
High-Multiplicity Fair Allocation Made More Practical
Robert Bredereck

Humboldt-Universität zu Berlin

Germany

robert.bredereck@hu-berlin.de

Aleksander Figiel

TU Berlin

Germany

a.figiel@tu-berlin.de

Andrzej Kaczmarczyk

TU Berlin

Germany

a.kaczmarczyk@tu-berlin.de

Dušan Knop

Czech Technical University in Prague

Czech Republic

dusan.knop@fit.cvut.cz

Rolf Niedermeier

TU Berlin

Germany

rolf.niedermeier@tu-berlin.de

ABSTRACT
The envy-free, Pareto-efficient allocation of indivisible goods leads

to computationally hard problems. There is a big variety of mod-

eling issues, such as agent-specific utility functions or (high num-

bers of) different types of goods. In recent work, Bredereck et

al. [ACM EC 2019] addressed this topic by showing (theoretical)

fixed-parameter tractability results for “high-multiplicity fair alloca-

tion”, exploiting parameters such as number of agents or maximum

absolute utility values. To this end, they used a number of tools from

(theoretical) integer linear programming. We “engineer” their work

towards practical usefulness, thereby being able to solve all real-

world instances from the state-of-art online platform “spliddit.org

for provably fair solutions”. Besides providing the foundations for

a fast tool for fair allocations, we also offer a flexible framework

with the possibility to relax fairness or efficiency demands so to,

e.g., allow tradeoffs between fairness and social welfare. Moreover,

our framework provides ways to interpret and explain “solution

paths” which makes it possible to perform further explorations in

cases when no envy-free and efficient allocations exist.

KEYWORDS
Indivisible Goods; Flexible Fairness; Integer Linear Programming;

Algorithm Engineering; Interpretable and Explainable Allocations

ACM Reference Format:
Robert Bredereck, Aleksander Figiel, Andrzej Kaczmarczyk, Dušan Knop,

and Rolf Niedermeier. 2021. High-Multiplicity Fair Allocation Made More

Practical. In Proc. of the 20th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2021), Online, May 3–7, 2021, IFAAMAS,

9 pages.

1 INTRODUCTION
This work is a practically oriented follow-up on recent purely the-

oretical work on high-multiplicity fair allocation by Bredereck et

al. [2]. They provided a parameterized complexity analysis of the

corresponding computationally hard problems and presented sev-

eral fixed-parameter tractability results making use of advanced

tools from the area of Integer Linear Programming. As pointed out

by the authors, and also in a recent survey byWalsh [19], the practi-

cal feasibility of the ILP-based approach of Bredereck et al. [2] was

left as a challenge for future research. We address this challenge by

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

an algorithm engineering-based approach presenting several fresh

(partially heuristic in the sense that we do not provide improved

worst-case running time guarantees) ideas. Our empirically driven

study demonstrates the practical feasibility, versatility, and high

flexibility of Bredereck et al.’s basic framework. Since our work is

strongly rooted in their theoretical work, to avoid repetitiveness

we refer to it [2] for a more extensive discussion on motivation, an

overview on the topic in general, and a literature review.

Problem Setting. We are given a set of agents and a (multi-)set

of items, each item with an agent-specific utility value. If an agent

receives a set of items, then its overall achieved utility is the sum of

the individual utility values of the received items (additive model).

We consider a high-multiplicity regime, that is, each item comes

in multiple copies (all copies have the same utility value) and each

copy can be distributed independently; the numbers of copies can

be encoded in binary. Roughly speaking, the goal is to find a fair and

efficient distribution of the given items to the agents. Herein, both

fairness and efficiency may come in several flavors. For instance, an

envy-free allocation means that no agent envies another agent for

its assigned bundle of items; Pareto-efficiency means that there is

no other allocation “dominating” it (see Section 2 for more formal

details and concepts). Altogether, this comprises a rich landscape

of (fair) resource allocation problems in the context of indivisible

goods, all typically turning out to be at least NP-hard.

State of the Art. Our work is centrally based on the theoretical

work of Bredereck et al. [2]. They showed several fixed-parameter

tractability results in the described problem setting, addressing a

number of fairness and efficiency concepts in their framework (we

will deal with all of these). Their main parameters exploited in the

fixed-parameter tractability results are the number of agents and

themaximum absolute utility value occurring in the input. They the-

oretically demonstrated that if these two parameters are “small” (a

realistic assumption for various real-world scenarios), then despite

computational worst-case hardness one can hope for theoretically

efficient solutions. Unfortunately, the delivered worst-case upper

bounds are too big in order to promise practical feasibility of the

corresponding, essentially ILP-based algorithms [2, 19]. Notably,

the developed algorithms make use of deep results from the theory

of Integer Linear Programming combined with innovative modeling

of fair allocation problems in this language.

Our contributions. In a nutshell, taking the purely theoretical re-

sults from Bredereck et al. [2], we engineer them towards practical

Main Track AAMAS 2021, May 3-7, 2021, Online

260

feasibility and validate this in an accompanying empirical study. To

this end, however, on the technical side we contribute several fresh

observations and ideas that finally help to make things significantly

more practical. In particular, with our developed tool at hand we can

solve all instances collected at the well-known spliddit.org platform,

indeed outperforming and improving several solutions provided

there. Our main messages may be summarized as follows. Our tool

is surprisingly fast and allows for high modeling flexibility in terms

of requested fairness and efficiency properties of the sought alloca-

tions. As we believe a particularly attractive and innovative feature

of our developed framework is that it may provide deeper insights

into the decision-making process that leads to the final allocations.

In particular, our technique of computing “trading cycles” can be

used to analyze both the input instance as well as the solution

in quite some detail. For example, if there is no envy-free and at

the same time Pareto-efficient allocation, then one can compute

an envy-free allocation and relax on Pareto-efficiency by allowing

only very complex trading cycles (notably, for a Pareto-efficient

solution there would be no trading cycle between agents).

