
Worst-case Bounds for Spending a Common Budget
Pierre Cardi

Université Paris-Dauphine, Université

PSL, CNRS, LAMSADE, 75016

Paris, France

pierrecardi2@gmail.com

Laurent Gourvès

Université Paris-Dauphine, Université

PSL, CNRS, LAMSADE, 75016

Paris, France

laurent.gourves@lamsade.dauphine.fr

Julien Lesca

Université Paris-Dauphine, Université

PSL, CNRS, LAMSADE, 75016

Paris, France

julien.lesca@lamsade.dauphine.fr

ABSTRACT
We study the problem of spending a budget that is common to

𝑛 agents. Agents submit demands to a central planner who uses

the budget to fund a subset of them. The utility of an agent is the

part of the budget spent on her own accepted demands. In a fair

solution, the successful demands of each agent would represent a

1/𝑛 fraction of the budget. However, this is rarely possible because

every demand is indivisible, i.e. either accepted in its entirety or

rejected. We are interested in worst-case bounds on the largest

proportion of the budget that is dedicated to the least funded agent.

Our approach is not to solve the corresponding max min problem

for every instance, but to tackle the problem from a higher level.

The size of the largest demand compared to the budget and the

number of agents, are two parameters that significantly influence

how much the worst-off agent gets. We propose worst-case bounds

on the best utility of the least funded agent for the class of instances

where the number of agents and the most expensive demand are

fixed to given values. A characterization of this quantity is provided

for 1 and 2 agents. For more than 2 agents, we propose lower and

upper bounds that constitute a
14

15
-approximation of the optimal

value. Every existence result is complemented with a polynomial

algorithm that builds a feasible solution satisfying our bounds.

KEYWORDS
Fairness; Computational Social Choice; Worst Case Analysis

ACM Reference Format:
Pierre Cardi, Laurent Gourvès, and Julien Lesca. 2021. Worst-case Bounds

for Spending a Common Budget. In Proc. of the 20th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2021), Online, May
3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
We study the problem of spending a budget that is common to

𝑛 agents. Agents have demands which correspond to indivisible

portions of the budget. A solution is to accept a selection of demands

which fits in the budget. The problem occurs when, for example,

there is a server with a given memory capacity and its users want

to store some of their files [10]. Another application is when an

organization has a given amount of money to be spent for funding

the projects (or any kind of expense) of its members (see [12] for

an example with the EU).

The situation can be illustrated with a small example. There are

Alice and Bob whose demand sets are {29, 25, 20} and {19, 17, 16},
respectively. The common budget is 100. Several feasible solutions

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

exist, one of them consists of spending 85 by accepting {29, 20} and
{19, 17}. Here, it is assumed that every agent’s utility is the part of

the budget spent on her own accepted demands. We would like to

find a fair solution and proportionality is a well accepted notion of

fairness. In a proportional solution, the successful demands of each

agent represent a 1/𝑛 fraction of the budget. However, being pro-

portional is rarely possible with indivisible objects. In the previous

example, Alice and Bob have utility 49 and 36, respectively, but no

feasible solution gives 50 to both agents.

When proportionality is not achievable, we can strive to be as

close as possible to it by maximizing the utility of the worst-off

agent (max min problem). Beyond the computational difficulty of

this task, it is interesting to know, explicitly, how close to 1/𝑛 we

can be. The intuition is that the smaller the demands, the closer

we can get to proportionality. Our approach is not to solve the

corresponding max min problem for every instance, but to tackle

the problem from a higher level. We are interested in explicit worst-

case bounds on the largest proportion of the budget that can be

dedicated to the least funded agent. These bounds are based on two

parameters: the number 𝑛 of agents and the proportion 𝛼 of the

largest demand compared with the budget. Our primary objective

is to quantify how close to proportionality we can be in the class

of instances with parameters 𝑛 and 𝛼 , and where the demands of

every agent exceed the budget divided by 𝑛. Different instances

with the same parameters 𝑛 and 𝛼 are not equivalent: some may

admit a solution very close to proportionality, while some others

may not. Therefore, we want to lower bound the proportion of

the budget that the maximum minimum utility represents, in the

worst case. We call 𝜌𝑛 (𝛼) this quantity for any given pair (𝛼, 𝑛).
Having an explicit and compact expression of 𝜌𝑛 (𝛼) provides a
quick estimation of how good the utility of the worst-off agent can

be. Namely, if 𝐵 is the common budget, then a feasible solution

guaranteeing a utility of 𝜌𝑛 (𝛼)𝐵 to all agents exists. Furthermore,

we are interested in the efficient computation of a feasible solution

exhibiting this guarantee.

1.1 Related work
Fairly dividing common resources among agents is one of the most

prominent problems in social choice. It has been considered in

economics for many years [20], and most recently it has attracted

the attention of computer scientists [4]. One of the most studied

problems in this area consists in allocating a set of items to 𝑛 agents.

Many concepts of fairness have been considered in the literature,

including envy-freeness (each agent prefers her share to the share

of another), and proportionality (each agent values her share at least

a 1/𝑛 fraction of the whole manna). The items may be divisible (e.g.

money), or indivisible. In the former case, envy-free or proportional

allocations are guaranteed to exist and can be computed efficiently

Main Track AAMAS 2021, May 3-7, 2021, Online

288

[6, 18]. When items are indivisible, there exist instances without

envy-free or proportional allocation. In order to circumvent this

impossibility, different relaxations have been proposed, such as

bounded maximal envy [13] or envy-freeness up to one good [7] for

envy-freeness. Regarding proportionality, one can mention maxmin

fairness, which stipulates that an allocation is fair whenever the

utility of the poorest agent is maximized. Unfortunately, computing

a maxmin allocation is a hard problem, even for two agents [1, 3, 5].

Another relaxation of proportionality is to target a value smaller

than 1/𝑛. Concretely, each agent’s utility should be at least 𝑟 times

her utility for the whole set of items, for some 𝑟 ≤ 1/𝑛. Demko

and Hill follow this path for the allocation of indivisible goods [9].

They describe a continuous and monotonic function 𝑉𝑛 and prove

that every instance, where 𝑥 is the largest utility for a single good,

admits a solution where the utility of the worst-off agent is at least

𝑉𝑛 (𝑥). Improvements and further algorithmic and game theoretic

results have been provided by Markakis and Psomas [14]. Gourvès

et al. [11] made some extensions to matroids and improvements of

𝑉𝑛 .

