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ABSTRACT
Social choice functions (SCFs) map the preferences of a group of

agents over some set of alternatives to a non-empty subset of al-

ternatives. The Gibbard-Satterthwaite theorem has shown that

only extremely unattractive single-valued SCFs are strategyproof

when there are more than two alternatives. For set-valued SCFs, or

so-called social choice correspondences, the situation is less clear.

There are miscellaneous—mostly negative—results using a variety

of strategyproofness notions and additional requirements. The sim-

ple and intuitive notion of Kelly-strategyproofness has turned out

to be particularly compelling because it is weak enough to still allow

for positive results. For example, the Pareto rule is strategyproof

even when preferences are weak, and a number of attractive SCFs

(such as the top cycle, the uncovered set, and the essential set)

are strategyproof for strict preferences. In this paper, we show

that, for weak preferences, only indecisive SCFs can satisfy strate-

gyproofness. In particular, (i) every strategyproof rank-based SCF

violates Pareto-optimality, (ii) every strategyproof support-based

SCF (which generalize Fishburn’s C2 SCFs) that satisfies Pareto-

optimality returns at least one most preferred alternative of every

voter, and (iii) every strategyproof non-imposing SCF returns a

Condorcet loser in at least one profile.
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1 INTRODUCTION
Whenever a group of multiple agents aims at reaching a joint de-

cision in a fair and principled way, they need to aggregate their

individual preferences using a social choice function (SCF). SCFs

are traditionally studied by economists and mathematicians, but

have also come under increasing scrutiny from computer scientists

who are interested in their computational properties or want to

utilize them in computational multiagent systems [see, e.g., 14, 19].

An important phenomenon in social choice is that agents mis-

represent their preferences in order to obtain a more preferred

outcome. An SCF that is immune to strategic misrepresentation of
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preferences is called strategyproof. Gibbard [24] and Satterthwaite

[34] have shown that only extremely restricted single-valued SCFs

are strategyproof: either the range of the SCF is restricted to only

two outcomes or the SCF always returns the most preferred alterna-

tive of the same voter. Perhaps the most controversial assumption

of the Gibbard-Satterthwaite theorem is that the SCF must always

return a single alternative [see, e.g., 3, 5, 16, 17, 22, 25, 30, 36]. This

assumption is at variance with elementary fairness conditions such

as anonymity and neutrality. For instance, consider an election with

two alternatives and two voters such that each alternative is favored

by a different voter. Clearly, both alternatives are equally acceptable,

but single-valuedness forces us to pick a single alternative based

on the preferences only.

We therefore study the manipulability of set-valued SCFs (or

so-called social choice correspondences). When SCFs return sets of

alternatives, there are various notions of strategyproofness, de-

pending on the circumstances under which one set is considered

to be preferred to another. When the underlying notion of strat-

egyproofness is sufficiently strong, the negative consequences of

the Gibbard-Satterthwaite theorem remain largely intact [see, e.g.,

5, 6, 16, 17, 33].
1
In this paper, we are concernedwith a rather weak—

but natural and intuitive—notion of strategyproofness attributed

to Kelly [25]. Several attractive SCFs have been shown to be strate-

gyproof for this notion when preferences are strict [10, 12]. These

include the top cycle, the uncovered set, the minimal covering set,

and the essential set. However, when preferences are weak, these

results break down and strategyproofness is not well understood

in general.

Feldman [20] has shown that the Pareto rule is strategyproof

according to Kelly’s definition, even when preferences are weak.

Moreover, the omninomination rule and the intersection of the

Pareto rule and the omninomination rule are strategyproof as well

[15, Remark 1]. These results are encouraging because they rule

out impossibilities using Pareto-optimality and other weak proper-

ties.
2
In the context of strategic abstention (i.e., manipulation by

deliberately abstaining from an election), even more positive results

can be obtained. Brandl et al. [9] have shown that all of the above

mentioned SCFs that are strategyproof for strict preferences are

immune to strategic abstention even when preferences are weak.

A number of negative results were shown for severely restricted

classes of SCFs. Kelly [25] and Barberà [3] have shown inde-

pendently that there is no strategyproof SCF that satisfies quasi-

transitive rationalizability. However, this result suffers from the fact

that quasi-transitive rationalizability is almost prohibitive on its

1
We refer to Barberà [4] and Brandt et al. [15] for a more detailed overview over this

extensive stream of research.

2
For example, Brandt et al. [15] have shown that Pareto-optimality is incompatible

with anonymity and a notion of strategyproofness that is slightly stronger than Kelly’s.
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own [see, e.g., 29].
3
In subsequent work by MacIntyre and Pattanaik

[28] and Bandyopadhyay [1], quasi-transitive rationalizability has

been replaced with weaker conditions such as minimal binariness

or quasi-binariness, which are still very demanding and violated

by most SCFs. Barberà [2] has shown that positively responsive

SCFs fail to be strategyproof under mild assumptions. However,

positively responsive SCFs are almost always single-valued and of

all commonly considered SCFs only Borda’s rule and Black’s rule

satisfy this criterion. Taylor [36, Th. 8.1.2] has shown that every SCF

that returns the set of all weak Condorcet winners whenever this

set is non-empty fails to be strategyproof. This result was strength-

ened by Brandt [10], who showed that every SCF that returns a

(strict) Condorcet winner whenever one exists fails to be strate-

gyproof. More recently, Brandt et al. [15] have shown with the help

of computers that every Pareto-optimal SCF whose outcome only

depends on the pairwise majority margins can be manipulated.

In this paper, we study strategyproofness in three broad classes

of SCFs. These classes are rank-based SCFs (which include all scor-

ing rules), support-based SCFs (which generalize Fishburn’s C2

SCFs), and non-imposing SCFs (which return every alternative as

the unique winner for some preference profile). An overview of the

three classes and typical examples of SCFs belonging to these classes

are given in Figure 1. The classes are unrelated in a set-theoretic

sense: for any pair of classes, their intersection is non-empty, and

Borda’s rule is contained in all three classes. Taken together, they

cover virtually all SCFs commonly considered in the literature.

For rank-based and support-based SCFs, we show that Pareto-

optimality and strategyproofness imply that every voter is a nomi-

nator, i.e., the resulting choice sets contain at least one most pre-

ferred alternative of every voter. In the case of ranked-based SCFs,

this entails an impossibility whereas for support-based SCFs it

demonstrates a high degree of indecisiveness. For non-imposing

SCFs, we show that strategyproofness implies that a Condorcet

loser has to be returned in at least one preference profile. The latter

result remarkably holds without imposing fairness conditions such

as anonymity or neutrality. Even though these results are rather

negative, they are important to improve our understanding of strat-

egyproof SCFs. Much more positive results are obtained by making

minuscule adjustments to the assumptions such as restricting the

domain of preferences to strict preferences, weakening the underly-

ing notion of strategyproofness, or replacing strategic manipulation

with strategic abstention [see, e.g., 9, 10, 30]. In all of these cases,

a small number of support-based Condorcet extensions such as

the top cycle, the uncovered set, the minimal covering set, and the

essential set constitute appealing positive examples.

Our results can also be interpreted in the context of ran-

domized social choice. When transferred to this setting, Kelly-

strategyproofness is weaker than weak SD-strategyproofness and
we thus obtain three strong impossibilities.

2 THE MODEL
Let𝑁 = {1, . . . , 𝑛} denote a finite set of voters and let𝐴 = {𝑎, 𝑏, . . . }
denote a finite set of𝑚 alternatives. Moreover, let [𝑥 . . . 𝑦]= {𝑖 ∈
3
This is acknowledged by Kelly [25] who writes that “one plausible interpretation

of such a theorem is that, rather than demonstrating the impossibility of reason-

able strategy-proof social choice functions, it is part of a critique of the regularity

[rationalizability] conditions.”