We conclude our introduction with an illustrative example dis-

playing a number of aspects of the overall scenario.

Running Example. The siblings Alice, Bob, and Carol are in an

intensive inheritance dispute. Their uncle Donald disposed to hand

his most valuable belongings to his beloved nieces and nephew

under the condition, however, that they jointly agree on a fair

distribution among them. The following items from his inheritance

shall be distributed to Alice, Bob, and Carol: four koi carps (k), one
Siamese cat (s), three gulf trophys (t), eleven antique medals (m),

and one oil painting (p). Alice, Bob, and Carol express their utility

values for the items as depicted in Figure 1. The question is how

to distribute the items fairly which, of course, highly depends on

what fair means.

Bob proposes that everyone chooses an item in a round-robin

way: Alice selects her first item, Bob selects his first item, Carol

selects her first item, Alice selects her second item, and so on.

Carol, however, considers the resulting allocation (π1 in Figure 1)

as not very fair. Not only that Coral is the only one that get just

six items, she also envies Alice whose bundle of items would be

more valuable for Carol than her own. Moreover, the allocation is

obviously (Pareto-) dominated by another, better allocation that

can be seen by a very simple trading cycle. Carol can exchange

two of her antique medals with two koi carps from Alice so that

Alice’s new bundle has the same value but the value of Carol’s

bundle increases (from 32 to 34). The resulting allocation (π2 in

Figure 1) would still not be envy-free, but it is much closer: Carol

now values her bundle with 34 compared to Alice’s bundle with

value 35. Furthermore, the social welfare value (which is the sum

of utilities each agent assigns to its own bundle) of the allocation

increases from 78 to 80. Carol proposes to maximize the social

welfare and to allocate each item to the agent that values it the

most. This results in an allocation with social welfare 104 (π3 in

Figure 1). Naturally, this allocation is Pareto-efficient and, hence,

cannot be improved by any trading cycle. Since Alice does not get

a single item, this allocation is of course not acceptable for her.

Bob asks whether there isn’t any allocation that is envy-free,

does not allow for any trading cycles (Pareto improvements) and

k s t m p
Alice 2 1 0 2 2

Bob -1 -3 5 4 5

Carol 6 5 1 5 2

multiplicities 4 1 3 11 1

Round-robin allocation π1

2 0 0 5 0

0 0 3 3 1

2 1 0 3 0

utility evaluation π1

14 8 11

18 32 7

37 20 32

Round-robin allocation π2

0 0 0 7 0

0 0 3 3 1

4 1 0 1 0

utility evaluation π2

14 8 11

27 32 -3

35 20 34

Allocation maximizing SWF π3

0 0 0 0 0

0 0 3 0 1

4 1 0 11 0

utility evaluation π3

0 2 31

0 20 37

0 5 84

EEF allocation with best SWF π4

0 0 0 6 0

0 0 3 4 1

4 1 0 1 0

utility evaluation π4

12 10 11

24 36 -3

30 25 34

Figure 1: Top: Each agents lists (per row) the utilities it as-
signs to a single item of the respective item type (column).
Below: Several allocations are shown on the left. An entry in
row i and column j contains the number of items of type j al-
located to agent i (rows and columnsmatchwith the utilities
table on top). On the right, we see the utility evaluations for
the respective allocations. An entry in row i and column j
contains total utility of the bundle assigned to agent j in
viewpoint of agent i. The social welfare (SWF) of an alloca-
tion corresponds to the sum over the diagonals in the cor-
responding utility evaluation matrix. An allocation is envy-
free if the diagonal of the corresponding utility evaluation
matrix contain the row-wise maxima.

has a good social welfare value. Finding such allocations is known

to be computationally very challenging.

The contribution of our work is to provide a framework that al-

lows to compute an allocation that is an envy-free, Pareto-efficient

allocation, and additionally satisfies further properties or optimiza-

tion goals such as maximizing social welfare among those alloca-

tions that meet all other fairness and efficiency criteria. In particular,

with our framework, we can compute an allocation that is both

envy-free and Pareto-efficient and which yields a social welfare

of 82 (π4 in Figure 1).

2 PRELIMINARIES
We use boldface letters for vectors and regular letters for their

entries; for example, x = (x1,x2, . . . ,xd) is a vector of dimension d .

Main Track AAMAS 2021, May 3-7, 2021, Online

261

Allocations. Consider a set A = {a1,a2, . . . ,an } of n agents and
a set I of m item types, where each item type comes with inte-

ger, positive multiplicity mi , for each i ∈ I . Each agent a ∈ A
reports its private utility ua (i) for each item type i . An alloca-
tion is a function that assigns each agent with a set of items (pos-

sibly empty) called a bundle such that the assigned bundles are

disjoint. Thus, an allocation is expressible as an nm-dimensional

vector π = (π 1

a1

, · · · ,π 1

an ,π
2

an , · · · ,π
m
an). An allocation π can be al-

tered by change ∆, that is, by an nm-dimensional vector of integers

describing, for each agent a and item type i , how the number of

items of type i changed in a’s bundle. Thus, to avoid “losing” items,

for every item type i ∈ I ,
∑
a∈A ∆ia = 0. A change is admissible forπ

if for every agent a and item type i it holds that 0 ≤ π ia + ∆
i
a ≤ mi .

For some allocation π and an admissible change ∆, the sum π + ∆
gives a new allocation π ′

.

For some agent a and allocation π , the utility ua (x) of a’s bundle
as perceived by a is defined as

∑
i ∈I π

i
a · ua (i).

Fairness and Efficiency. We say that an allocation π is fair when

it is envy-free, that is, no agent would benefit from swapping its

bundle with any other agent. Formally, assuming that agent a envies
if there is some agent a′ such that ua (π) <

∑
i ∈I π

i
a′ · ua (i), then

allocation π is envy-free if no agent envies.

