above. We know that

|Aj ∩C ′ | > |Aj ∩ Ĉ | for all j ∈ NA
a . For all j , i this immediately

tells us |A′
j∩C

′ | > |Aj∩Ĉ |, asA =−i A′
. For agent i , we know either

A′
i ⊃ Ai , or A

′
i ∩ Ai = ∅. If a ∈ A′

i , then it must be that A′
i ⊃ Ai ,

meaning |A′
i∩Ĉ | ≥ |Ai∩Ĉ |. From Lemma 3.1 we know thatC ′ ≻i Ĉ ,

Ĉ ∈ f (A), and C ′ ∈ f (A′) implies |A′
i ∩C ′ | > |A′

i ∩ Ĉ |, so we can

conclude that |A′
j ∩C ′ | > |Aj ∩ Ĉ | for all j ∈ NA′

a . Becausew is a

non-increasing weight vector, this implies w |A′
j∩C

′ | ≤ w
|Aj∩Ĉ |+1

for all j ∈ NA′
a . Given that NA

a ⊇ NA′
a , we can conclude that∑

j ∈NA
a

w
|Aj∩Ĉ |+1

≥
∑

j ∈NA′
a

w |A′
j∩C

′ |

We can now build the following chain of inequalities:∑
j ∈NA

b

w
|Aj∩Ĉ |

≥
∑
j ∈NA

a

w
|Aj∩Ĉ |+1

≥
∑

j ∈NA′
a

w |A′
j∩C

′ |

≥
∑

j ∈NA′
b

w |A′
j∩C

′ |+1

(4)

Recall that for all j ∈ NA
b , it is the case that |Aj ∩ Ĉ | > |Aj ∩C ′ |,

which—as Aj = A′
j—is equivalent to |Aj ∩ Ĉ | > |A′

j ∩ C ′ |. This

impliesw
|Aj∩Ĉ |

≤ w |A′
j∩C

′ |+1. As N
A
b ⊆ NA′

b , we then have that∑
j ∈NA

b

w
|Aj∩Ĉ |

≤
∑

j ∈NA′
b

w |A′
j∩C

′ |+1 (5)

Equations 4 and 5 together imply that our chain of inequalities

“collapses”, meaning we get∑
j ∈NA

b

w
|Aj∩Ĉ |

=
∑
j ∈NA

a

w
|Aj∩Ĉ |+1

This can only be the case if C1 ∈ f (A).

Finally, to see thatC1 ∈ f (A) implies thatC ′ ∈ f (A), consider the
following.We know thatC1 is created by adding one candidate from

C ′
and removing one candidate that is not inC ′

. If |Ĉ \C ′ | = 1, then

C1 = C
′
and we are done. Otherwise, note that |C1\C

′ | = |Ĉ\C ′ |−1,

meaning C1 is one candidate closer to C
′
than Ĉ . Importantly, we

also know the following:

(i) C ′ ≻i C1,

(ii) (Ai ∩C ′) ⊃ (Ai ∩C1), and

(iii) C1 ∈ f (A).

Thus, we can use the same argument we used to show that C1 ∈

f (A) to show there is some committee C2 ∈ f (A) such that |C2 \

C ′ | = |Ĉ \C ′ | − 2. We can repeat this argument until we reach a

committee Cm ∈ f (A) wherem = |Ĉ \C ′ |, meaning Cm = C
′
.

We now show thatC ∈ f (A′). We omit some details as the proof

proceeds in a similar fashion. Note that as C ′ ∈ f (A), and A is a

party-list profile, we know there must be some Ĉ ′ ∈ f (A) such that

|Aj ∩C ′ | = |Aj ∩ Ĉ ′ | for all j ∈ N , and Ai ∩ Ĉ ′ ⊃ Ai ∩C , whereC ′

and Ĉ ′
only differ on alternatives in Ai . This is because C

′ ∈ f (A),
and Ĉ ′

will have the same w-score as C ′
in A. Because C ′

and Ĉ ′

only differ on alternatives in Ai , and both are k-sized committees,

it must be the case that |A′
i ∩ Ĉ ′ | = |A′

i ∩C ′ |. As A = A′
, we know

|A′
j ∩ Ĉ ′ | = |Aj ∩C ′ | for all j , i as well, so we can conclude that

Ĉ ′ ∈ f (A′)—as it would have the samew-score as C ′
in A′

.