2-plurality

Rank-based

Young

Dodgson

scoring runoff rules

Non-imposing

2-Copeland

Support-based

Plurality

Omninomination

most scoring rules

2-Borda

constant rules

Copeland

Pareto

common
Condorcet extensions

Borda

Figure 1: The classes of rank-based, support-based, and non-
imposing SCFs and typical examples. 2-plurality, 2-Copeland,
and 2-Borda return all alternatives whose respective score
is at least as large as the second-highest score. All scoring
rules except Borda’s rule are rank-based, non-imposing, but
not support-based. Common Condorcet extensions include
the top cycle, the uncovered set, the minimal covering set,
the essential set, the Simpson-Kramer rule, Nanson’s rule,
Schulze’s rule, and Kemeny’s rule.

𝑁 : 𝑥 ≤ 𝑖 ≤ 𝑦} denote the subset of voters from 𝑥 to 𝑦 and note that

[𝑥 . . . 𝑦] is empty if 𝑥 > 𝑦. Every voter 𝑖 ∈ 𝑁 is equipped with a

weak preference relation ≿𝑖 , i.e., a complete, transitive, and reflexive

binary relation on 𝐴. We denote the strict part of ≿𝑖 by ≻𝑖 , i.e.,
𝑥 ≻𝑖 𝑦 if and only if 𝑥 ≿𝑖 𝑦 and 𝑦 �𝑖 𝑥 , and the indifference part

by ∼𝑖 , i.e., if 𝑥 ∼𝑖 𝑦 if and only if 𝑥 ≿𝑖 𝑦 and 𝑦 ≿𝑖 𝑥 . We compactly

represent a preference relation as a comma-separated list, where

sets of alternatives express indifferences. For example, 𝑥 ≻ 𝑦 ∼ 𝑧 is

represented by 𝑥, {𝑦, 𝑧}. Furthermore, we call a preference relation

≿ strict if its irreflexive part is equal to its strict part ≻. The set of
all weak preference relations on 𝐴 is called R. A preference profile
𝑅 ∈ R𝑛

is an 𝑛-tuple containing the preference relation of every

voter 𝑖 ∈ 𝑁 . When defining preference profiles, we specify a set of

voters who share the same preference relation by writing the set

directly before the preference relation. For instance, [𝑥 . . . 𝑦] : 𝑎, 𝑏, 𝑐

means that all voters 𝑖 ∈ [𝑥 . . . 𝑦] prefer 𝑎 to 𝑏 and 𝑏 to 𝑐 . We omit

the brackets for singleton sets. For two alternatives 𝑥,𝑦 ∈ 𝐴, the

pairwise support of 𝑥 over 𝑦 is defined as the number of voters who

strictly prefer 𝑥 to 𝑦, i.e., 𝑠𝑥𝑦 (𝑅) = |{𝑖 ∈ 𝑁 : 𝑥 ≻𝑖 𝑦}|.
Our central objects of study are social choice functions (SCFs), or

so-called social choice correspondences, which map a preference

profile to a non-empty set of alternatives, i.e., functions of the form

𝑓 : R𝑛 ↦→ 2
𝐴 \ ∅. The mere mathematical description of SCFs is

so general that it allows for rather undesirable functions. We now

introduce a number of axioms in order to narrow down the set

of SCFs. The most basic fairness condition is anonymity, which
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requires that all voters are treated equally: an SCF 𝑓 is anonymous
if 𝑓 (𝑅) = 𝑓 (𝑅′) for all preference profiles 𝑅, 𝑅′

for which there is a

permutation 𝜋 : 𝑁 → 𝑁 such that 𝑅𝑖 = 𝑅′
𝜋 (𝑖) for all 𝑖 ∈ 𝑁 .

Perhaps one of the most prominent axioms in economic the-

ory is Pareto-optimality, which is based on the notion of Pareto-

dominance: an alternative 𝑥 Pareto-dominates another alternative
𝑦 if 𝑥 ≿𝑖 𝑦 for all 𝑖 ∈ 𝑁 and there is a voter 𝑗 ∈ 𝑁 with 𝑥 ≻𝑗 𝑦.

An alternative is Pareto-optimal if it is not Pareto-dominated by

any other alternative. This idea leads to the Pareto rule, which re-

turns all Pareto-optimal alternatives. An SCF 𝑓 is Pareto-optimal

if it never returns Pareto-dominated alternatives. An axiom that

is closely related to Pareto-optimality is near unanimity, as intro-
duced by Benoît [6]. Near unanimity requires that 𝑓 (𝑅) = {𝑥} for
all alternatives 𝑥 ∈ 𝐴 and preference profiles 𝑅 in which at least

𝑛 − 1 voters uniquely top-rank 𝑥 . The more voters there are, the

more compelling is near-unanimity. A natural weakening of these

axioms is non-imposition, which requires that for every alternative

𝑥 ∈ 𝐴, there is a profile 𝑅 such that 𝑓 (𝑅) = {𝑥}. For single-valued
SCFs, non-imposition is almost imperative because it merely re-

quires that the SCF is onto. For set-valued SCFs, as considered in

this paper, this is not necessarily the case. For example, every SCF

that always returns at least two alternatives fails non-imposition

(see, for example, 2-plurality, 2-Borda, and 2-Copeland in Figure 1).

An influential concept in social choice theory is that of a Con-

dorcet winner, which is an alternative 𝑎 ∈ 𝐴 that wins all pairwise

majority comparisons, i.e., 𝑠𝑎𝑥 (𝑅) > 𝑠𝑥𝑎 (𝑅) for all 𝑥 ∈ 𝐴 \ {𝑎}.
An SCF is Condorcet-consistent or a so-called Condorcet extension
if it uniquely returns a Condorcet winner whenever one exists.

Analogously, one can define a Condorcet loser by requiring that

𝑠𝑥𝑎 (𝑅) > 𝑠𝑎𝑥 (𝑅) for all 𝑥 ∈ 𝐴\{𝑎}. An SCF 𝑓 satisfies the Condorcet
loser property if 𝑥 ∉ 𝑓 (𝑅) whenever 𝑥 is a Condorcet loser in 𝑅.

While there are Condorcet extensions that violate the Condorcet

loser property (e.g., the Simpson-Kramer rule) and SCFs that satisfy

the Condorcet loser property but fail Condorcet-consistency (e.g.,

Borda’s rule), the Condorcet loser property “feels” weaker. This

could be justified by arguing that both properties affect exactly the

same number of preference profiles, but the Condorcet loser prop-

erty only excludes a single alternative (and leaves otherwise a lot of

freedom) whereas Condorcet-consistency completely determines

the (singleton) choice set.

While the axioms so far make reference to the entire preference

profile, there are also concepts that only refer to the preferences of

a single voter. One such concept that is particularly important in

our context is that of a nominator. A voter is a nominator if 𝑓 (𝑅)
always contains at least one of his most preferred alternatives. A

nominator is a weak dictator in the sense that he can always force

an alternative into the choice set by declaring it his uniquely most

preferred one.

2.1 Rank-Basedness and Support-Basedness
In this section, we introduce two classes of anonymous SCFs that

capture many of the SCFs commonly studied in the literature: rank-

based and support-based SCFs. The basic idea of rank-basedness is

that voters assign ranks to the alternatives and that an SCF should

only depend on the ranks of the alternatives, but not on which

voter assigns which rank to an alternative. In order to formalize

this idea, we first need to define the rank of an alternative. In

the case of strict preferences, this is straightforward. The rank of

alternative 𝑥 according to ≿𝑖 is 𝑟 (≿𝑖 , 𝑥) = |{𝑦 ∈ 𝐴 : 𝑦 ≿𝑖 𝑥}| [26].
In contrast, there are multiple possibilities how to define the rank

in the presence of ties. We define a very weak notion of ranked-

basedness for weak preferences, making our results only stronger.

To this end, define the rank tuple of 𝑥 with respect to ≿𝑖 as

𝑟 (≿𝑖 , 𝑥) = (𝑟 (≻𝑖 , 𝑥), 𝑟 (∼𝑖 , 𝑥))
= ( |{𝑦 ∈ 𝐴 : 𝑦 ≻𝑖 𝑥}|, |{𝑦 ∈ 𝐴 : 𝑦 ∼𝑖 𝑥}|).