This article deals with the problem of fairly spending a common

budget. Its connection with the fair allocation of indivisible items

comes from the presence of multiple agents having indivisible de-

mands. Our approach is similar to [9, 11, 14] because worst case

bounds on the maximum minimum utility are derived with the

help of the proportion 𝛼 of the largest demand. Nevertheless, our

results show a significant singularity: the worst-case guarantee in

the common budget problem is, as opposed to the fair allocation

of indivisible goods, not a continuous function of 𝛼 . One of the

main achievements of this article is a characterization of the worst-

case guarantee for 2 agents. Its counterpart in the fair allocation of

indivisible goods remains open.

To conclude, one can mention that our model comprises a budget

shared a group of agents but it differs from the concept of participa-

tory budgeting [8]. Indeed agents do not vote for on the demands. It

also differs from budget division (see e.g. [16]) because the demands

have a fixed size and they are either accepted or rejected. A similar

difference exists with the problem studied in [10].

1.2 The Model
We consider the situation where a set 𝑁 of 𝑛 agents shares a

common budget 𝐵 ∈ R>0. Each agent 𝑗 has a demand set 𝐷 𝑗 =

{𝑑 𝑗
1
, . . . , 𝑑

𝑗

𝑚 𝑗 } where 𝑑
𝑗
𝑖
∈ R>0.

For any integer 𝑘 , let [𝑘] denote {1, . . . , 𝑘}. In this article, we

suppose that the instances satisfy the following assumptions:

0 < 𝑑
𝑗
𝑖
≤ 𝐵, ∀𝑗 ∈ 𝑁 and ∀𝑖 ∈ [𝑚 𝑗] (1)

𝑚 𝑗∑
𝑖=1

𝑑
𝑗
𝑖

> 𝐵/𝑛, ∀𝑗 ∈ 𝑁 (2)

Assumption (1) is usual for subset sum (see for example [15, chapter

4]) because null demands can be accepted, and demands exceeding

the budget must be rejected. Themotivation for (2) is that the agents

have equal rights [17]. Every agent can enjoy a 1/𝑛 fraction of the

whole budget. If the demands of an agent do not exceed 𝐵/𝑛, then
all her demands can be accepted immediately. Thus, we can reduce

the budget by the total value of these demands and remove the

agent from the instance. Once all such agents are removed, and the

budget is updated accordingly, the resulting instance satisfies (2).

Moreover, we assume without loss of generality that

𝑑
𝑗

1
≥ 𝑑

𝑗

2
≥ · · · ≥ 𝑑

𝑗

𝑚 𝑗 , ∀𝑗 ∈ 𝑁 (3)

The largest demandmax𝑗 ∈𝑁 𝑑
𝑗

1
is denoted by𝑑∗ and parameter𝛼

is defined as 𝑑∗/𝐵. For example, in the illustrative instance provided

in Introduction, the largest demand is 29, and 𝛼 = 29/100. The value
of a set of demands 𝑋 is denoted by 𝑣 (𝑋) and defined as

∑
𝑑∈𝑋 𝑑 .

A feasible solution (𝑆1, . . . , 𝑆𝑛) consists of a subset of accepted

demands 𝑆 𝑗 ⊆ 𝐷 𝑗
for each agent 𝑗 , such that

∑
𝑗 ∈𝑁 𝑣 (𝑆 𝑗) ≤ 𝐵. The

utility provided by solution (𝑆1, . . . , 𝑆𝑛) to agent 𝑗 corresponds to

the sum of her accepted demands 𝑣 (𝑆 𝑗).
We are interested in the “best” function 𝜌𝑛 :]0, 1] → [0, 1] such

that any instance with 𝑛 agents, budget 𝐵, and parameter 𝛼 admits

a feasible solution (𝑆1, . . . , 𝑆𝑛) satisfying 𝑣 (𝑆 𝑗) ≥ 𝜌𝑛 (𝛼)𝐵, for any
agent 𝑗 . By “best” we mean that 𝜌𝑛 (𝛼) should take the largest

possible value. It is easy to check that in the example from the

introduction, the largest share of budget that we can ensure to both

agents is 45 (when Alice and Bob receive {20, 25} and {19, 16, 17},
respectively). This means that 𝜌2 (29/100) cannot be larger than
45/100. We will see that the value of 𝜌2 (29/100) is even smaller

than 45/100. More formally, let Inst(𝑛, 𝛼) be the set of all instances
with𝑛 agents, the largest demand is equal to 𝛼 times the budget, and

(1) and (2) are satisfied. For a given instance 𝐼 of Inst(𝑛, 𝛼) with
a budget 𝐵𝐼 , let 𝑍

∗
𝐼
𝐵𝐼 be the maximum utility of the least funded

agent. Then we have

𝜌𝑛 (𝛼) = inf

𝐼 ∈Inst(𝑛,𝛼)
𝑍 ∗𝐼

The range of 𝛼 is]0, 1] because of (1) and 𝜌𝑛 (𝛼) is in [0, 1/𝑛].
The analysis of 𝜌𝑛 is often made with the help of the following

sub-intervals of]0, 1]. For any 𝑛, any positive integer 𝑘 , and any

budget B, let I𝑛
0

:=] 1𝑛 , 1] when 𝑛 > 1, I𝑛
𝑘

:=] 1

𝑛 (𝑘+1) ,
1

𝑛𝑘
], and

I𝑛
𝑘
(𝐵) :=] 𝐵

𝑛 (𝑘+1) ,
𝐵
𝑛𝑘
].

1.3 Results and Organization
We start by studying the case with a single agent. We fully char-

acterize 𝜌1 which plays an important role in the analysis of the

cases with multiple agents. For two agents or more, we provide a

characterization of 𝜌𝑛 (𝛼), which is the largest non-increasing part

of 𝜌𝑛 (𝛼). Moreover, we provide a characterization of 𝜌2 and it is

the most technical part of the article. Thought 𝜌𝑛 (𝛼) is not charac-
terized, we determine lower and upper bounds which approximate

it with high precision. The existence result of each section is com-

plemented with a polynomial algorithm which outputs a solution

such that the value of the worst-off agent is at least the bounds that

we found.

Some proofs are omitted due to space limitation.

2 THE SINGLE AGENT CASE
We are given a single agent (𝑛 = 1), a set of demands 𝐷1 =

{𝑑1
1
, . . . , 𝑑1

𝑚1
} and a positive budget 𝐵. Only instances satisfying

(1) and (2) are considered. Due to assumption (3), 𝛼 is equal to

max𝑖∈[𝑚1] 𝑑
1

𝑖
/𝐵 = 𝑑1

1
/𝐵 = 𝑑∗/𝐵. We shall give the following char-

acterization of 𝜌1 (𝛼). See Figure 1 for an illustration.