We repeat a similar argument as we did when showingC ′ ∈ f (A).
We have somea′ ∈ Ai such that Ĉ

′\C , and someb ′ ∈ C\Ĉ ′
such that

for all j ∈ NA
b we have |Aj ∩C | > |Aj ∩Ĉ

′ |. LetC ′
1
= C ′ \ {b} ∪ {a}.

Arguing in almost exactly the same way as above, we show that∑
j ∈NA′

b

w |A′
j∩C

′ |+1 =
∑

j ∈NA′
a

w |A′
j∩C

′ |

Thus Ĉ ′
1
∈ f (A′). We can again repeat this argument to show that

C ∈ f (A′).
So we have shown that for any C ′ ∈ f (A′) and C ∈ f (A), if

C ′ ≻i C , then {C,C ′} ⊆ f (A) ∩ f (A′), meaning it cannot be the

case that f (A′) ≻ei f (A). □

Corollary 4.2 follows from Theorem 3.5 and Theorem 4.1.

Corollary 4.2. On party-list profiles, Thiele methods are superset-
strategyproof, disjoint-set-strategyproof, and immune to free-riding
for general Gärdenfors preferences.

Our results paint a positive picture for Thiele rules on party-list

profiles as they rule out all three types of manipulation considered

in this paper for a large class of preferences. Importantly, we are

also able to establish some level of strategyproofness for these rules

that does not depend on the preference extension.

4.2 Optimistic Agents
We obtain our strongest result for the Optimistic preference exten-

sion, as we can establish full strategyproofness for Thiele methods

on party-list profiles.

We will be working with profiles which are not party-list profiles,

but are one agent away from a party-list profile. We write A−i to

mean the profile A with the approval set of agent i removed. An

agent i casts a separable vote in a profile P if for all agents j ∈ N
either Ai ⊆ Aj or Ai ∩Aj = ∅.
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Wenow show that optimistic agents have no incentive to superset-

manipulate. We will use this to establish our strategyproofness

result for optimistic agents.

Lemma 4.3. Let f be a Thiele rule, and A a profile such that A−i
is a party-list profile, and Ai is a separable vote in A. Given an agent
i ∈ N , and a profile A =−i A′ such that A′

i ⊃ Ai : if C ′ ≻i C for all
C ∈ f (A), then C ′ < f (A′).

Proof. Let f be a Thiele rule defined by weight vectorw . Sup-

pose we have A and A′
—where A−i is a party-list profile, and Ai is

a separable vote in A—and an agent i ∈ N such that A =−i A, and
A′
i ⊃ Ai . LetC ∈ f (A) be among the most preferred committees for

agent i in f (A), and suppose there exists a k-committee C ′
, such

that C ′ ≻i C . We want to show that C ′ < f (A′).
We identify two candidates relevant for our purposes. Because

C ′ ≻i C , we know there must exist at least one candidate a ∈

Ai ∩ (C ′ \C). We know that there is at least one party with strictly

fewer representatives in C ′
than in C , as they are both committees

of the same size. More formally, because A−i is a party-list profile,

there must also exist some candidate b ∈ C \ (C ′∩Ai ), such that for

all j ∈ NA
b , it is the case that |Aj ∩C | > |Aj ∩C ′ |. If this were not

the case, then C ′ ⪰j C for all j , i and C ′ ≻i C , meaning C < f (A),
contradicting our initial assumption.

First, we want to show that Aj ∩C = Ai ∩C for all j ∈ NA
a . We

know thatAi ⊆ Aj for all j ∈ NA
a (andAj = Aj′ for j, j

′ ∈ NA
a \{i}).

Recall that a < C . Suppose (Aj \Ai )∩C , ∅, meaning there is some

alternative x ∈ Aj \ Ai such that x ∈ C . Then the committee

C \ {x} ∪ {a} will have a w-score higher than C in the profile A.
As this implies C < f (A), we can conclude that (Aj \Ai ) ∩C = ∅.

In other words, we have that Aj ∩ C = Ai ∩ C for all j ∈ NA
a .