The rank tuple contains more information than many other gen-

eralizations of the rank and therefore, it leads to a more general

definition of rank-basedness. Next, we define the rank vector of an
alternative 𝑎 which contains the rank tuple of 𝑎 with respect to

every voter in increasing lexicographic order, i.e., 𝑟∗ (𝑅, 𝑥) = (𝑟 (≿𝑖1
, 𝑥), 𝑟 (≿𝑖2 , 𝑥), . . . , 𝑟 (≿𝑖𝑛 , 𝑥)) where 𝑟 (≻𝑖 𝑗 , 𝑥) ≤ 𝑟 (≻𝑖 𝑗+1

, 𝑥) and if

𝑟 (≻𝑖 𝑗 , 𝑥) = 𝑟 (≻𝑖 𝑗+1
, 𝑥), then 𝑟 (∼𝑖 𝑗 , 𝑥) ≤ 𝑟 (∼𝑖 𝑗+1

, 𝑥). Finally, the
rank matrix 𝑟∗ (𝑅) of the preference profile 𝑅 contains the rank

vectors as rows. An SCF 𝑓 is called rank-based if 𝑓 (𝑅) = 𝑓 (𝑅′) for
all preference profiles 𝑅, 𝑅′ ∈ R𝑛

with 𝑟∗ (𝑅) = 𝑟∗ (𝑅′). The class of
rank-based SCFs contains many popular SCFs such as all scoring

rules or the omninomination rule, which returns all top-ranked

alternatives.

A similar line of thought leads to support-basedness, which is

based on the pairwise support of an alternative 𝑥 against another

one 𝑦. We define the support matrix 𝑠∗ (𝑅) = (𝑠𝑥𝑦 (𝑅))𝑥,𝑦∈𝐴 which

contains the supports for all pairs of alternatives. Finally, an SCF

𝑓 is support-based if it yields 𝑓 (𝑅) = 𝑓 (𝑅′) for all preference pro-
files 𝑅, 𝑅′ ∈ R𝑛

with 𝑠∗ (𝑅) = 𝑠∗ (𝑅′). Note that support-basedness
generalizes Fishburn’s C2 to weak preferences [21]. Hence, many

well-known SCFs such as Borda’s rule, Kemeny’s rule, the Simpson-

Kramer rule, Nanson’s rule, Schulze’s rule, and the essential set are

support-based. Support-basedness is less restrictive than pairwise-
ness, which requires that 𝑓 (𝑅) = 𝑓 (𝑅′) for all preference profiles
𝑅, 𝑅′ ∈ R𝑛

with 𝑠𝑎𝑏 (𝑅) − 𝑠𝑏𝑎 (𝑅) = 𝑠𝑎𝑏 (𝑅′) − 𝑠𝑏𝑎 (𝑅′) for all 𝑎, 𝑏 ∈ 𝐴

[see, e.g., 15]. For example, the Pareto rule is support-based, but

fails to be pairwise.

2.2 Strategyproofness
One of the central problems in social choice theory is manipulation,

i.e., voters may lie about their true preferences to obtain a more

preferred outcome. For single-valued SCFs, it is clear what con-

stitutes a more preferred outcome. In the case of set-valued SCFs,

there are various ways to define manipulation depending on what

is assumed about the voters’ preferences over sets of alternatives.

Here, we make a simple and natural assumption: voter 𝑖 weakly

prefers set 𝑋 to set 𝑌 , denoted by 𝑋 ≿𝑖 𝑌 , if and only if 𝑥 ≿ 𝑦 for

all 𝑥 ∈ 𝑋,𝑦 ∈ 𝑌 . Thus, the strict part of this preference extension is

𝑋 ≻𝑖 𝑌 if and only if for all 𝑥 ∈ 𝑋,𝑦 ∈ 𝑌, 𝑥 ≿𝑖 𝑦 and

there are 𝑥 ′ ∈ 𝑋,𝑦′ ∈ 𝑌 with 𝑥 ′ ≻𝑖 𝑦′.

An SCF is manipulable if a voter can improve his outcome by

lying about his preferences. Formally, an SCF 𝑓 is manipulable if
there are a voter 𝑖 ∈ 𝑁 and preference profiles 𝑅, 𝑅′

such that

≿𝑗=≿
′
𝑗
for all 𝑗 ∈ 𝑁 \ {𝑖} and 𝑓 (𝑅′) ≻𝑖 𝑓 (𝑅). Moreover, 𝑓 is

strategyproof if it is not manipulable.
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These assumptions can, for example, be justified by considering

a randomized tie-breaking procedure (a so-called lottery) that is

used to select a single alternative from every set of alternatives

returned by the SCF. We then have that 𝑋 ≻𝑖 𝑌 if and only if all

lotteries with support 𝑋 yield strictly more expected utility than all

lotteries with support 𝑌 for all utility functions that are ordinally

consistent with ≿𝑖 [see, e.g., 15, 23].

3 RESULTS
The unifying theme of our results is that strategyproofness requires

a large degree of indecisiveness. In more detail, we show that every

voter is a nominator for all ranked-based and support-based SCFs

that satisfy Pareto-optimality and strategyproofness. For the very

broad class of non-imposing SCFs, we show that every strategyproof

SCF violates the Condorcet loser property. Due to space restrictions,

we defer the proofs of all auxiliary lemmas and non-trivial claims

in the remarks to the extended version of this paper [13].

In order to prove the claim for rank-based and support-based

SCFs, we focus on its contrapositive, i.e., we assume that there is

such a function 𝑓 and a voter 𝑖 ∈ 𝑁 who is no nominator for 𝑓 . Our

first lemma shows that these assumptions imply that 𝑓 satisfies

near unanimity.

Lemma 1. Let 𝑓 be an anonymous, Pareto-optimal, and strategyproof
SCF that is defined for𝑚 ≥ 3 alternatives and 𝑛 ≥ 2 voters. If some
voter is no nominator for 𝑓 , then 𝑓 satisfies near unanimity.

For the proof of this lemma, we consider an arbitrary SCF 𝑓 that

satisfies all required axioms, and a voter 𝑖 who is no nominator

for 𝑓 . This means that there is a profile 𝑅 such that 𝑓 (𝑅) does
not contain any of voter 𝑖’s most preferred alternatives. Next, we

construct a profile 𝑅′
in which 𝑓 (𝑅′) = {𝑎} but 𝑎 is not among

the most preferred alternatives of voter 𝑖 . Based on the profile 𝑅′
,

we derive then that 𝑛 − 1 voters can ensure that 𝑎 is the unique

winner by submitting it as a uniquely most preferred alternative.

Finally, we show that 𝑓 satisfies near unanimity by generalizing

this observation from a single alternative to all alternatives.

Lemma 1 can be interpreted in various appealing ways. For

instance, one can see it as a push-down lemma that allows a sin-

gle voter to weaken the unique winner in his preference relation.

Moreover, this lemma shows that, under the given assumptions,

indecisiveness for a single preference profile of a particularly simple

type entails a large degree of indecisiveness for the entire domain

of preference profiles. More precisely, if an alternative is not chosen

uniquely even if 𝑛 − 1 voters uniquely prefer it the most, then all

voters are nominators.

Remark 1. There is also a variant of Lemma 1 without anonymity.

Then, an alternative is the unique winner if all voters but the non-

nominator prefer it uniquely the most. Thus, requiring the absence

of nominators for a strategyproof and Pareto-optimal SCF implies

near unanimity.

Remark 2. Remarkably, many impossibility results rule out that

every voter is a nominator. For instance, Duggan and Schwartz

[17], Benoît [6], and Sato [32] invoke axioms prohibiting that every

voter is a nominator. Moreover, a crucial step in the computer-

generated proofs of Theorem 3.1 by Brandl et al. [8] and Theorem

1 by Brandt et al. [15] is to show that there is some voter who is no

nominator. Lemma 1 gives intuition about why these assumptions

and observations are important.