Main Track AAMAS 2021, May 3-7, 2021, Online

289

1/2

2/3

3/4

1

0
1

5

1

4

1

3

1

2
1

Figure 1: 𝜌1 (𝛼).

Theorem 1. For any positive integer 𝑘 , 𝜌1 (𝛼) = 𝑘−1+𝛼
𝑘

when
𝛼 ∈] 1

𝑘+1 ,
1

𝑘
] = I1

𝑘
.

Let us begin with lower bounds on 𝜌1 (𝛼) which derive from

the solution returned by Algorithm 1. The algorithm is greedy:

start from scratch and keep adding demands by descending value,

until inserting an element would exceed the budget. Because of (2),

Algorithm 1 cannot select all demands.

Algorithm 1 (𝑛 = 1)

Require: Budget 𝐵, demand set {𝑑1
1
, . . . , 𝑑1

𝑚1
} satisfying (1) and

(2)

If necessary, sort and rename the demands by non-increasing

value in order to satisfy (3)

𝑆 ← ∅
𝑖 ← 1

while 𝑑1
𝑖
+ 𝑣 (𝑆) ≤ 𝐵 do

𝑆 ← 𝑆 ∪ {𝑑1
𝑖
}

𝑖 ← 𝑖 + 1
end while
return 𝑆

Lemma 1. 𝜌1 (𝛼) ≥ max(𝛼, 1 − 𝛼) ≥ 1

2
when 𝛼 ∈]0, 1].

Lemma 2. For any integer 𝑘 ≥ 2, 𝜌1 (𝛼) ≥ 𝑘−1+𝛼
𝑘

when 𝛼 ∈
[1

𝑘+1 ,
1

𝑘
] and 𝜌1 (𝛼) ≥ 𝑘

𝑘+1 when 𝛼 ∈]0, 1
𝑘
].

Proof. Consider the solution 𝑆 returned by Algorithm 1. The

proof is by induction. Let us begin with the base case 𝑘 = 2: 𝛼 ∈
[1
3
, 1
2
] and 𝑑1

1
∈ [𝐵

3
, 𝐵
2
]. The first step of Algorithm 1 is to place 𝑑1

1

in 𝑆 . The remaining budget is 𝐵 − 𝑑1
1
. By Lemma 1, the solution 𝑆

uses at least half of the remaining budget (conditions (1), (2) and

(3) are satisfied). Therefore, the value of 𝑆 is at least 𝑑1
1
+ 𝐵−𝑑1

1

2
. We

have 𝑑1
1
+ 𝐵−𝑑1

1

2
≥ 2𝐵

3
because 𝑑1

1
≥ 𝐵/3. Thus, 𝜌1 (𝛼) ≥ 2

3
when

𝛼 ∈ [1
3
, 1
2
]. When 𝛼 ∈]0, 1

3
], the value of 𝑆 is at least (1 − 𝛼)𝐵 (see

the proof of Lemma 1) which is at least
2𝐵
3
. In all, the value of 𝑆

is at least
2𝐵
3

when 𝛼 ∈]0, 1
2
]. In other words, 𝜌1 (𝛼) ≥ 2

3
when

𝛼 ∈]0, 1
2
].

Let us prove the lemma for some 𝑘 > 2 provided that it holds for

all 𝑡 ∈ {2, . . . , 𝑘 − 1}. Again, Algorithm 1 first places 𝑑1
1
in 𝑆 . The

remaining budget is 𝐵 − 𝑑1
1
and the parameter 𝛼 ′ of an auxiliary

instance with budget 𝐵′ = 1 − 𝑑1
1
and demand set 𝐷1 \ {𝑑1

1
} is

in]0, 𝛼
1−𝛼]. When 𝛼 ∈ [1

𝑘+1 ,
1

𝑘
], 𝛼 ′ is upper bounded by

1

𝑘−1 . By

induction, we know that 𝜌1 (𝛼) ≥ 𝑘−1
𝑘

when 𝛼 ∈]0, 1

𝑘−1]. Thus,
Algorithm 1 complements 𝑆 = {𝑑1

1
} with demands whose sum

is at least a
𝑘−1
𝑘

fraction of the remaining budget 𝐵′ = 𝐵 − 𝑑1.

The final value of 𝑆 is at least 𝑑1
1
+ 𝑘−1

𝑘
(𝐵 − 𝑑1

1
) = 𝑘−1+𝛼

𝑘
𝐵. Thus,

𝜌1 (𝛼) ≥ 𝑘−1+𝛼
𝑘

when 𝛼 ∈ [1

𝑘+1 ,
1

𝑘
].

Finally, let us prove that 𝜌1 (𝛼) is at least 𝑘
𝑘+1 when 𝛼 ∈]0,

1

𝑘
]. We

have just seen that 𝜌1 (𝛼) ≥ 𝑘−1+𝛼
𝑘

when 𝛼 ∈ [1

𝑘+1 ,
1

𝑘
]. Therefore,

𝜌1 (𝛼) is at least
𝑘−1+ 1

𝑘+1
𝑘

= 𝑘
𝑘+1 when 𝛼 ∈ [1

𝑘+1 ,
1

𝑘
]. When 𝛼 ∈

]0, 1

𝑘+1], we have 𝜌1 (𝛼) ≥ 1 − 𝛼 by Lemma 1, and this is proved

with the solution returned by Algorithm 1. Therefore, 𝜌1 (𝛼) is at
least 1− 1

𝑘+1 = 𝑘
𝑘+1 . In all, 𝜌1 (𝛼) is at least 𝑘

𝑘+1 when 𝛼 ∈]0, 1
𝑘
]. □

The next result is a matching upper bound on 𝜌1 (𝛼).

Lemma 3. 𝜌1 (𝛼) ≤ 𝑘−1+𝛼
𝑘

for any integer 𝑘 ≥ 1 and 𝛼 ∈] 1

𝑘+1 ,
1

𝑘
]

= I1
𝑘
.

Proof. The upper bound derives from the following family of

instances.