As Ai ⊆ Aj for all j ∈ NA
a , we know |Aj ∩ C ′ | ≥ |Ai ∩ C ′ |. As

|Ai ∩C ′ | > |Ai ∩C | by assumption, this implies that |Aj ∩C ′ | >

|Aj ∩C |. Asw is a non-increasing weight vector, we this implies

that w |Aj∩C ′ | ≤ w |Aj∩C |+1 for all j ∈ NA
a . Similarly we know

|Aj ∩C | > |Aj ∩C ′ | for all j ∈ NA
b . Thus we have∑

j ∈NA
b

w |Aj∩C ′ |+1 ≥
∑
j ∈NA

b

w |Aj∩C |∑
j ∈NA

a

w |Aj∩C |+1 ≥
∑
j ∈NA

a

w |Aj∩C ′ |

We also claim the following:∑
j ∈NA

b

w |Aj∩C | >
∑
j ∈NA

a

w |Aj∩C |+1

To see why this is the case, note that if it did not hold, then the

committee (C \ {b}) ∪ {a} would have aw-score at least as high as

C , and thus would be among the winning committees in f (A). This
would clearly contradict our assumption thatC ∈ f (A) is one of the
most preferred outcomes for agent i in f (A), as (C \ {b})∪{a} ≻i C .
Putting together the above, we conclude that∑

j ∈NA
b

w |Aj∩C ′ |+1 >
∑
j ∈NA

a

w |Aj∩C ′ | (6)

We can now show C ′ < f (A′). Let C̃ = (C ′ \ {a}) ∪ {b} be a
k-committee. We calculate thew-score of C̃ in A′

.

uA
′

N (C̃) = uA
′

N (C ′) −
∑
j ∈NA

a

w |Aj∩C ′ | +
∑
j ∈NA

b

w |Aj∩C ′ |+1

Taken together with Equation 6, the above implies that C̃ has a

w-score strictly higher than C ′
in A′

, meaning C ′ < f (A′). □

We can now use Proposition 3.3, which speaks about free-riding,

and Lemma 4.3, which pertains to superset-manipulation, to prove

the following Theorem for optimistic agents.

Theorem 4.4. Thiele methods are party-list-strategyproof for op-
timistic agents.

Proof. Let A be a party-list profile, and let A′
be a profile such

that A =−i A′
. Suppose there exists some C ′

such that C ′ ≻i C for

any C ∈ f (A). Let f be a Thiele rule. We show that C ′ < f (A′).
Suppose for contradiction that C ′ ∈ f (A′). We construct a third,

intermediate, profile A∗
where A∗ =−i A and A∗

i = Ai ∩A′
i . Note

that A∗
−i is a party-list profile, and A

∗
i is a separable vote in A. We

assume A∗
i , Ai—if this were not the case, then f (A) = f (A∗), and

Lemma 4.3 alone would be enough to establish our claim.

AsC ′ ∈ f (A′) andA′
i ⊃ A∗

i , we know from Lemma 4.3 that there

exists some C∗ ∈ f (A∗) such that C∗ ⪰i C
′
. If this were not the

case, thenC ′
would be strictly preferred to all committees in f (A∗),

and soC ′ < f (A), which would be a contradiction. AsC∗ ⪰i C
′
, we

know that C∗ ≻i C . Because A
∗
i ⊂ Ai , we can use Proposition 3.3

to show that C∗ ∈ f (A∗) implies C∗ ∈ f (A). This contradicts our
assumption that C ′ ≻i C for all C ∈ f (A) as C∗ ⪰i C

′
. □

Note that Theorem 4.4 makes no assumptions about how agents

may manipulate, as any possible manipulation amounts to an agent

first removing some candidates from their approval set (possibly

none), and subsequently adding new candidates (again, possibly

none). As the optimistic preference extension is a very natural and

intuitive extension, Theorem 4.4 is a very welcome result.

5 CONCLUSION
We have studied strategyproofness of Thiele methods on party-list

profiles. In particular, we focused on three types of manipulation:

free-riding, superset-manipulation, and disjoint-set manipulation.

We defined a class of preference extensions, the general Gärden-

fors preferences, and obtained positive results for all three types of

manipulation on party-list profiles. We showed for general Gärden-

fors preferences that it is not possible to manipulate Thiele rules

in any of these three manners on party-list profiles. For superset-

and disjoint-set-manipulation, we have shown this for all prefer-

ence extensions. We have also shown that Thiele methods are fully

strategyproof on party-list profiles for optimistic agents.

Strategyproofness on party-list profiles spells good news for

many applications of multiwinner voting. Our results also suggest

that focusing on particular domains or profiles may be a fruitful

avenue of study for establishing further strategyproofness results.

We have only studied approval-based rules, but similar methods

may also yield strategyproofness results for multiwinner rules that

aggregate preference rankings.
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