3.1 Rank-Based SCFs
In this section, we prove that there is no rank-based SCF that satis-

fies Pareto-optimality and strategyproofness. This result follows

from the observation that Pareto-optimality, strategyproofness, and

rank-basedness require that every voter is a nominator, but Pareto-

optimality and rank-basedness do not allow for such SCFs.

It is possible to show the theorem—as well as Theorem 2—by in-

duction proofs where completely indifferent voters and universally

bottom-ranked alternatives are used to generalize the statement to

arbitrarily many voters and alternatives [see, e.g., 8, 9, 15]. Instead,

we prefer to give universal proofs for any number of voters and

alternatives to stress the robustness of the respective constructions.

As a consequence, our proofs often hold when restricting the do-

main of admissible profiles by prohibiting artificial constructs such

as completely indifferent voters. Note that, in our proofs, we often

assume that all voters are indifferent between all but a few alterna-

tives 𝐴 \ 𝑋 . This assumption is not required and is only used for

the sake of simplicity. In fact, the preferences between alternatives

in 𝑋 can be arbitrary and may differ from voter to voter and often

even between profiles. The only restriction is that the preferences

involving alternatives in 𝐴 \ 𝑋 are not modified.

Theorem 1. There is no rank-based SCF that satisfies Pareto-
optimality and strategyproofness if𝑚 ≥ 4 and 𝑛 ≥ 3.

Proof. Assume for contradiction that there is a rank-based

SCF 𝑓 that satisfies strategyproofness and Pareto-optimality and

that is defined for fixed numbers of voters 𝑛 ≥ 3 and alternatives

𝑚 ≥ 4. We derive a contradiction to this assumption by proving

two claims: on the one hand, there is a voter who is no nominator

for 𝑓 . On the other hand, the assumptions on the SCF require that

every voter is a nominator. These two claims contradict each other

and therefore 𝑓 cannot exist.

Claim 1: Not every voter is a nominator for 𝑓
First, we prove that not every voter is a nominator for 𝑓 . Consider

therefore the following three profiles in which 𝑋 = 𝐴 \ {𝑎, 𝑏, 𝑐, 𝑑}.

𝑅1
:

1: {𝑎, 𝑏}, 𝑋, {𝑐, 𝑑} 2: {𝑐, 𝑑}, 𝑋, {𝑎, 𝑏}
[3 . . . 𝑛]: 𝑎, {𝑏, 𝑐, 𝑑}, 𝑋

𝑅2
:

1: {𝑎, 𝑐}, 𝑋, {𝑏, 𝑑} 2: {𝑏, 𝑑}, 𝑋, {𝑎, 𝑐}
[3 . . . 𝑛]: 𝑎, {𝑏, 𝑐, 𝑑}, 𝑋

𝑅3
:

1: {𝑎, 𝑑}, 𝑋, {𝑏, 𝑐} 2: {𝑏, 𝑐}, 𝑋, {𝑎, 𝑑}
[3 . . . 𝑛]: 𝑎, {𝑏, 𝑐, 𝑑}, 𝑋

It can be easily verified that 𝑟∗ (𝑅1) = 𝑟∗ (𝑅2) = 𝑟∗ (𝑅3) and that

𝑎 Pareto-dominates 𝑏 in 𝑅1
, 𝑐 in 𝑅2

, and 𝑑 in 𝑅3
. This means that

𝑓 (𝑅1) = 𝑓 (𝑅2) = 𝑓 (𝑅3) ⊆ {𝑎} ∪ 𝑋 because of rank-basedness and

Pareto-optimality. Consequently, voter 2 is no nominator for 𝑓 .

Claim 2: Every voter is a nominator for 𝑓
Assume for contradiction that a voter is no nominator for 𝑓 and

consider the profiles 𝑅𝑘,1 and 𝑅𝑘,2 for 𝑘 ∈ {1, . . . , 𝑛}.

𝑅𝑘,1:
1: {𝑐, 𝑑}, 𝑋, 𝑏, 𝑎 [2 . . . 𝑘]: {𝑎, 𝑏}, 𝑋, 𝑐, 𝑑
[𝑘+1 . . . 𝑛]: 𝑎,𝑋,𝑏, 𝑐, 𝑑
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𝑅𝑘,2:
1: {𝑏, 𝑑}, 𝑋, 𝑐, 𝑎 [2 . . . 𝑘]: {𝑎, 𝑏}, 𝑋, 𝑐, 𝑑
[𝑘+1 . . . 𝑛]: 𝑎,𝑋,𝑏, 𝑐, 𝑑

We prove by induction on 𝑘 ∈ {1, . . . , 𝑛} that 𝑓 (𝑅𝑘,1) =

𝑓 (𝑅𝑘,2) = {𝑎}. The case 𝑘 = 𝑛 yields a contradiction to Pareto-

optimality as 𝑎 is Pareto-dominated by 𝑏 in 𝑅𝑛,1.

The base case 𝑘 = 1 follows because𝑛−1 voters prefer 𝑎 uniquely

the most in both 𝑅1,1
and 𝑅1,2

. Therefore, Lemma 1 implies that

𝑓 (𝑅1,1) = 𝑓 (𝑅1,2) = {𝑎}. Assume now that the claim is true for

some fixed 𝑘 ∈ {1, . . . , 𝑛 − 1}.
By induction and strategyproofness, 𝑓 (𝑅𝑘+1,1) ⊆ {𝑎, 𝑏} since

otherwise voter 𝑘 + 1 can manipulate by switching back to 𝑅𝑘,1.

Next, we derive the profile 𝑅𝑘,3 from 𝑅𝑘,2 by assigning voter 𝑘 + 1

the preference {𝑎, 𝑐}, 𝑋, 𝑏, 𝑑 . Formally, 𝑅𝑘,3 is defined as follows.

𝑅𝑘,3:
1: {𝑏, 𝑑}, 𝑋, 𝑐, 𝑎 [2 . . . 𝑘] : {𝑎, 𝑏}, 𝑋, 𝑐, 𝑑
𝑘+1: {𝑎, 𝑐}, 𝑋, 𝑏, 𝑑 [𝑘+2 . . . 𝑛] : 𝑎,𝑋,𝑏, 𝑐, 𝑑

The induction hypothesis entails that 𝑓 (𝑅𝑘,2) = {𝑎} and there-

fore, strategyproofness implies that 𝑓 (𝑅𝑘,3) ⊆ {𝑎, 𝑐}; otherwise,
voter 𝑘 + 1 could manipulate by switching back to 𝑅𝑘,2. Next,

we apply rank-basedness to conclude that 𝑓 (𝑅𝑘+1,1) = {𝑎} as

𝑟∗ (𝑅𝑘+1,1) = 𝑟∗ (𝑅𝑘,3). Finally, 𝑅𝑘+1,2
evolves from 𝑅𝑘+1,1

by hav-

ing voter 1 change his preferences. As 𝑎 is the uniquely least

preferred alternative of this voter, strategyproofness implies that

𝑓 (𝑅𝑘+1,2) = {𝑎} as any other outcome benefits voter 1. □

Remark 3. The axioms used in Theorem 1 are independent: the

Pareto rule satisfies all axioms except rank-basedness, the trivial

SCF which always returns all alternatives only violates Pareto-

optimality, and Borda’s rule only violates strategyproofness.
4
Fur-

thermore, the Pareto rule is rank-based if 𝑚 ≤ 3, and if 𝑚 = 4

and 𝑛 ≤ 2, which entails that the bounds on𝑚 and 𝑛 are tight if

considered simultaneously. By contrast, the theorem is also true if

𝑚 ≥ 5 and 𝑛 = 2. More details can be found in the extended version.