We say that an allocation π is Pareto-efficient if there exists

no other allocation π ′
that Pareto-dominates π . An allocation π ′

Pareto-dominates π if each agent gets a bundle of at least the same

utility under π ′
as under π and at least one agent gets a better-

valued bundle under π ′
than under π . Alternatively, one can define

Pareto-efficiency using the notion of an admissible change that

leads to allocation π ′
.

Central Problem. We focus on the following problem in which

we seek an allocation that is both Pareto-efficient and envy-free.

EEF–Allocation

Input: A set A of agents, a set I of item types, each with a positive

integral multiplicity mi , and, for each pair a ∈ A and i ∈ I an
integral utility ua (i).
Task: Find a Pareto-efficient and envy-free allocation of the items

to the agents in A or decide there is no such allocation.

3 DESCRIPTION OF THE ALGORITHM
Our algorithm is based on the approach of Bredereck et al. [2] who

studied EEF–Allocation from the viewpoint of parameterized

complexity. We begin with a high-level overview of their algorithm

and later we discuss the actual implementation of ours.

Bredereck et al. [2] identified the so-called domination problem.

Here we are given an allocation x and the task is to decide whether

there exists an allocation y Pareto-dominating x, that is,∑
i ∈I

ua (i) · y
a
i ≥

∑
i ∈I

ua (i) · x
a
i ∀a ∈ A (1)∑

i ∈I

∑
a∈A

ua (i) · y
a
i ≥ 1 +

∑
i ∈I

∑
a∈A

ua (i) · x
a
i (2)

0 ≤ yai ≤ mi ∀a ∈ A, ∀i ∈ I . (3)

They use the above ILP to prove that “if an allocation x is dominated,

then it is dominated by an allocation y which is close to x.” Here,
the closeness of allocations x and y is measured in ℓ1-norm of the

change ∆ = y − x. More precisely, they show that ∥x − y∥1 ≤

д(|A|,umax), where umax = max{ua (i) : a ∈ A, i ∈ I } and д is a

computable function [2, Lemma 10 (3)]. This is then exploited to

design an ILP of dimension upper-bounded by some (quite large)

function of |A| and umax solving EEF–Allocation as follows.

It is possible to design a set D of changes ∆ that are small

(i.e., ∥∆∥1 ≤ д(|A|,umax)) and that lead to a better allocation, that

is, x + ∆ dominates x. Observe that an allocation x is Pareto-efficient

if and only if y = x + ∆ is not an allocation (as otherwise y domi-

nates x). This, can be expressed by a set of linear constraints (as we

show see later) that can be added to the following ILP describing

that x is an envy-free allocation:∑
a∈A

xai ≤ mi ∀i ∈ I (4)∑
i ∈I

ua (i) · x
a
i ≥

∑
i ∈I

ua (i) · x
ā
i ∀a, ā ∈ A (5)

0 ≤ xai ≤ mi ∀a ∈ A, ∀i ∈ I (6)

Even though ILP solvers can nowadays handle quite large in-

stances, (the direct implementation of) the above described ap-

proach would most probably be infeasible. We rather use the para-

digm of separation subroutines—a core idea used in the Ellipsoid

method (see [8, 18]). We start with a small ILP (in fact, ours at

the beginning only asks for an envy-free allocation) and use an

external routine to check the validity of the returned solution (for

the whole problem). This is not hard in our case, since we can take

the solution (allocation) x returned by the ILP solver and ask if

there is an allocation y Pareto-dominating x (again using the ILP

solver). If there is no such y, then x is a sought solution to the given

instance of EEF–Allocation. However, if such a y exists, then,

assuming ∆ = y − x, we can add binary variables z∆a,i , z̄
∆
a,i and the

following constraints to the initial ILP:

xai + ∆
a
i ≤ −1 + 2mi

(
1 − z∆a,i

)
∀a ∈ A, ∀i ∈ I (7)

xai + ∆
a
i ≥ z̄∆a,i · (mi + 1) ∀a ∈ A, ∀i ∈ I (8)∑

i ∈I

∑
a∈A

(
z∆a,i + z̄

∆
a,i

)
≥ 1 . (9)

The constraints ensure that if z∆a,i = 0, then the corresponding

condition (7) is fulfilled, since x is an allocation and ∆ is small.

Conversely, if z∆a,i = 1, then the right-hand side of (7) evaluates

to −1 and it follows that x + ∆ is not an allocation (as agent a has

negative amount of items of type i). Similarly for z̄∆a,i = 0 and the

corresponding condition (8). We conclude that if the condition (9)

is satisfied, then at least one z variable is set to 1 and, consequently,

x+∆ is not an allocation. Note that this waywe forbid the previously

given solution x, since we cut it from the feasible region. Thus, we

can repeat this until either

(1) we find a solution x that is not Pareto-dominated or

(2) the constructed ILP becomes infeasible.

In the first case, we have found a solution to the given instance. In

the later case, we see that there is no solution because it is possible

to Pareto-dominate every envy-free allocation (using one of the

changes generated so far).

Main Track AAMAS 2021, May 3-7, 2021, Online

262

xai

xbj

Figure 2: An example of (a slice of) the allocation polytope.
The red point is an allocation with xai = 4 and xbj = 3 (which
cannot be in any Pareto-efficient allocation).

Example 3.1. In what follows we construct a very minimalistic

example of the addition of variables and constraints we have de-

scribed above. Suppose there are (among others) agents a and b
and items i and j and let the agent valuations be as follows

ua (i) = 1 ua (j) = 3 ub (i) = 2 ub (j) = 3 .

It is not hard to see that any allocation x fulfilling

xai ≥ 2 and xbj ≥ 1

is not Pareto-efficient, since if agent a gives two items i to agent b
and in exchange receives an item j, both agents increase the total

valuation of their bundles by 1. Let us further suppose there are

6 items i and 5 items j at our disposal. Then, the initial limitations

for the variables xai and xbj are

0 ≤ xai ≤ 6 and 0 ≤ xbj ≤ 5;

see the resulting polytope (in these two dimensions) in Figure 2.