Instance 1. Consider a number 𝛿 in the interval [1

𝑘+1 + 𝜖,
1

𝑘
] for

any integer 𝑘 ≥ 1, and 0 < 𝜖 < 1

𝑘
− 1

𝑘+1 . The budget 𝐵 is equal to 1.
The agent has 𝑘 + 1 demands: one of value 𝛿 and 𝑘 others of value
1−𝛿
𝑘
+ 𝜖 . We have 𝛿 ≥ 1

𝑘+1 + 𝜖 > 1

𝑘+1 +
𝑘𝜖
𝑘+1 from which we deduce

that 𝛿 ≥ 1−𝛿
𝑘
+ 𝜖 . The largest demand being 𝛿 , we have 𝛿 = 𝛼 .

We cannot accept all demands because 𝛿+𝑘 (1−𝛿
𝑘
+𝜖) = 1+𝑘𝜖 > 𝐵.

However, we can accept all demands but the last one whose value is

the smallest. By doing so, we get the best feasible solution of value

𝑑1
1
+ · · · + 𝑑1

𝑘
=

(
𝛼 + (𝑘 − 1)

(
1−𝛼
𝑘
+ 𝜖

))
𝐵 =

(
𝑘−1+𝛼

𝑘
+ 𝜖 (𝑘 − 1)

)
𝐵.

When 𝜖 → 0, the value of this solution tends to
𝑘−1+𝛼

𝑘
𝐵, and the

range of 𝛼 is] 1

𝑘+1 ,
1

𝑘
]. □

Lemmas 1, 2, and 3 give Theorem 1 while Algorithm 1 outputs a

feasible solution of value at least 𝜌1 (𝛼)𝐵 in O(𝑚1
log𝑚1) time.

3 DEALINGWITH TWO AGENTS OR MORE
This section deals with the case of at least two agents. In addition

to (3), we will suppose without loss of generality that 𝑑1
1
= 𝑑∗ =

max𝑗 ∈𝑁 𝑑
𝑗

1
. Therefore, parameter 𝛼 equals 𝑑1

1
/𝐵. Before starting

we make the following observation.

Observation 1. 𝜌𝑛 (𝛼) = 0 when 𝛼 > 1

𝑛 .

Indeed, if every agent has a unique demand whose value exceeds

𝐵/𝑛, then the demand of at least one agent cannot be accepted

(otherwise the budget is exceeded). It follows that we can focus on

the case 𝛼 ∈]0, 1/𝑛] and strengthen (1) with 0 < 𝑑
𝑗
𝑖
≤ 𝐵/𝑛, ∀𝑗 ∈ 𝑁

and 𝑖 ∈ [𝑚 𝑗].
We first propose a characterization of the largest worst-case

utility of the least funded agent with the help of a monotone non-
increasing function 𝜌𝑛 of 𝛼 (Section 3.1). It is noteworthy that most

previous works use non-increasing functions to describe explicit

Main Track AAMAS 2021, May 3-7, 2021, Online

290

lower bounds on the utility of the worst-off agent in the context of

allocating indivisible goods [9, 14]. Function 𝜌𝑛 constitutes a lower

bound on 𝜌𝑛 , complemented in Section 3.2 with upper bounds for

all 𝛼 ∈]0, 1]. We conclude in Section 3.3 with a characterization of

𝜌𝑛 (𝛼) when 𝛼 ∈ I𝑛
1
.

3.1 An Optimal non-increasing Bound
The following lower bounds derive from the solution of Algorithm 2

which runs in O(𝑛𝜇 log 𝜇) where 𝜇 = max𝑗 ∈𝑁 |𝑚 𝑗 |. The algorithm
consists in reserving a budget of 𝐵/𝑛 to every agent. Afterwards

Algorithm 1 is run for every agent separately.

Algorithm 2 (𝑛 > 1)

Require: A budget 𝐵, a set 𝑁 of 𝑛 agents, and a demand set 𝐷 𝑗

for all 𝑗 ∈ 𝑁 satisfying (1) and (2)

for all 𝑗 ∈ 𝑁 do
𝑆 𝑗 ← the solution of Algorithm 1 with input 𝐵/𝑛 and 𝐷 𝑗

end for
return 𝑆 = (𝑆1, . . . , 𝑆𝑛)

Lemma 4. For any integer 𝑘 ≥ 1, 𝜌𝑛 (𝛼) ≥ 𝑘
𝑛 (𝑘+1) when 𝛼 ≤

1

𝑛𝑘
.

Proof. Suppose 𝛼 ≤ 1

𝑛𝑘
for some positive integer 𝑘 . The value

of every demand is at most
𝐵
𝑛𝑘

. Algorithm 2 reserves a budget of

𝐵/𝑛 for every agent. A demand represents a fraction 𝛼 ′ of at most

𝐵/(𝑛𝑘)
𝐵/𝑛 = 1

𝑘
of an agent’s reserved budget. Since 𝛼 ′ ≤ 1/𝑘 , Lemma 2

indicates that every agent is guaranteed to receive a fraction of
𝑘

𝑘+1
of her reserved budget, namely

𝑘
𝑘+1

𝐵
𝑛 . Thus, 𝜌𝑛 (𝛼) ≥

𝑘
𝑛 (𝑘+1) . □

Lemma 5. For any integer 𝑘 ≥ 1 and any positive 𝜖 , 𝜌𝑛 (𝛼) ≤
𝑘 (1+𝜖)
𝑛 (𝑘+1) when 𝛼 ≥

1+𝜖
𝑛 (𝑘+1) .

We can derive the following characterization of 𝜌𝑛 (𝛼) from Ob-

servation 1, Lemma 4 and Lemma 5. See Figure 2 for an illustration

of 𝜌3 (𝛼) (in blue).

Corollary 1. The largest worst-case guarantee with the help of
a non-increasing function is 𝜌𝑛 (𝛼) := 𝑘

𝑛 (𝑘+1) when 𝛼 ∈ I
𝑛
𝑘
, for any

𝑘 ≥ 0.

3.2 Upper Bounds for the Multi-agent Case
The upper bounds of 𝜌𝑛 rely on families of instances. See Figure 2

for an illustration when 𝑛 = 3 (in red).

Proposition 1. For 𝑛 > 1 and 𝑘 ≥ 1 it holds that:

𝜌𝑛 (𝛼) ≤

(𝑘−1)/𝑛+𝛼

𝑘
, if 𝛼 ∈] 1

𝑛 (𝑘+1) ,
𝑘2+𝑛−1

𝑛 ((𝑛−1) (𝑘+1)+𝑘3)]
𝑘 (1−𝑘𝛼)
(𝑛−1) (𝑘+1) , if 𝛼 ∈] 𝑘2+𝑛−1

𝑛 ((𝑛−1) (𝑘+1)+𝑘3) ,
1

𝑛𝑘
]

3.3 A Characterization of 𝜌𝑛 (𝛼) when 𝛼 ∈ I𝑛
1

The following lemma provides a characterization of 𝜌𝑛 (𝛼) when
𝛼 ∈] 1

2𝑛 ,
1

𝑛] = I
𝑛
1
.