Remark 4. Theorem 1 is only an impossibility because of the bad

compatibility of rank-basedness and Pareto-optimality in Claim 1,

independently of strategyproofness. In contrast, the main conse-

quence of strategyproofness is indecisiveness as captured in Claim

2. This follows as Theorem 1 breaks down once we weaken Pareto-

optimality to weak Pareto-optimality (which only excludes alter-

natives for which another alternative is strictly preferred by every

voter) as the omninomination rule satisfies then all required ax-

ioms [15, Remark 6]. In contrast, the proof of Claim 2 shows that

more decisive rank-based SCFs violate strategyproofness if near

unanimity is already sufficient for a contradiction.

Remark 5. Theorem 1 holds also under weaker versions of rank-

basedness. First, it uses rank-basedness only in very specific situ-

ations, namely when two voters rename exactly two alternatives.

Moreover, the only real restriction on the rank function 𝑟 is indepen-

dence of the naming of other alternatives, i.e., 𝑟 (≿𝑖 , 𝑎) = 𝑟 (≿′
𝑖
, 𝑎) for

all preferences ≿𝑖 , ≿
′
𝑖
that only differ in the naming of alternatives

in 𝐴 \ {𝑎}. Hence, we may also define rank-basedness based on a

rank function other than the rank tuple and the result still holds.

4
We define Borda’s rule as the SCF that chooses all alternatives that maximize𝑚 ·𝑛 −∑
𝑖∈𝑁 𝑟 (≻𝑖 , 𝑎) . This definition agrees with the standard notation used in literature on

the strict domain and generalizes it to the weak domain.

Remark 6. Theorem 1 does not hold when preferences are strict.

For instance, the omninomination rule satisfies all required axioms

for arbitrary numbers of voters and alternatives for strict prefer-

ences. It can even be shown that Claim 2 of the proof no longer

holds for strict preferences as a variant of the 2-plurality rule, which

chooses the two alternatives that are top-ranked by the most voters,

is rank-based, Pareto-optimal, and strategyproof. However, no voter

is a nominator for this rule. A formal definition and proofs for the

properties can be found in the extended version.

3.2 Support-Based SCFs
It is not possible to replace rank-basedness with support-basedness

in Theorem 1 since the Pareto rule is strategyproof, Pareto-optimal,

and support-based. Note that the Pareto rule always chooses one of

the most preferred alternatives of every voter. Consequently, Claim

1 in the proof of Theorem 1 cannot be true in general for support-

based SCFs. Nevertheless, we show next that Claim 2 remains true

for such SCFs, i.e., every voter is a nominator for every support-

based SCF that satisfies Pareto-optimality and strategyproofness.

Theorem 2. In every support-based SCF that satisfies Pareto-
optimality and strategyproofness, every voter is a nominator if𝑚 ≥ 3.

Proof. Let 𝑓 be a support-based SCF satisfying Pareto-

optimality and strategyproofness for fixed numbers of voters 𝑛 ≥ 1

and alternatives𝑚 ≥ 3. For 𝑛 = 1, the theorem follows immediately

from Pareto-optimality as only the most preferred alternatives of

the single voter are Pareto-optimal. Moreover, Lemma 1 proves the

theorem for 𝑛 = 2. Indeed, if a voter is no nominator, a single voter

can determine the choice set. However, this means that 𝑓 (𝑅) = {𝑎}
and 𝑓 (𝑅) = {𝑏} are simultaneously true if voter 1 prefers 𝑎 uniquely

the most and voter 2 prefers 𝑏 uniquely the most.

Therefore, we focus on the case 𝑛 ≥ 3 and assume for contra-

diction that a voter is no nominator for 𝑓 . We derive from this

assumption by an induction on 𝑘 ∈ {1, . . . , 𝑛 − 1} that 𝑛 − 𝑘 voters

can determine a unique winner by uniquely top-ranking it. This

results in a contradiction when 𝑘 ≥ 𝑛/2 because then, two alterna-

tives can be simultaneously top-ranked by 𝑛 − 𝑘 ≤ 𝑛/2 voters, and

both of them must be the unique winner.

The induction basis 𝑘 = 1 follows directly from Lemma 1 as this

lemma states that 𝑓 satisfies near unanimity. Next, we assume that

our claim holds for a fixed 𝑘 ∈ {1, . . . 𝑛 − 2} and prove that also

𝑛 − (𝑘 + 1) voters can determine the winner uniquely. For this, we

focus only on three alternatives 𝑎, 𝑏, 𝑐 and on a certain partition

of the voters. This is possible as the induction hypothesis allows

us to exchange the roles of the alternatives without affecting the

proof and support-basedness allows us to reorder the voters. Thus,

consider the profile 𝑅𝑘,1, in which 𝑋 = 𝐴 \ {𝑎, 𝑏, 𝑐}, and note that

𝑓 (𝑅𝑘,1) = {𝑎} because of near unanimity.

𝑅𝑘,1:
[1 . . . 𝑘]: 𝑎,𝑋, 𝑐, 𝑏 𝑘+1: 𝑐, 𝑋, 𝑏, 𝑎

[𝑘+2 . . . 𝑛]: 𝑎, 𝑏, 𝑋, 𝑐
Next, we aim to reverse the preferences of the voters 𝑖 ∈ [𝑘+

2 . . . 𝑛] over 𝑎 and 𝑏. This is achieved by the repeated application of

the following steps explained for voter𝑘+2. First, voter𝑘+2 changes

his preference to {𝑎, 𝑏}, 𝑐, 𝑋 to derive the profile 𝑅𝑘,2. Since a subset

of {𝑎, 𝑏} was chosen before this step, strategyproofness implies
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that 𝑓 (𝑅𝑘,2) ⊆ {𝑎, 𝑏} as otherwise, voter 𝑘 + 2 can manipulate

by reverting this modification. Next, we use support-basedness

to exchange the preferences of voter 𝑘 + 1 and 𝑘 + 2 over 𝑎 and

𝑏. This leads to the profile 𝑅𝑘,3 and support-basedness implies

that 𝑓 (𝑅𝑘,3) = 𝑓 (𝑅𝑘,2) ⊆ {𝑎, 𝑏}. As a subset of the least preferred
alternatives of voter 𝑘 + 1 is chosen for 𝑅𝑘,3, strategyproofness

implies that this voter cannot make another alternative win by

manipulating. Thus, he can switch back to his original preference

to derive 𝑅𝑘,4 and the fact that 𝑓 (𝑅𝑘,4) ⊆ {𝑎, 𝑏}.

𝑅𝑘,2:
[1 . . . 𝑘]: 𝑎,𝑋, 𝑐, 𝑏 𝑘+1: 𝑐, 𝑋, 𝑏, 𝑎

𝑘+2: {𝑎, 𝑏}, 𝑋, 𝑐 [𝑘+3 . . . 𝑛]: 𝑎, 𝑏, 𝑋, 𝑐

𝑅𝑘,3:
[1 . . . 𝑘]: 𝑎,𝑋, 𝑐, 𝑏 𝑘+1: 𝑐, 𝑋, {𝑎, 𝑏}
𝑘+2: 𝑏, 𝑎, 𝑋, 𝑐 [𝑘+3 . . . 𝑛]: 𝑎, 𝑏, 𝑋, 𝑐

𝑅𝑘,4:
[1 . . . 𝑘]: 𝑎,𝑋, 𝑐, 𝑏 𝑘+1: 𝑐, 𝑋, 𝑏, 𝑎

𝑘+2: 𝑏, 𝑎, 𝑋, 𝑐 [𝑘+3 . . . 𝑛]: 𝑎, 𝑏, 𝑋, 𝑐
It is easy to see that we can repeat these steps for every voter 𝑖 ∈

[𝑘+3 . . . 𝑛]. This process results in the profile 𝑅𝑘,5 and shows that

𝑓 (𝑅𝑘,5) ⊆ {𝑎, 𝑏}. Moreover, consider the profile 𝑅𝑘,6 derived from

𝑅𝑘,5 by letting voter 𝑘 +1 make 𝑏 his best alternative. As 𝑛−𝑘 voters

prefer 𝑏 uniquely the most in 𝑅𝑘,6, the induction hypothesis entails

that 𝑓 (𝑅𝑘,6) = {𝑏}. This means that voter 𝑘 + 1 can manipulate by

switching from 𝑅𝑘,5 to 𝑅𝑘,6 if 𝑓 (𝑅𝑘,5) = {𝑎} or 𝑓 (𝑅𝑘,5) = {𝑎, 𝑏}.
Consequently, 𝑓 (𝑅𝑘,5) = {𝑏} is the only valid choice set for 𝑅𝑘,5.