We observe that this polytope contains partial allocation (i.e.,

integer points) that one cannot extend to a Pareto-efficient alloca-

tion of items to all of the agents. Thus, we need to cut these points

out. This is done by the above suggested construction (constraints

(7)–(9)). Let us focus here only on constraints (7) and (9) in more

detail. We observe that here the non-zero entries of ∆ are

∆a,i = −2, ∆a, j = 1, ∆b,i = 2, ∆b, j = −1 .

Thus, (7) translates into

xai − 2 ≤ −1 + 2 · 6 · (1 − z∆a,i) and xai ≤ 13 − 12z∆a,i ,

which gives xai ≤ 1 if z∆a,i = 1 and xai ≤ 13 if z∆a,i = 0 (which is

dominated by the already present constraint xai ≤ 6). Similarly, we

get

xbj ≤ 10 − 10z∆b, j .

Furthermore, let us tighten the last constraint and require that

z∆a,i + z∆b, j = 1 and keep only the binary variable x∆a,i (i.e., we

substitute z∆b, j = 1 − z∆a,i). We get

xai ≤ 13 − 12z∆a,i xbj ≤ 10z∆a,i

and the corresponding polytope is shown in Figure 3.

xai

z∆a,i

xbj

Figure 3: An example of (a slice of) the “lifted and cut” allo-
cation polytope. The points of the original, cut-off polytope
are in gray (the former solution being among them in red).

4 EXPERIMENTAL SETUP
We implemented the algorithm

1
from Section 3 and then tested it

on the data gathered by the spliddit.org [6, 17]. It is a free, publicly-

accessible, online service that, after being fed with a list of indivis-

ible items, agents, and utilities that the agents give to the items,

computes an allocation that is guaranteed to be envy-free up to

one good [6]. The data, to be referred to further as the Spliddit
data set, was shared with us by the service authors: Ariel Procaccia,

Jonathan Goldman, Nisarg Shah, and David Kurokawa.

Spliddit Data Set Details. The full Spliddit data set consists of

3244 numbered instances with up to 15 agents and up to 85 item

types. For each instance, the data set contains an allocation com-

puted by spliddit.org. However, for some instances the computed

allocations were not EF1 or they contained divided items. Since all

of these these had a low “identification” number, we assumed that

they correspond to early versions of the spliddit.org algorithm [3,

Section 1.1]. Thus, we excluded from consideration all instances

with identification numbers smaller than 25000. Effectively, our

filtered data set consisted of 1676 instances with EF1 solutions, out

of which roughly two thirds were also envy-free.

Figure 4 presents the detailed statistics of the instances in the

data set. Notably, the instances consist of rather few agents and item

types, which is a natural consequence of humans’ limited cognitive

capabilities. However, as discussed in detail in Section 7, even for

these small instances the theoretical running time guarantee offered

by the approach of Bredereck et al. [2] is far beyond practical appli-

cability threshold. Importantly, the instances in the Spliddit data

set do not contain negative utilities and each item therein comes in

one copy. The former is due to the fact that spliddit.org does not

allow for negative utilities. The latter is because it is highly unlikely

that when each user of spliddit.org assigns utilities privately, there

are some of them who report exactly the same utilities. Finally,

spliddit.org requires that the sum of each agent’s utilities is 1000,

which means that the maximum utility is at most 1000.

Hardware Setup. We used C++ (with flag -O2), the IBM ILOG
®

CPLEX
®
Optimizer (version 12.9.0.0), and machines with Intel

®

Xeon
®
W-2125 (4.00 GHz, four cores, 256 GB RAM) operated by

Ubuntu 18.04.4 LTS.

1
Our implementation is publicly available under GNU GPL v.3.0 at https://git.tu-

berlin.de/akt-public/eef-practical-solver-code.

Main Track AAMAS 2021, May 3-7, 2021, Online

263

https://git.tu-berlin.de/akt-public/eef-practical-solver-code
https://git.tu-berlin.de/akt-public/eef-practical-solver-code

2 4 6 8 10 12 14

number of agents

100

101

102

103

n
u
m

b
er

o
f

in
st

a
n
ce

s

5 10 15 20 25 30+

number of resource types

100

101

102

103

n
u
m

b
er

o
f

in
st

a
n
ce

s

2 4 6 8 10 12 14

number of agents

0

10

20

30

40

n
u

m
b

er
o
f

re
so

u
rc

e
ty

p
es

5 10 15

number of agents

5

10

15

20

25

30+

n
u
m

b
er

o
f

re
so

u
rc

es

100

101

102

103

n
u
m

b
er

o
f

in
st

a
n
ce

s

Figure 4: Statistics of the used fair allocation instances from spliddit.org. First (from left): Frequency of instances depending
on the number of agents. Second: Frequency of instances depending on the number of item types. Third: A scatter plot with a
circle per combination of number of agents (x-axis; jittered for readability) and number of item types (y-axis) that in the data
set. Fourth: A heatmap illustrating frequency of instances per combination for number of agents and number of item types.

EEFX allocation with best SWF
0 0 0 6 0

0 0 3 3 1

4 1 0 2 0

utility evaluation
12 8 13

24 32 1

30 20 39

EEF1 allocation with best SWF
0 0 0 5 0

0 0 3 5 1

4 1 0 1 0

utility evaluation
10 12 11

20 40 -3

25 30 34

Figure 5: Some envy-free up to one/any good and Pareto-
efficient allocations for the running example.

5 FLEXIBLE FAIRNESS
Bredereck et al. [2] showed a theorem that can be applied to ob-

tain fixed-parameter algorithms for combinations of a variety of

efficiency and fairness concepts. Our implementation of their tech-

nique keeps this flexibility. In fact, we can also cover many re-

laxations of fairness concepts [1, 3, 14, 16]. Each of them can be

handled efficiently by our framework in practice, thus successfully

demonstrating how we can work our way around “impossibilities”

of finding Pareto-efficient and envy-free allocations.