Lemma 6. 𝜌𝑛 (𝛼) = min(𝛼, 1−𝛼
2(𝑛−1)) when 𝛼 ∈ I

𝑛
1
.

1/6

1/4

1/3

0

0
1

6

1

4

1

3

1

2
1

Figure 2: 𝜌3 (𝛼) in blue and upper bounds on 𝜌3 (𝛼) in red.

1/2

1/4

1/3

0

0
1

6

1

4

1

3

1

2
1

Figure 3: 𝜌2 (𝛼).

From an algorithmic perspective, when 𝛼 ∈ I𝑛
1
, accept 𝑑∗ (it

belongs to agent 1 by hypothesis). Proceed as follows for every

𝑗 ≠ 1. Reserve a budget of
1−𝛼
𝑛−1𝐵. If all the demands of 𝑗 fit in her

reserved budget, then accept them all. Otherwise, run Algorithm 1.

4 A CHARACTERIZATION FOR 2 AGENTS
This section deals with a characterization of 𝜌2 (𝛼) which is given

in (4) and depicted in Figure 3. We also propose a polynomial algo-

rithmwhich builds a solution (𝑆1, 𝑆2) such thatmin(𝑣 (𝑆1), 𝑣 (𝑆2)) ≥
𝜌2 (𝛼)𝐵 for every instance.

𝜌2 (𝛼) =



𝑘−1+2𝛼
2𝑘

, if
1

2(𝑘+1) < 𝛼 ≤ 𝑘2+1
2(𝑘3+𝑘+1) and 𝑘 > 2

𝑘 (1−𝑘𝛼)
𝑘+1 , if

𝑘2+1
2(𝑘3+𝑘+1) < 𝛼 ≤ 1

2𝑘
and 𝑘 > 2

1

4
+ 𝛼

2
, if 1/6 < 𝛼 ≤ 11/50

6(1−𝛼)
13

, if 11/50 < 𝛼 ≤ 4/17
2−4𝛼
3

, if 4/17 < 𝛼 ≤ 1/4
𝛼, if 1/4 < 𝛼 ≤ 1/3
1−𝛼
2
, if 1/3 < 𝛼 ≤ 1/2

0, if 1/2 < 𝛼 ≤ 1

(4)

The strategy is to split the budget between the two agents, and to

reduce the problem to two single-agent problems. Hence, Algorithm

1 and the characterization of 𝜌1 (𝛼) given in (1) can be reused. A

direct approach would be to cut the budget evenly (as done in

Section 3) and to apply Algorithm 1 separately for each agent.

However, this strategy may fail to give the best guarantee.

Let us illustrate this with an instance where 𝑛 = 2, 𝐵 = 400,

𝐷1 = {80, 59, 59, 59}, and 𝐷2 = {75, 64, 64}. If we reserve a budget
of 𝐵/2 = 200 to both agents, then the best subsets for the agents

Main Track AAMAS 2021, May 3-7, 2021, Online

291

are {80, 59, 59} and {75, 64}, respectively. Agents 1 and 2 have util-

ity 198 and 139, respectively. The minimum utility is 139 and no

additional demand of agent 2 can be accepted without exceeding

the budget. However, (4) indicates that a solution with minimum

utility at least 𝜌2 (20/100) ∗ 400 = 140 must exist. Under solution

({59, 59, 59}, {75, 64, 64}), the minimum utility is larger (177 instead

of 139) but agent 2’s utility exceeds 𝐵/2. Therefore, reserving a

budget of 𝐵/2 to both agents can be an obstacle to the achievement

of the best possible guarantee on the minimum utility.

Our strategy requires to decide how the common budget is split.

It also consists of saving a part 𝐸 of the budget reserved to agent

1, and to transfer this amount to the budget of agent 2. Therefore,

an intermediate step is to quantify 𝐸 (the details are in Section 4.1).

To do so, we reduce the set of instances to those which satisfy two

hypotheses. We shall see that every instance can be modified in

polynomial time to satisfy these hypotheses, and assuming these

hypotheses is without loss of generality.

Characterization (4) is proven in Section 4.2. It turns out that

(𝐵/2, 𝐵/2 + 𝐸) is not always the best apportionment of the budget.

Sometimes, a better strategy is to give a budget of 𝛽1 = 𝐵/2 − Δ to

the first agent so that 𝜌1 (𝑑∗/𝛽1) ∗ 𝛽1 is guaranteed to her. Then, we
can save a certain amount 𝐸Δ, and a budget of 𝛽2 = 𝐵/2 + Δ + 𝐸Δ
is given to the second agent. With this budget, the second agent

is guaranteed to have a utility of 𝜌1 (𝑑∗
2
/𝛽2) ∗ 𝛽2 where 𝑑∗

2
is her

largest demand.

The two-agent case differs from the results of Sections 2 and 3 be-

cause, sometimes, the best guarantee cannot be reached by a simple

greedy algorithm where the demands are taken by non-increasing

value until the desired guarantee is obtained. In the previous exam-

ple, a feasible solution with minimum utility at least 140 exists. Tak-

ing the demands by non-increasing value in order to guarantee 140

to both agents would lead to the solution ({80, 59, 59}, {75, 64, 64})
which is infeasible because it violates the budget constraint. There-

fore, it is sometimes necessary to depart from the greedy approach

to build solutions that meet the guarantee defined in (4).

As a reminder, we suppose that an instance satisfies (1), (2) and
(3), and 𝑑∗ = max𝑗 ∈𝑁 𝑑1

𝑗
= 𝛼𝐵. We also suppose w.l.o.g. that the

largest demand belongs to agent 1: 𝑑∗ = 𝑑1
1
≥ 𝑑2

1
. Thereafter, we

will denote by 𝛾 𝑗 the function:

𝛾 𝑗 (𝑑∗, 𝐵) := 𝜌 𝑗 (𝛼)𝐵 (5)

Therefore, the characterization (1) of 𝜌1 becomes

𝛾1 (𝑑∗, 𝐵) = 𝑑∗ + 𝑘 − 1
𝑘
(𝐵 − 𝑑∗) when 𝑑∗ ∈ I1

𝑘
(𝐵) (6)

for any positive integer 𝑘 . In terms of interpretation, 𝛾 𝑗 (𝑑∗, 𝐵) is
the quantity that is guaranteed to the worst-off agent while 𝜌 𝑗 (𝛼)
represents the guaranteed proportion of the budget. Characteriz-

ing 𝜌 𝑗 is strictly equivalent to characterizing 𝛾 𝑗 but we will find

convenient to use 𝛾 𝑗 instead of 𝜌 𝑗 .