𝑅𝑘,5:
[1 . . . 𝑘]: 𝑎,𝑋, 𝑐, 𝑏 𝑘+1: 𝑐, 𝑋, 𝑏, 𝑎

[𝑘+2 . . . 𝑛]: 𝑏, 𝑎, 𝑋, 𝑐

𝑅𝑘,6:
[1 . . . 𝑘]: 𝑎,𝑋, 𝑐, 𝑏 𝑘+1: 𝑏, 𝑋, 𝑎, 𝑐

[𝑘+2 . . . 𝑛]: 𝑏, 𝑎, 𝑋, 𝑐
So far, we have found a profile in which 𝑏 is uniquely chosen

when only 𝑛 − (𝑘 + 1) voters prefer it uniquely the most. Next,

we show that 𝑏 is always the unique winner if the voters 𝑖 ∈ [𝑘+
2 . . . 𝑛] prefer it uniquely the most. Therefore, consider the profile

𝑅𝑘,7 which is derived from 𝑅𝑘,5 by letting the voters 𝑖 ∈ [1 . . . 𝑘]
subsequently change their preference to 𝑐, 𝑋, 𝑎, 𝑏. As 𝑓 (𝑅𝑘,5) = {𝑏}
and 𝑏 is the worst alternative for these voters, strategyproofness

implies that 𝑓 (𝑅𝑘,7) = {𝑏}.

𝑅𝑘,7:
[1 . . . 𝑘]: 𝑐, 𝑋, 𝑎, 𝑏 𝑘+1: 𝑐, 𝑋, 𝑏, 𝑎

[𝑘+2 . . . 𝑛]: 𝑏, 𝑎, 𝑋, 𝑐
As last step, we change the preferences of voter 𝑘 + 1 such that

𝑏 is his least preferred alternative. For this, we first let all voters

𝑖 ∈ [𝑘+2 . . . 𝑛] subsequently change their preference to 𝑏,𝑋, 𝑐, 𝑎.

This modification results in the profile 𝑅𝑘,8 and strategyproofness

implies that 𝑓 (𝑅𝑘,8) = {𝑏}. Moreover, observe that alternative 𝑎 is

Pareto-dominated by 𝑐 in 𝑅𝑘,8. Therefore, voter 𝑘 + 1 can now swap

𝑎 and 𝑏 to derive the profile 𝑅𝑘,9 and Pareto-optimality implies that

𝑎 ∉ 𝑓 (𝑅𝑘,9). Then, strategyproofness implies that 𝑓 (𝑅𝑘,9) = {𝑏} as
any other subset of 𝐴 \ {𝑎} is a manipulation for voter 𝑘 + 1.

𝑅𝑘,8:
[1 . . . 𝑘]: 𝑐, 𝑋, 𝑎, 𝑏 𝑘+1: 𝑐, 𝑋, 𝑏, 𝑎

[𝑘+2 . . . 𝑛]: 𝑏, 𝑋, 𝑐, 𝑎

𝑅𝑘,9:
[1 . . . 𝑘]: 𝑐, 𝑋, 𝑎, 𝑏 𝑘+1: 𝑐, 𝑋, 𝑎, 𝑏

[𝑘+2 . . . 𝑛]: 𝑏, 𝑋, 𝑐, 𝑎

Finally, observe that the voters 𝑖 ∈ [1 . . . 𝑘+1] can change their

preferences in 𝑅𝑘,9 arbitrarily without affecting the choice set, and

the voters 𝑖 ∈ [𝑘+2 . . . 𝑛] can reorder all alternatives in 𝐴 \ {𝑏}
without affecting the choice set because of strategyproofness. Thus,

𝑏 is always the unique winner if all voters 𝑖 ∈ [𝑘+2 . . . 𝑛] prefer 𝑏
uniquely the most. Moreover, interchanging the roles of alternatives

and reordering the voters shows that every alternative is chosen if

it is uniquely top-ranked by 𝑛 − (𝑘 + 1) voters. This completes the

induction step and consequently, we derive that every voter is a

nominator for a support-based SCF that satisfies strategyproofness

and Pareto-optimality. □

Remark 7. All axioms used in Theorem 2 are required as the fol-

lowing SCFs show. Every constant SCF satisfies support-basedness

and strategyproofness, and violates Pareto-optimality and that ev-

ery voter is a nominator. The SCF that chooses the lexicographic

smallest Pareto-optimal alternative satisfies Pareto-optimality and

support-basedness but violates strategyproofness and that every

voter is a nominator. For defining an SCF that satisfies Pareto-

optimality and strategyproofness but violates support-basedness

and that every voter is a nominator, we define a transitive dom-

inance relation by slightly strengthening Pareto-dominance by

allowing additionally that an alternative 𝑎 that is among the most

preferred alternatives of 𝑛 − 1 voters can dominate another alter-

native 𝑏, even if a single voter prefers 𝑏 strictly to 𝑎. Therefore,

we say that an alternative 𝑎 dominates alternative 𝑏 if 𝑎 Pareto-

dominates 𝑏 or 𝑛 − 1 voters prefer 𝑎 the most while 𝑠𝑎𝑏 (𝑅) ≥ 2 and

𝑠𝑏𝑎 (𝑅) ≤ 1. It should be stressed that it is not required that 𝑎 is

uniquely top-ranked by 𝑛 − 1 voters, but only that it is among their

best alternatives. The SCF 𝑓 ∗ that chooses all maximal elements

with respect to this dominance relation satisfies all required prop-

erties (see the extended version for more details). Also the bound

on𝑚 is tight as the majority rule satisfies all axioms if𝑚 = 2 but

no voter is a nominator for this SCF.

Remark 8. Brandt et al. [15, Th. 5.4] have shown that there is no

pairwise, Pareto-optimal and strategyproof SCF if𝑚 ≥ 3 and 𝑛 ≥ 3.

This result immediately follows from Theorem 2 by observing that

strategyproofness, pairwiseness, and Pareto-optimality rule out that

every voter is a nominator. For this, it suffices to find a preference

profile in which 𝑎 Pareto-dominates 𝑏 and another profile with the

same majority margins where 𝑏 is uniquely top-ranked by a voter.

Remark 9. Just as in the proof of Theorem 1, we make only very

restricted use of support-basedness in the proof of Theorem 2. It

suffices if two voters are allowed to exchange their preferences over

two alternatives. This technical restriction is significantly weaker

than support-basedness, which allows any number of voters to

change their preferences.

Remark 10. An important subclass of support-based SCFs are

majority-based SCFs, which Fishburn [21] calls C1 functions. They

only rely on the majority relation 𝑅𝑀 = {(𝑎, 𝑏) ∈ 𝐴2
: 𝑠𝑎𝑏 (𝑅) ≥

𝑠𝑏𝑎 (𝑅)} of the input profile 𝑅 to compute the choice set. For

majority-based SCFs, an even more severe impossibility holds: there

is no majority-based SCF that satisfies non-imposition and strate-

gyproofness if𝑚 ≥ 3 and 𝑛 ≥ 3. Even though this statement does

not require Pareto-optimality and therefore cannot use Lemma 1,
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the result follows from a proof similar to the one of Theorem 2. See

the extended version for more details.