Recall that in our technique (see Section 3) we, intuitively, iter-

atively solve a main ILP, in each step shrinking its search space

by using the output of small side ILPs. Basing on Bredereck et al.

[2], who showed how one can consider different fairness concepts

exchanging the main ILP, we implemented ILPs modeling envy-

freeness up to one good (EF1) [14] and envy-freeness up to any

good (EFX) [3]. In the former case, agent a can envy agent b as long

as the envy vanishes after pretending a removal of some item of b.
In the latter case, the envy has to vanish after an arbitrary item

of b is “removed”; clearly, each EFX allocation is also EF1 while

the opposite does not hold. We illustrate these concepts in Figure 5

providing examples of corresponding allocations for our running

example from Section 1. Importantly, an allocation that is EF1 and

Pareto-efficient always exists [3], which gives a reasonable limit of

relaxing fairness concepts.

A remarkable feature of the main and side ILPs we discussed so

far is that they do not have any optimization goals. Adding opti-

mization goals, however, offers further opportunities for relaxing

envy-freeness in a way that is not comparable to EF1 and EFX.

We start with minimizing the maximum absolute envy, which is

the difference between the utility that an agent gets from its own

bundle and the utility that the agent would get from its neighbor

bundle. It is clear that the maximum absolute envy is at most 0

for every EF allocation. However, an easy example of two single-

minded agents and a single desired item shows that the minimum

absolute envy is unbounded for either EFX or EF1 allocations. In-

deed, giving the item to one of the agents yields an EF1 and EFX

allocation but the maximum absolute envy is equal to the utility

of the item. Since the absolute envy for a pair of agents is only

depending on the allocation, we can add a single variable which is

an upper bound of the absolute envy for each pair of agents in the

main ILP. Then, minimizing this variable yields an ILP that finds an

allocation minimizing the maximum absolute envy; in particular

the ILP also finds an envy-free allocation if it exists.

Minimizing the maximum absolute envy suffers from standard

issues concerning absolute measures—the difference of 1 utility is

more meaningful for an agent whose own bundle has utility 2 than

for an agent that owns a bundle of utility 1000. Thus, we introduce

a relative envy measure α and say that the relative envy is α if for

all pairs of two distinct agents ai and aj it holds that:

ui (π (j)) − ui (π (i))

ui (π (i))
≤ (α − 1); that is αui (π (i)) ≥ ui (π (j)).

While it is clear that an EF allocation has the relative envy at

most α = 1, the same example of two agents desiring a single item

shows that the relative envy is unbounded in EF1 or EFX allocations.

However, minimizing the relative envy is not as straightforward

as minimizing the absolute envy. This is due to the fact that fac-

tor α cannot be treated as a variable since it leads to a quadratic

equation. Yet, treating α as a fixed constant does not give this effect.

Hence, to minimize α our framework performs a binary search

to find the right α . For each stage of the binary search procedure,

the framework runs an ILP to verify, for a particular choice of α ,
whether there exists an allocation that has relative envy α . Natu-
rally, since α is a rational number, we select some small constant ϵ
and we discretize possible values of α .

Minimizing α in a way described in the previous paragraph

comes with an important caveat (apart from the discretization of α).
Assume the binary search procedure stops at some value α ′

. There

could be one critical agent who prevents further decrease of relative

envy. In such situations, the multiplicative factors α for other agents

do not play a role anymore as long as they area smaller than α ′
. So,

Main Track AAMAS 2021, May 3-7, 2021, Online

264

T1/T2: Bob k−→ Alice/Carol T11: Alice k−→ Carol,

T3/T4: Bob s−→ Alice/Carol Carol p−→ Alice

T5/T6: Alice t−→ Bob T12: Bob m−→ Carol,

T7: Alice s−→ Carol, Carol p−→ Bob,

Coral p−→ Alice T13: Bob p−→ Carol,

T8: Alice m−→ Carol, Carol t−→ Bob

Carol p−→ Alice T14: Alice k−→ Carol,

T9: Alice p−→ Bob, Carol m−→ Alice

Bob m−→ Alice T15: Bob t−→ Carol,

T10: Alice s−→ Carol, Carol m−→ Bob

Carol m−→ Alice

Figure 6: Minimal Trading Cycles of the running example.
Herein, “A x−→ B/C” means that agent A gives item x to
agent B or to agent C.

even if all other agents can achieve significantly smaller values of

the factor α , our procedure neglects this possibility. However, we
can overcome this issue by continuing decreasing the value of α for

all agents but the bottleneck agent; in this way, we obtain a leximin

relative envy-freeness. We point out, however, that in case of more

than one bottleneck agent, we fix the coefficient α of an arbitrarily

chosen agent, which might lead to suboptimal solutions.

We listed the above-mentioned envy-freeness relaxations to

demonstrate the flexibility and versatility of our framework in terms

of allocation fairness. Utilizing the goal function, together with re-

running the main ILP several times with different parameters, can

be used to implement more sophisticated concepts (e.g., maximizing

Nash welfare can be implemented using sum of logarithms of the

utilities the agents obtain [3]), including assigning different weights

to utilities of particular agents.

6 TRADING CYCLES
A crucial ingredient of our framework is the change ∆ which is

a (possible) witness for Pareto-domination. Changes witnessing

Pareto-domination are iteratively identified and turned into addi-

tional constraints of the ILP (see Conditions 7 to 9). Such a change

has a very natural interpretation from the agents viewpoint which

is helpful for further insights concerning our framework and the

allocation instances to be solved. Every change ∆ = y−x in fact can

be interpreted as trading cycle between the agents of the instance

when we start with the initial allocation x and exchange items so

that we end up with the allocation y. Herein, negative numbers

describe the number of items from a certain item type that are

given away by an agent and positive numbers describe the number

of items from a certain item type that are received by an agent.

Naturally, zero entries describe items where agents keep the same

number of items from an item type. Intuitively, it is enough to focus

on the small trading cycles, which are formally captured by the

concept of minimal trading cycles to be defined next.