4.1 Bounding the Budget Saving for a Single
Agent

The goal of this section is to determine how much can be saved,

in the worst case, from the reserved budget of an agent, while a

certain quantity is guaranteed to her. Let Inst1 (𝑑∗, 𝐵) be the set of
all instances with a single agent (𝑛 = 1), a budget 𝐵, the largest

demand is equal to𝑑∗, and (1) and (2) are satisfied. For any instance
𝐼 ∈ Inst1 (𝑑∗, 𝐵) with demand set 𝐷𝐼 , let 𝑅𝐼 be a subset of demands

of minimum value within {𝑆 ⊆ 𝐷𝐼 | 𝑣 (𝑆) ≥ 𝛾1 (𝑑∗, 𝐵)} where
𝑣 (𝑆) := ∑

𝑑∈𝑆 𝑑 . If 𝑅𝐼 is not unique, then select one arbitrarily. We

then define:

𝑅(𝑑∗, 𝐵) := sup{𝑣 (𝑅𝐼) | 𝐼 ∈ Inst1 (𝑑∗, 𝐵)} (7)

Thus, any instance in Inst1 (𝑑∗, 𝐵) admits a solution 𝑆 such that

𝛾1 (𝑑∗, 𝐵) ≤ 𝑣 (𝑆) ≤ 𝑅(𝑑∗, 𝐵). At least 𝐵 − 𝑅(𝑑∗, 𝐵) can be saved

from the budget, so we are interested in the saving 𝐸 (𝑑∗, 𝐵) which
is defined as 𝐵 − 𝑅(𝑑∗, 𝐵). Moreover, we aim at constructing 𝑆 such

that 𝛾1 (𝑑∗, 𝐵) ≤ 𝑣 (𝑆) ≤ 𝑅(𝑑∗, 𝐵) in polynomial time.

Theorem 2. For every single agent instance 𝐼 ∈ Inst1 (𝑑∗, 𝐵) with
demand set 𝐷𝐼 , one can build in polynomial time a solution 𝑆 ⊆ 𝐷𝐼

such that 𝛾1 (𝑑∗, 𝐵) ≤ 𝑣 (𝑆) ≤ 𝐵 − 𝐸 (𝑑∗, 𝐵) where 𝐸 (𝑑∗, 𝐵) is greater
or equal to

𝐵 − 𝑘+1
𝑘
(𝐵 − 𝑑∗), for 1

𝑘+1𝐵 < 𝑑∗ ≤ 𝑘+1
𝑘2+𝑘+1𝐵 and 𝑘 > 2

𝐵 − 𝑘𝑑∗, for 𝑘+1
𝑘2+𝑘+1𝐵 < 𝑑∗ ≤ 1

𝑘
𝐵 and 𝑘 > 2

1

2
(3𝑑∗ − 𝐵), for 𝐵/3 < 𝑑∗ ≤ 7𝐵/17

2

3
(𝐵 − 2𝑑∗), for 7𝐵/17 < 𝑑∗ ≤ 𝐵/2

𝐵 − 𝑑∗, for 𝐵/2 < 𝑑∗ ≤ 𝐵

On our way to proving Theorem 2, the first step is to observe

that, instead of studying the entire set Inst1 (𝑑∗, 𝐵), one can suppose
that an instance satisfies the following two hypotheses.

Hypothesis 1. At most one demand of 𝐷𝐼 is strictly smaller than
𝑑∗/2.

Hypothesis 2. 𝑣 (𝐷𝐼) − 𝑣 ({𝑑}) ≤ 𝐵 holds for all 𝑑 ∈ 𝐷𝐼 . Said
differently, the removal of every single demand would violate (2).

Every instance can be modified in polynomial time to satisfy

these hypotheses. Use Algorithm 3 to do so.

Algorithm 3 Enforcing Hypotheses 1 and 2

Require: An instance 𝐼 ∈ Inst1 (𝑑∗, 𝐵) with demand set 𝐷𝐼

while𝐷𝐼 contains two demands𝑑 and𝑑 ′ such that𝑑 ≤ 𝑑 ′ < 𝑑∗/2
do
𝐷𝐼 ← (𝐷𝐼 \ {𝑑,𝑑 ′}) ∪ {𝑑 + 𝑑 ′}

end while
Rename the demands of 𝐷𝐼 by non increasing value

Let 𝑡 be the index such that

∑𝑡−1
𝑖=1 𝑑

1

𝑖
≤ 𝐵 and

∑𝑡
𝑖=1 𝑑

1

𝑖
> 𝐵

𝐷𝐼 ← {𝑑11 , . . . , 𝑑
𝑡
1
}

return 𝐷𝐼

Algorithm 3, which runs in O(|𝐷𝐼 | log |𝐷𝐼 |), has the following
properties: 𝐵 and 𝑑∗ remain unchanged, and (1) and (2) are pre-
served. We can also observe that, though Algorithm 3 modifies the

original instance, a feasible solution 𝑆 of the original instance can

be retrieved from any feasible solution 𝑆 ′ returned by Algorithm

3, and 𝑣 (𝑆) = 𝑣 (𝑆 ′). Indeed, by construction, every demand of 𝑆 ′

corresponds to a bundle of demands of the original instance. Our

strategy is to prove Theorem 2 for any instance of Inst1 (𝑑∗, 𝐵) sat-
isfying Hypotheses 1 and 2. Then, we proceed as follows. Take 𝐼 ∈
Inst1 (𝑑∗, 𝐵) and run Algorithm 3. Find a solution 𝑆 ′ that satisfies
Theorem 2. Derive from 𝑆 ′ a feasible solution 𝑆 of 𝐼 which also

satisfies Theorem 2. See Algorithm 4 for the construction of 𝑆 ′.