Remark 11. If preferences are required to be strict, Theorem 2 does

not hold. Several SCFs including the uncovered set, the minimal

covering set, and the essential set are strategyproof, Pareto-optimal

and support-based, but no voter is a nominator for them (see, e.g,

[12] for more details).

Remark 12. Theorems 1 and 2 raise the question whether all voters

must be nominators for every anonymous, Pareto-optimal, and

strategyproof social choice function. This is not the case because

the SCF 𝑓 ∗, as defined in Remark 7, represents a counterexample.

3.3 Non-Imposing SCFs
Finally, we consider the class of non-imposing SCFs. Recall that an

SCF is non-imposing if every alternative is returned as the unique

winner in some profile. Among the SCFs typically studied in social

choice theory, there are only very few that fail to be non-imposing,

e.g., SCFs that never return certain alternatives (such as constant

SCFs) or SCFs that never return singletons.

We will show a rather strong consequence of strategyproof-

ness for non-imposing SCFs: every such function has to return

a Condorcet loser in at least one preference profile and thus vi-

olate the Condorcet loser property. In the presence of neutrality

(symmetry among alternatives), non-imposition can be seen as a

decisiveness requirement. Accordingly, the theorem identifies a

tradeoff between decisiveness and the undesirable property of se-

lecting Condorcet losers. Similarly to Theorem 1 and Theorem 2,

we start with a lemma that allows a voter to push down the unique

winner. Since we do not require Pareto-optimality in this section,

we cannot use Lemma 1 and therefore propose a new lemma that

uses non-imposition instead.

Lemma 2. Let 𝑓 denote a strategyproof SCF for 𝑛 ≥ 3 voters
that satisfies non-imposition and the Condorcet loser property. Then,
𝑓 (𝑅) = {𝑎} for every preference profile 𝑅 and every alternative 𝑎 ∈ 𝐴

such that more than half of the voters in 𝑅 prefer the alternative 𝑎
uniquely the most.

As first step of the proof of this lemma, we show that an al-

ternative is the unique winner for such an SCF if it is uniquely

top-ranked by every voter. Next, we prove that a single voter can

make his uniquely best alternative 𝑎 into his uniquely worst one if

more than half of the voters still prefer 𝑎 uniquely the most after

this modification. Repeatedly applying this argument leads to a

profile in which ⌈𝑛+1

2
⌉ voters prefer 𝑎 uniquely the most, whereas

the remaining voters prefer 𝑎 uniquely the least and 𝑎 is the unique

winner. Finally, we can apply strategyproofness to turn this pro-

file into any other profile in which 𝑎 is uniquely top-ranked by a

majority of the voters without changing the choice set.

Note that the Condorcet loser property allows for a significantly

stronger push-down lemma than Pareto-optimality, even though

it only requires that a single alternative may not be chosen. The

reason is that an absolute majority of voters can exclude every alter-

native from the choice set. We use Lemma 2 to show that there is no

strategyproof SCF that satisfies the Condorcet loser property and

non-imposition. In the interest of space and simplicity, we prove

the theorem with an induction using completely indifferent voters.

Nevertheless, the theorem—just as our other results—is rather ro-

bust to domain restrictions and holds, for instance, also without

completely indifferent voters.

Theorem3. There is no strategyproof SCF that satisfies the Condorcet
loser property and non-imposition if𝑚 ≥ 3 and 𝑛 ≥ 4.

Proof. We prove the statement by induction over 𝑛 ≥ 4.

Induction basis: Assume for contradiction that 𝑓 is a strate-

gyproof SCF for 𝑛 = 4 voters and𝑚 ≥ 3 alternatives that satisfies

the Condorcet loser property and non-imposition. Consider the

profile 𝑅1
shown in the sequel. By Lemma 2, 𝑓 (𝑅1) = {𝑎}.

𝑅1
: 1: 𝑎, 𝑐, 𝑋, 𝑏 2: 𝑎, 𝑏, 𝑋, 𝑐 3: 𝑎, 𝑏, 𝑋, 𝑐 4: 𝑏, 𝑋, 𝑐, 𝑎

Moreover, 𝑐 is the Condorcet loser in 𝑅1
, even if voter 1 is indif-

ferent between 𝑎 and 𝑐 . Thus, we replace the preference of voter

1 with {𝑎, 𝑐}, 𝑋 + 𝑏, where 𝑋 + 𝑏 = 𝑋 ∪ {𝑏}, to derive the profile

𝑅2
. As consequence, 𝑐 ∉ 𝑓 (𝑅2) due to the Condorcet loser property,

and strategyproofness implies that 𝑓 (𝑅) ⊆ {𝑎, 𝑐}. Otherwise, an al-

ternative in𝑋 +𝑏 is chosen and voter 1 can manipulate by reverting

back to 𝑅1
. Hence, we deduce that 𝑓 (𝑅2) = {𝑎}.

𝑅2
: 1: {𝑎, 𝑐}, 𝑋+𝑏 2: 𝑎, 𝑏, 𝑋, 𝑐 3: 𝑎, 𝑏, 𝑋, 𝑐 4: 𝑏, 𝑋, 𝑐, 𝑎

As next step, we let voter 2 change his preference to 𝑎, 𝑐, 𝑋, 𝑏 and

voter 4 change his preference to 𝑐, 𝑋, {𝑎, 𝑏} in order to make 𝑏 the

Condorcet loser. By applying these modifications subsequently, it

follows from strategyproofness that the choice set does not change:

otherwise, voter 2 can manipulate by undoing this step since 𝑎 is his

best alternative after the modification, or voter 4 can manipulate by

applying the modification since 𝑎 is his least preferred alternative

in 𝑅2
. Hence, these steps result in the profile 𝑅3

with 𝑓 (𝑅3) = {𝑎}.
𝑅3

: 1: {𝑎, 𝑐}, 𝑋+𝑏 2: 𝑎, 𝑐, 𝑋, 𝑏 3: 𝑎, 𝑏, 𝑋, 𝑐 4: 𝑐, 𝑋, {𝑎, 𝑏}
Note that 𝑏 is the Condorcet loser, even if voter 3 swaps 𝑎 and

𝑏. Hence, we derive the profile 𝑅4
with 𝑏 ∉ 𝑓 (𝑅4) and by strate-

gyproofness, 𝑓 (𝑅4) = {𝑎}.
𝑅4

: 1: {𝑎, 𝑐}, 𝑋+𝑏 2: 𝑎, 𝑐, 𝑋, 𝑏 3: 𝑏, 𝑎, 𝑋, 𝑐 4: 𝑐, 𝑋, {𝑎, 𝑏}
Now, we let voter 4 change his preference to 𝑐, 𝑏, 𝑋, 𝑎 to derive

the profile 𝑅5
. As 𝑓 (𝑅4) = {𝑎} and 𝑎 is among the least preferred

alternatives of voter 4, it follows that 𝑓 (𝑅5) ⊆ {𝑎, 𝑏}. Otherwise,
voter 4 can manipulate by applying this modification.

𝑅5
: 1: {𝑎, 𝑐}, 𝑋+𝑏 2: 𝑎, 𝑐, 𝑋, 𝑏 3: 𝑏, 𝑎, 𝑋, 𝑐 4: 𝑐, 𝑏, 𝑋, 𝑎

We can apply the same steps for profiles symmetric with respect

to the voters or alternatives. Thus, we can infer the choice sets for

the profiles 𝑅6
, 𝑅7

, and 𝑅8
as 𝑓 (𝑅6) ⊆ {𝑎, 𝑐}, 𝑓 (𝑅7) ⊆ {𝑎, 𝑏}, and

𝑓 (𝑅8) ⊆ {𝑏, 𝑐}.
𝑅6

: 1: {𝑏, 𝑐}, 𝑋+𝑎 2: 𝑎, 𝑐, 𝑋, 𝑏 3: 𝑏, 𝑎, 𝑋, 𝑐 4: 𝑐, 𝑏, 𝑋, 𝑎

𝑅7
: 1: 𝑎, 𝑏, 𝑋, 𝑐 2: 𝑐, 𝑎, 𝑋, 𝑏 3: {𝑏, 𝑐}, 𝑋+𝑎 4: 𝑏, 𝑐, 𝑋, 𝑎

𝑅8
: 1: 𝑎, 𝑏, 𝑋, 𝑐 2: 𝑐, 𝑎, 𝑋, 𝑏 3: {𝑎, 𝑐}, 𝑋+𝑏 4: 𝑏, 𝑐, 𝑋, 𝑎

Note that if 𝑏 ∈ 𝑓 (𝑅5), then voter 1 can manipulate by switching

to 𝑅6
as 𝑓 (𝑅6) ⊆ {𝑎, 𝑐}. Hence, we derive that 𝑓 (𝑅5) = {𝑎}. By a

symmetric argument for 𝑅7
and 𝑅8

, it follows that 𝑓 (𝑅7) = {𝑏}.
Finally, consider the profile 𝑅9

shown in the sequel.