Minimal Trading Cycles. The simplest possible trading cycle in-

volves one agent giving an item to another agent. Such a cycle is

beneficial if the first agent has negative utility for the item whereas

the second agent has not. Without negative utilities, the simplest

trading cycle involves two agents and two exchanged items. In Fig-

ure 6, we listed some trading cycles relevant for our initial running

example. For example, Bob giving a koi carp to Carol improves

the bundle for both agents (T2 in Figure 6). A trading cycle in-

volving two items is when Alice gives the oil painting to Bob

and Bob gives a medal to Alice (T9 in Figure 6). This cycle im-

proves the bundle for Bob and does not change the evaluation of

the bundle of Alice. In our implementation, we are only interested

in minimal trading cycles. A non-minimal trading cycle would,

for example, be when Bob gives two koi carps to Carol. Formally,

a trading cycle is minimal when it corresponds to an admissible

change ∆ such that there is no other admissible change ∆′
so that

∀i : (sign(∆′[i]) = sign(∆[i])) ∧ (|∆′[i]| ≤ |∆[i]|). Focusing on min-

imal trading cycles significantly simplifies our approach: By forbid-

ding all minimal trading cycles, one obviously forbids all trading

cycles. For our running example, we end up with only 15 minimal

trading cycles (Figure 6). However, we can actually go one step

further as we see next.

Crude Trading Cycles. There may be two minimal trading cycles,

as for example T1 and T2 in Figure 6, in which the same set of

agents gives away the same set (and number) of items, but different

agents are receiving these items. We say such trading cycles are of

the same trading type. The trading cycles T1 and T2 both describe

situations where Bob is happy to give away a koi carp, and there is

another agent (Alice or Carol) that is happy to receive it. Observe

that in order to forbid both trading cycles it suffices to forbid the

possibility that Bob can give away a koi carp (which effectively

forbids the allocation of a koi carp to Bob). Informally, when looking

at Figure 6, the recipients (right-hand side of the arrows) of the

trading are completely irrelevant as long a we know there exists at

least one trading cycle with the respective donators (left-hand side

of the arrows). In effect, we keep exactly one minimal trading cycle

from each trading type ending up with a set of crude trading cycles.
More formally, when adding the constraints it is enough to focus

on the negative part of the changes. For our running example, we

end up with a set of twelve crude trading cycles.

7 COMPUTATIONAL EFFICIENCY
What blocks envy-free and efficient allocations from being com-

puted in practice so far is the absence of efficient implementations.

Due to the ΣP
2
-completeness [11] of our problem, it is also far from

being obvious that an ILP-based implementation will be computa-

tionally efficient, since one practical consequence of this classifica-

tion is that one has to expect multiple calls to an ILP solver to obtain

a solution. Indeed, to build up the final ILP, our framework has to

call multiple ILPs in order to check whether the current solution

is still dominated. This means that not only the running time of a

single ILP call but also the number of calls will be decisive for the

computational efficiency of our framework.

From theoretical point of view, our framework is backed by

fixed-parameter tractability with respect to the number of agents

combined with the maximum utility value as theoretical perfor-

mance guarantee [2]. At first glance, this is promising, as one can

expect the number of agents to be small and also the utility values

(selected by humans) to be somehow bounded. Indeed, the number

of agents in our data set is only between 3 and 15 (see Figure 4).

Main Track AAMAS 2021, May 3-7, 2021, Online

265

2 3 4 5 6 7 8 10 11 15

number of agents

10−2

10−1

100

101

102

A
v
g
.

ru
n
.

ti
m

e
[s

] EF + Pareto efficient

2 3 4 5 6 7 8 10 11 15

number of agents

10−2

10−1

100

101

102

A
v
g
.

ru
n
.

ti
m

e
[s

] EFX + Pareto efficient

2 3 4 5 6 7 8 10 11 15

number of agents

10−2

10−1

100

101

102

A
v
g
.

ru
n
.

ti
m

e
[s

] EF1 + Pareto efficient

Figure 7: Running times boxplot statistics of our framework on spliddit.org instances for several fairness concepts.

2 3 4 5 6 7 8 10 11 15

number of agents

100

101

102

103

104

co
n

si
d

er
ed

tr
a
d

in
g

cy
cl

es
+

1

envy-free, efficient

envy-free, min. trading cycles

envy-free, max. SWF, efficient

envy-free, max. SWF, min. trading cycles

envy-free, min. absolute envy, efficient

envy-free, min. absolute envy, min. trading cycles

envy-free, min. relative envy α, efficient

envy-free, min. relative envy α, min. trading cycles

Figure 8: Boxplot statistics of the number of iterations (considered trading cycles) needed to reach the final ILP for several
variants of our framework.

The target utility value sum in spliddit.org, however, is 1000 so that

we cannot expect a very small maximum utility value. The best

known theoretical upper bound for the running time of a single

ILP call is O(ρ2.5ρ+o(ρ)L) where ρ is the number of integer vari-

ables and L is the length of the ILP encoding [5, 10, 13]. Assuming

n = 3 agents and maximum utility value umax = 4, ρ would be

larger than 100 ≤ (umax + 1)n ·n already for the initial ILP call; thus

the theoretical upper bound is worthless. Actually, the actual bound

on ρ is a bit tighter if we know that the numberm of item types is

much smaller than (umax + 1)n . Indeed, the number of item types in

our data set is smaller than 100 and there are few instances where

ρ is indeed smaller than ten (see Figure 4). Hence, the theoretical

bound would guarantee at least an efficient solution of the initial

ILP call (computing only a complete envy-free allocation).

As for the size of the final ILP, the situation is even more dra-

matic since the bounds from Bredereck et al. [2] only guarantee a

bound of ρ ≤ nm · ((4n · umax + 1)n)m(n+1)
. Hence, the theoretical

guarantee is already worthless for n = 2 agents,m = 2 item types

and maximum utility value umax = 2. We emphasize that these

bounds from Bredereck et al. [2] are not tight and were only meant

for classification, so that it is worth to test what actually happens in

practice. Moreover, state-of-the-art ILP solvers do not use Lenstra’s

algorithm [13] which is behind the theoretical bounds.