Main Track AAMAS 2021, May 3-7, 2021, Online

292

Algorithm 4

Require: A single agent instance 𝐼 ∈ Inst1 (𝑑∗, 𝐵)
Ensure: A subset of demands 𝑆 such that 𝛾1 (𝑑∗, 𝐵) ≤ 𝑣 (𝑆) ≤
𝐵 − 𝐸 (𝑑∗, 𝐵)
Run Algorithm 3 on 𝐼 to satisfy Hypotheses 1 and 2

The new demands, denoted by 𝐷 = {𝑑1, . . . , 𝑑𝑚}, satisfy 𝑑1 ≥
. . . ≥ 𝑑𝑚 , where 𝑑1 = 𝑑∗

𝑆 ← ∅ and 𝑆 ′ ← ∅
if 𝐵/3 < 𝑑∗ ≤ 𝐵 then
Find 𝐴 ⊆ 𝐷 such that 𝛾1 (𝑑∗, 𝐵) ≤ 𝑣 (𝐴) ≤ 𝐵 − 𝐸 (𝑑∗, 𝐵) by
exhaustive search

𝑆 ′ ← 𝐴

else
𝑆 ′ ← Algorithm 5 (𝐵, 𝐷)

end if
Retrieve 𝑆 from 𝑆 ′

return 𝑆

4.1.1 Budget saving when 𝑑∗ ∈ I1
𝑘
(𝐵) for any 𝑘 > 2 . We are going

to show that 𝑅(𝑑∗, 𝐵) ≤ max(𝑘𝑑∗, 𝑘+1
𝑘
(𝐵 − 𝑑∗)) holds when 𝑘 > 2.

To this end, we will see that no matter the instance, there always

exists a solution 𝐴 such that:

𝛾1 (𝑑∗, 𝐵) ≤ 𝑣 (𝐴) ≤ max(𝑘𝑑∗, 𝑘 + 1
𝑘
(𝐵 − 𝑑∗)) (8)

This solution 𝐴 is built with Algorithm 5 which is almost greedy
in the sense that it produces a first solution 𝐴1 in a greedy manner.

Then, two other solutions 𝐴2 and 𝐴3, which are close to 𝐴1, are

computed. We are going to see that one of them satisfies (8).

Algorithm 5

Require: A budget 𝐵 and a demand set {𝑑1
1
, . . . , 𝑑1

𝑚1
} satisfying

(1), (2) and (3) as well as Hypotheses 1 and 2.

𝑝 ← max(𝑘𝑑∗, 𝑘+1
𝑘
(𝐵 − 𝑑∗))

𝐴1 ← ∅, 𝐴2 ← ∅, 𝐴3 ← ∅
𝑆 ← 0

𝑖 ← 1

while 𝑆 ≤ 𝛾1 (𝑑∗, 𝐵) do
𝐴1 ← 𝐴1 ∪ {𝑑1𝑖 }
𝑆 ← 𝑆 + 𝑑1

𝑖
𝑖 ← 𝑖 + 1

end while
𝐴2 ← 𝐴1 \ {𝑑1𝑖−1} ∪ {𝑑

1

𝑖
}

𝐴3 ← 𝐴1 \ {𝑑∗} ∪ {𝑑1𝑖 } where 𝑑
∗ = 𝑑1

1

if 𝑣 (𝐴1) > 𝑝 then
if 𝑣 (𝐴2) > 𝑝 then return 𝐴3

else return 𝐴2

else return 𝐴1

Lemma 7. Algorithm 5 runs in 𝑂 (𝑚1) and returns a solution 𝐴

satisfying (8) when 𝑑∗ ∈ I1
𝑘
(𝐵) and 𝑘 > 2.

Lemma 7 implies that 𝑅(𝑑∗, 𝐵) ≤ max(𝑘𝑑∗, 𝑘+1
𝑘
(𝐵 − 𝑑∗)) when

𝑑∗ ∈ I1
𝑘
(𝐵) and 𝑘 > 2. Combined with 𝐸 (𝑑∗, 𝐵) = 𝐵 − 𝑅(𝑑∗, 𝐵), we

obtain the following bound:

Corollary 2. For 𝑑∗ ∈ I1
𝑘
(𝐵) and 𝑘 > 2, it holds that:

𝐸 (𝑑∗, 𝐵) ≥
{

𝐵 − 𝑘+1
𝑘
(𝐵 − 𝑑∗), for 1

𝑘+1𝐵 < 𝑑∗ ≤ 𝑘+1
𝑘2+𝑘+1𝐵

𝐵 − 𝑘𝑑∗, for 𝑘+1
𝑘2+𝑘+1𝐵 < 𝑑∗ ≤ 1

𝑘
𝐵

4.1.2 Budget saving when𝑑∗ ∈ I1
2
(𝐵). The case𝑘 = 2 is considered

in this section. The result is slightly different from𝑘 > 2, since 𝑣 (𝑅𝐼)
can be greater than max(𝑘𝑑∗, 𝑘+1

𝑘
(𝐵 − 𝑑∗)) for some instances 𝐼

when 𝑘 = 2. We are going to show that 𝑅(𝑑∗, 𝐵) is smaller or equal

to max(2𝑑∗ + 𝐵−𝑑∗
3

, 3
2
(𝐵 − 𝑑∗)) for any 𝑑∗ ∈ I1

2
(𝐵). Our proof

strategy consists of separating the cases where the largest demand

is in or out of 𝑅𝐼 .

Lemma 8. 𝑣 (𝑅𝐼) ≤ max(2𝑑∗ + 𝐵−2𝑑∗
3

, 3
2
(𝐵 − 𝑑∗)) holds for all

instance 𝐼 such that the largest demand belongs to 𝑅𝐼 and 𝑑∗ ∈ I12 (𝐵).

Afterwards, we show that 𝑣 (𝑅𝐼) ≤ max(2𝑑∗, 3
2
(𝐵 − 𝑑∗)) when

𝑑∗ is out of 𝑅𝐼 .

Lemma 9. 𝑣 (𝑅𝐼) ≤ max(2𝑑∗, 3

2
(𝐵 − 𝑑∗)) holds for all instance 𝐼

such that the largest demand is out of 𝑅𝐼 and 𝑑∗ ∈ I12 (𝐵).

Lemmas 8 and 9 indicate that 𝑣 (𝑅𝐼) ≤ max(2𝑑∗ + 𝐵−2𝑑∗
3

, 3
2
(𝐵 −

𝑑∗)). Using the fact that 𝐸 (𝑑∗, 𝐵) = 𝐵 − 𝑅(𝑑∗, 𝐵), we obtain the

following lower bound:

Corollary 3. For any 𝑑∗ ∈ I1
2
(𝐵) we have:

𝐸 (𝑑∗, 𝐵) ≥
{

1

2
(3𝑑∗ − 𝐵), for 𝐵/3 < 𝑑∗ ≤ 7𝐵/17

2

3
(𝐵 − 2𝑑∗), for 7𝐵/17 < 𝑑∗ ≤ 𝐵/2

4.1.3 Budget saving when 𝑑∗ ∈ I1
1
(𝐵). It turns out that 𝑆 ′ = {𝑑∗}

satisfies 𝛾1 (𝑑∗, 𝐵) = 𝑣 (𝑆 ′) = 𝐵 − 𝐸 (𝑑∗, 𝐵) when 𝑑∗ ∈ I1
1
(𝐵).