𝑅9
: 1: 𝑎, 𝑏, 𝑋, 𝑐 2: 𝑎, 𝑏, 𝑋, 𝑐, 3: 𝑏, 𝑎, 𝑋, 𝑐 4: 𝑏, 𝑎, 𝑋, 𝑐
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We can derive the profile 𝑅9
from 𝑅5

and 𝑅7
by replacing the

preferences of some voters. In more detail, we obtain 𝑅9
from 𝑅5

by replacing the preference of voters 1 and 2 with 𝑎, 𝑏, 𝑋, 𝑐 and the

preference of voter 4 with 𝑏, 𝑎, 𝑋, 𝑐 . If we apply these steps one after

another, strategyproofness entails that the choice set is not allowed

to change. Hence, 𝑓 (𝑅9) = {𝑎}. Moreover, we obtain 𝑅9
from 𝑅7

by

replacing the preferences of voters 3 and 4 with 𝑏, 𝑎, 𝑋, 𝑐 and the

preference of voter 2 with 𝑎, 𝑏, 𝑋, 𝑐 and obtain 𝑓 (𝑅9) = {𝑏}, a con-
tradiction. Therefore, 𝑓 cannot exist and there is no strategyproof

SCF that satisfies non-imposition and the Condorcet loser property

if 𝑛 ≥ 4 and𝑚 ≥ 3.

Induction step: Assume for contradiction that there is a strate-

gyproof SCF 𝑓 for 𝑛 > 4 voters and𝑚 ≥ 3 alternatives that satisfies

non-imposition and the Condorcet loser property. Consider the fol-

lowing SCF𝑔 for 𝑛−1 voters and𝑚 alternatives: given a profile 𝑅 on

𝑛 − 1 voters, 𝑔 adds a new voter who is indifferent between all alter-

natives to derive a profile 𝑅′
on 𝑛 voters and returns 𝑔(𝑅) = 𝑓 (𝑅′).

Clearly, 𝑔 is strategyproof and inherits the Condorcet loser prop-

erty from 𝑓 . By Lemma 2, 𝑔 is non-imposing because 𝑓 returns an

alternative as unique winner if all voters prefer it uniquely the most

and one voter is completely indifferent. Hence, we can construct a

strategyproof SCF for 𝑛 − 1 voters that satisfies the Condorcet loser

property and non-imposition if there is such an SCF for 𝑛 voters.

Since our induction hypothesis states that no such SCF exists, we

derive from the contraposition of this implication that there is no

SCF satisfying all required axioms for 𝑛 > 4 voters. □

Remark 13. The axioms used in Theorem 3 are independent of

each other. An SCF that only violates the Condorcet loser property

is the Pareto rule. The SCF that returns all alternatives except the

Condorcet loser only violates non-imposition. The SCF that returns

all Pareto-optimal alternatives except the Condorcet loser only

violates strategyproofness. The bounds on 𝑛 and𝑚 are also tight.

The majority rule satisfies all axioms if 𝑚 = 2, the Pareto rule

satisfies all axioms if 𝑛 ≤ 2, and a rather technical SCF based on

a case distinction on the maximal plurality score of an alternative

satisfies all axioms if 𝑛 = 3,𝑚 ≥ 3.

Remark 14. Brandt [10, Th. 2] has shown that no Condorcet ex-

tension can be strategyproof if𝑚 ≥ 3 and 𝑛 ≥ 3𝑚. By replacing

the Condorcet loser property and non-imposition with Condorcet-

consistency, careful inspection of the proof of Theorem 3 reveals

that Condorcet-consistency and strategyproofness are already in-

compatible if𝑚 ≥ 3 and 𝑛 ≥ 4.

4 CONCLUSION AND DISCUSSION
We have studied which SCFs satisfy strategyproofness according to

Kelly’s preference extension and obtained results for three broad

classes of SCFs. A common theme of our results is that strate-

gyproofness entails that potentially “bad” alternatives need to be

chosen. In particular, we have shown that (i) every strategyproof

rank-based SCF returns a Pareto-dominated alternative in at least

one profile, (ii) every strategyproof support-based SCF that satisfies
Pareto-optimality returns at least one most preferred alternative of

every voter, and (iii) every strategyproof non-imposing SCF returns

a Condorcet loser in at least one profile. These results only leave

room for rather indecisive strategyproof SCFs such as the Pareto

rule, the omninomination rule, the SCF that returns all top-ranked

alternatives that are Pareto-optimal, or the SCF that returns all

alternatives except Condorcet losers.

Our results also have consequences for so-called social decision
schemes (SDSs), which map a preference profile to a lottery over

alternatives. Since the notions of ranked-basedness and support-

basedness are independent of the type of the output of the function

and merely define an equivalence relation over preference profiles,

they can be straightforwardly extended to SDSs. When extended to

the support of lotteries, Kelly-strategyproofness is weaker than the

well-studied notion of (weak) SD-strategyproofness [11]. Hence,
Theorem 1 implies that there is no rank-based SDS that satisfies

Pareto-optimality and SD-strategyproofness. Furthermore, Theo-

rem 2 implies that every support-based SDS that satisfies Pareto-

optimality and SD-strategyproofness puts positive probability on

at least one most preferred alternative of every voter, a property

that is known as positive share in the context of dichotomous pref-

erences [7]. Finally, we can also define the Condorcet loser prop-

erty for SDSs by requiring that Condorcet losers should always

receive probability 0, and non-imposition by demanding that for

every alternative, there is a profile such that this alternative re-

ceives probability 1. Then, Theorem 3 implies that there is no SDS

that satisfies the Condorcet loser property, non-imposition, and

SD-strategyproofness.
In comparison to other results on the strategyproofness of set-

valued SCFs, we employ a very weak notion of strategyproofness.

In particular, our notion of strategyproofness is weaker than those

used by Duggan and Schwartz [17], Barberà et al. [5], Ching and

Zhou [16], Rodríguez-Álvarez [31], and Sato [32]. This is possible

because we consider the more general domain of weak preferences,

which explicitly allows for ties. Interestingly, all proofs except

that of Claim 1 in Theorem 1 can be transferred to the domain

of strict preferences by carefully breaking ties and replacing Kelly-

strategyproofness with the significantly stronger strategyproofness

notion introduced by Duggan and Schwartz [17]. While the result-

ing theorems are covered by the Duggan-Schwartz impossibility,

this raises intriguing questions concerning the relationship between

strategyproofness results for weak and strict preferences.

In contrast to previous impossibilities for Kelly’s preference

extension [9, 15], our proofs do not rely on the availability of artifi-

cial voters who are completely indifferent between all alternatives.

Moreover, the results are tight in the sense that they cease to hold

if we remove an axiom, reduce the number of alternatives or voters,

weaken the notion of strategyproofness, or require strict prefer-

ences. For example, the essential set [18, 27] and a handful of other

support-based Condorcet extensions satisfy strategyproofness if

preferences are strict and participation for unrestricted preferences

[9, 10]. Our results thus provide important insights on when and

why strategyproofness can be attained.
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