In contrast to the pessimistic theoretical guarantees, it turns

out that our framework is computationally extremely efficient. In

fact, our running example can be solved very quickly (much less

than a second). This, however, is not by lucky chance. Indeed, we

were able to find an envy-free and efficient allocation or decide

that there is no such allocation for each instance from spliddit.org

within less than 15 seconds (see Figure 7 for average running times).

To (slightly) speed up the computation and to make the solution

fairer, we were actually computing in each case an envy-free and

efficient allocation that maximizes social welfare (among those

allocation that are envy-free and efficient). Interestingly, weakening

the envy-freeness requirements a bit and requiring the allocation

to be envy-free up to any good (EFX) significantly increased the

running time but we were still able to solve all instances. These

effects will be discussed in detail in the next section.

What is clearly decisive for the effectiveness of our framework

is the number of iterations it takes until it reaches the final ILP.

From a theoretical viewpoint, we only have the guarantee that it

cannot be more than the number of minimal trading cycles since

we add constraints that forbid at least one more minimal trading

cycle in each iteration. Unfortunately, neither theoretical upper

bounds on the number of minimal trading cycles nor the actual

bound computed for each instance (in advance before solving it)

gives much hope for few iterations. In practice, however, it turned

out that the number of iterations is in many instances not an issue

for the computational efficiency. In fact, as Figure 8 shows, one

needs on average less than ten iterations (this holds for all instances

with few and also for instances with many agents). In the (very few)

worst cases, however, one needs more than one thousand iterations

when computing an envy-free and Pareto-efficient allocation.When

additionally maximizing the social welfare, the average number of

iterations drops down to almost one everywhere and the maximum

number of iterations is below one hundred.

Main Track AAMAS 2021, May 3-7, 2021, Online

266

−1 0 1 2 3
none min alphaiter max swf pareto relative envy

−1

0

1

2

3

sp
li
d

d
it

re
la

ti
ve

en
v
y

102 103

ef1 max swf pareto avg SWF

102

103

sp
li

d
d

it
av

g
S

W
F

Figure 9: Comparing relative envy (left) and social welfare (right) of the spliddit.org solutions with those of our framework
when computing envy-free, Pareto-efficient solutions with minimum relative envy (left) and EF1, Pareto-efficient solutions
withmaximum social welfare (right). Dots above the diagonal represent instances with higher value for spliddit.org solutions.

8 GUARANTEED ENVY-FREENESS
We tested our framework on the spliddit data set seeking envy-free

efficient allocations. We were interested for how many instances

we can find envy-free Pareto-efficient allocations thus providing

a “fairer” solution than spliddit.org does. We succeeded for 63% of

instances needing on average 0.2 seconds per instance to either

find a proper allocation or decide that it does not exist. Hence, we

observe a strong evidence that our approach is practically usable

for finding fair and efficient allocations (whenever they exist).

Interestingly, although spliddit.org only guarantees EF1 Pareto-

efficient allocations, we found that around 54% of allocations it

computed were also envy-free; and the remaining ones had rela-

tive envy factor α below two (except for few instances). Thus, we

experimentally demonstrated that, in the field, the technique (Nash

welfare maximization) exploited by spliddit.org performs quite well

with respect to finding envy-free and Pareto-efficient allocations.

Our algorithm can also maximize the social welfare of fair and

efficient allocations. To compare our approach with spliddit.org, we

computed EF1 Pareto-efficient allocations (matching spliddit.org

guarantees) that maximize social welfare. We found out that in

roughly 30% of instances we obtained an allocation that has a bigger

social welfare than the one reported by spliddit.org. However, only

in around 8% cases the gain in social welfare exceeded 5%. Again,

spliddit.org performs quite well, however we were able to get even

better results providing further empirical evidence that computing

fair allocations can benefit from our technique that guarantees a

maximum possible utilization of items within fair allocations.

See also Figure 9 for a comparison of spliddit.org solutions with

those provided by our framework with respect to relative envy and

social welfare. Notably, for quite some instances (those above 1.0 on

the x-axis and below 1.0 on they-axis in the top plot) only our frame-

work computed an envy-free solution. The social welfare improve-

ment is always below factor-two (dotted lines in the bottom plot).

9 CONCLUSIONS
Our work addresses a recent strong interest in developing feasi-

ble methods for fair resource allocation [15, 19]. We demonstrated

that the framework proposed by Bredereck et al. [2] can be made

practical for relevant applications and that it produces reasonable

outcomes (often even better than those provided by the spliddit

platform). The solutions provided by our tool together with the set

of (crude) trading cycles give further insights into the space of pos-

sible allocations. Furthermore, a skilled “allocator” can customize

our tool to improve or adjust the produced outcome so that it suits

better an envisaged application. Remarkably, the (crude) trading

cycles correspond to Graver basis elements of certain N -fold IP

matrices [2, 7]. Here, we generate these cycles “on demand” which

is determined by the side ILP we use to either confirm that the

current allocation is not dominated or to provide the trading cycle.

It is known [4, 9, 12] that one can construct a superset of the Graver

basis of an N -fold matrix from Graver basis elements of the corre-

sponding “diagonal matrices” by a certain kind of aggregation of

these. More importantly, there is a constant that upper-bounds the

number of these elements that need to be combined [9, Section 7].

Further, we would like to stress the versatility and explainability

of our framework. If, for a chosen notion of envy-freeness, there is

no solution, then our framework produces a human-readable certifi-

cate for this fact. It consists of a collection C of trading cycles such

that for every allocation fulfilling the selected notion envy-freeness

there exists a trading cycle in C leading to a new allocation which

dominates the original one with respect to the selected efficiency

concept. This provides further insights into the root causes why a

solution does not exist and allows us to relax the demands on the

solution; we can, for instance, replace envy-freeness with EFX or

limit the trading cycles assumed. Furthermore, the original method

of Bredereck et al. [2] works without any objective. Here, we pro-

posed several objectives one can use in addition to their framework

and thus may obtain various solutions to the original problem, some

of them possibly better according to an external criterion (i.e., a

criterion that does not admit a description in “math-language” but

is easily interpretable by humans).

ACKNOWLEDGMENTS
We are thankful to the anonymous reviewers of AAMAS ’21 for

their helpful comments. We are grateful to Ariel Procaccia and

Nisarg Shah for sharing the Spliddit data set. AK and AF were

supported by the DFG project “AFFA” (BR 5207/1 and NI 369/15).

DK was supported by the project CZ.02.1.01/0.0/0.0/16019/0000765

“Research Center for Informatics” funded by OP VVVMEYS. Part of

the work was done while DK and RB were affiliated with TU Berlin

and DK was supported by the DFG project “MaMu” (NI369/19).

Main Track AAMAS 2021, May 3-7, 2021, Online

267

REFERENCES
[1] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. 2018. Finding

Fair and Efficient Allocations. In Proceedings of the 19th ACM Conference on
Economics and Computation (EC ’18). ACM, 557–574.

[2] Robert Bredereck, Andrzej Kaczmarczyk, Dusan Knop, and Rolf Niedermeier.

2019. High-Multiplicity Fair Allocation: Lenstra Empowered by N-fold Integer

Programming. In Proceedings of the 2019 ACM Conference on Economics and
Computation, EC 2019. 505–523. https://doi.org/10.1145/3328526.3329649

[3] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg

Shah, and Junxing Wang. 2016. The Unreasonable Fairness of Maximum Nash

Welfare. In Proceedings of the 17th ACM Conference on Economics and Computation
(EC ’16). ACM, 305–322.

[4] Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin

Koutecký, Asaf Levin, and Shmuel Onn. 2019. An Algorithmic Theory of Integer

Programming. CoRR abs/1904.01361 (2019). arXiv:1904.01361 http://arxiv.org/

abs/1904.01361

[5] András Frank and Éva Tardos. 1987. An application of simultaneous Diophantine

approximation in combinatorial optimization. Combinatorica 7, 1 (1987), 49–65.
[6] Jonathan R Goldman and Ariel D Procaccia. 2015. Spliddit: Unleashing fair

division algorithms. SIGecom Exchanges 13, 2 (2015), 41–46.
[7] Jack E. Graver. 1975. On the foundations of linear and integer linear programming

I. Mathematical Programming 9, 1 (1975), 207–226.

[8] Martin Grötschel, László Lovász, and Alexander Schrijver. 1981. The ellipsoid

method and its consequences in combinatorial optimization. Combinatorica 1, 2
(1981), 169–197. https://doi.org/10.1007/BF02579273

[9] Raymond Hemmecke, Shmuel Onn, and Lyubov Romanchuk. 2013. N -Fold

integer programming in cubic time. Mathematical Programming 137, 1-2 (2013),

325–341.

[10] Ravi Kannan. 1987. Minkowski’s Convex Body Theorem and Integer Program-

ming. Mathematics of Operations Research 12, 3 (1987), 415–440.

[11] Bart de Keijzer, Sylvain Bouveret, Tomas Klos, and Yingqian Zhang. 2009. On the

Complexity of Efficiency and Envy-Freeness in Fair Division of Indivisible Goods

with Additive Preferences. In Proceedings of the 1st International Conference on
Algorithmic Decision Theory (ADT ’09). Springer, 98–110.

[12] Martin Koutecký, Asaf Levin, and Shmuel Onn. 2018. A Parameterized Strongly

Polynomial Algorithm for Block Structured Integer Programs. In Proceedings of
the 45th International Colloquium on Automata, Languages, and Programming
(ICALP ’18). Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 85:1–85:14.

[13] Hendrik W. Lenstra, Jr. 1983. Integer Programming with a Fixed Number of

Variables. Mathematics of Operations Research 8, 4 (1983), 538–548.

[14] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. 2004.

On Approximately Fair Allocations of Indivisible Goods. In Proceedings of the 5th
ACM Conference on Electronic Commerce (EC ’04). ACM, 125–131.

[15] Trung Thanh Nguyen and Jörg Rothe. 2020. Approximate Pareto Set for Fair and

Efficient Allocation: Few Agent Types or Few Resource Types. In Proceedings
of the 29th International Joint Conference on Artificial Intelligence (IJCAI ’20).
International Joint Conferences on Artificial Intelligence Organization, 290–296.

[16] Benjamin Plaut and Tim Roughgarden. 2018. Almost Envy-freeness with General

Valuations. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA ’18). SIAM, 2584–2603.

[17] Ariel Procaccia, Nisarg Shah, Jonathan Goldman, and David Kurokawa. 2020. Fair

Division of Rent, Goods, Credit, Fare, and Tasks - Spliddit. http://www.spliddit.

org/. Accessed: 2020-08-07.

[18] Alexander Schrijver. 1999. Theory of linear and integer programming. Wiley.

[19] Toby Walsh. 2020. Fair Division: The Computer Scientist’s Perspective. In Pro-
ceedings of the 29th International Joint Conference on Artificial Intelligence (IJCAI
’20). 4966–4972.

Main Track AAMAS 2021, May 3-7, 2021, Online

268

https://doi.org/10.1145/3328526.3329649
https://arxiv.org/abs/1904.01361
http://arxiv.org/abs/1904.01361
http://arxiv.org/abs/1904.01361
https://doi.org/10.1007/BF02579273
http://www.spliddit.org/
http://www.spliddit.org/

	Abstract
	1 Introduction
	2 Preliminaries
	3 Description of the Algorithm
	4 Experimental Setup
	5 Flexible Fairness
	6 Trading Cycles
	7 Computational Efficiency
	8 Guaranteed Envy-Freeness
	9 Conclusions
	Acknowledgments
	References