Lemma 10. 𝐸 (𝑑∗, 𝐵) = 𝐵 − 𝑑∗ when 𝑑∗ ∈ I1
1
(𝐵).

4.1.4 Proof of Theorem 2. The bounds on 𝐸 announced in Theorem

2 follows from Corollaries 2 and 3, and Lemma 10. The solution 𝑆

such that 𝛾1 (𝑑∗, 𝐵) ≤ 𝑣 (𝑆) ≤ 𝐵 − 𝐸 (𝑑∗, 𝐵) is built with Algorithm

4. More precisely, Algorithm 5 is run when 0 < 𝑑∗ ≤ 𝐵/3, and an

exhaustive search is used when 𝐵/3 < 𝑑∗ ≤ 𝐵.

Let us first argue that Algorithm 4 finds a correct solution. We

know from Lemma 7 that the solution 𝑆 returned by Algorithm

5 satisfies 𝛾1 (𝑑∗, 𝐵) ≤ 𝑣 (𝑆) ≤ 𝐵 − 𝐸 (𝑑∗, 𝐵) when 0 < 𝑑∗ ≤ 𝐵/3.
Lemmas 8 and 9 indicate that 𝑣 (𝑅𝐼) ≤ 𝐵 −𝐸 (𝑑∗, 𝐵), and 𝛾1 (𝑑∗, 𝐵) ≤
𝑣 (𝑅𝐼) holds by the definition of 𝑅𝐼 . Therefore, there exists a feasible

solution 𝑆 such that 𝛾1 (𝑑∗, 𝐵) ≤ 𝑣 (𝑆) ≤ 𝐵 − 𝐸 (𝑑∗, 𝐵) when 𝐵/3 <

𝑑∗ ≤ 𝐵, and the exhaustive search finds it. In all, Algorithm 4 is

correct.

It remains to prove that Algorithm 4 runs in polynomial time.

Starting with a set of 𝑚1
demands, Algorithm 3 is run. It takes

O(𝑚1
log𝑚1) time to get a modified instance with 𝑚 demands

satisfying Hypotheses 1 and 2. If 𝐵/3 < 𝑑∗ ≤ 𝐵 then 𝑆 ′ such that

𝛾1 (𝑑∗, 𝐵) ≤ 𝑣 (𝑆 ′) ≤ 𝐵 − 𝐸 (𝑑∗, 𝐵) is found by exhaustive search.

Observe that an instance satisfying Hypotheses 1 and 2, with 𝑑∗ ∈
I1
𝑘
(𝐵), contains at most 2𝑘 + 1 demands: one demand of value 𝑑∗

with 𝑑∗ > 𝐵/(𝑘 + 1) because 𝑑∗ ∈ I1
𝑘
(𝐵), and at most 2𝑘 other

smaller demands because at most one demand is strictly smaller

than 𝑑∗/2. We have 𝑘 ≤ 2 when 𝐵/3 < 𝑑∗ ≤ 𝐵. Therefore the

instance contains at most 5 demands and a simple exhaustive search

gives 𝑆 ′ in constant time. If 0 < 𝑑∗ ≤ 𝐵/3 then 𝑆 ′ is found with

Main Track AAMAS 2021, May 3-7, 2021, Online

293

Algorithm 5 whose running time is O(𝑚) (see Lemma 7). Finally,

Algorithm 4 retrieves 𝑆 , solution of the original instance, from 𝑆 ′.
Concretely, every demand of 𝑆 originally comes from a group of

demands which were bundled during the execution of Algorithm 3.

Thus, the task is made in O(𝑚1) operations.

4.2 Characterization for Two Agents
The goal of this section is to characterize 𝜌2 (𝛼) and to build a

solution in which the worst-off agent has utility at least 𝜌2 (𝛼)𝐵.
When𝑑∗ ∈]𝐵/4, 𝐵], the characterization of 𝜌2 (𝛼) is immediate from

Observation 1 and Lemma 6with𝑛 = 2. It corresponds to𝛼 ∈]1/4, 1]
(lines 6, 7 and 8 of (4)). For 𝑑∗ ∈]𝐵/2, 0] nothing can be guaranteed

because 𝜌2 (𝛼) = 0. Regarding the construction of a solution which

guarantees 𝜌2 (𝛼)𝐵 to both agents when 𝑑∗ ∈]𝐵/4, 𝐵/2], see the

polynomial algorithm described right after Lemma 6.

It remains to tackle the case 𝑑∗ ∈]0, 𝐵/4]. To do so, we charac-

terize 𝛾2 (𝑑∗, 𝐵) and 𝜌2 (𝛼) follows because 𝛾2 (𝑑∗, 𝐵) = 𝜌2 (𝛼)𝐵. The
proof is cut in two parts, whether 𝑑∗ ∈]0, 𝐵/6] or 𝑑∗ ∈]𝐵/6, 𝐵/4].
These cases correspond to 𝛼 ∈]0, 1/6] (lines 1 and 2 of (4)), and

𝛼 ∈]1/6, 1/4] (lines 3, 4 and 5 of (4)), respectively.

Thereafter 𝐵′ denotes the semi-budget, namely 𝐵′ := 𝐵/2. We

suppose w.l.o.g. that agent 1 (also denoted by 𝐴1) has a demand

of value 𝑑∗. 𝐴2 stands for agent 2 and we denote by 𝑑∗
2
her largest

demand, namely 𝑑∗
2
:= max(𝐷2). Algorithm 6 describes how to

build a solution in which the worst-off agent has utility at least

𝜌2 (𝛼)𝐵 when 𝑑∗ ∈]0, 𝐵/4]. Note that Algorithm 6 is polynomial

because Algorithms 4 and 1 are polynomial. Thus, it remains to

prove the correctness of Algorithm 6: see Sections 4.2.1 and 4.2.2

for 𝑑∗ ∈]0, 𝐵/6] and 𝑑∗ ∈]𝐵/6, 𝐵/4], respectively.

Algorithm 6

Require: Budget 𝐵 and 𝐷 𝑗
for all 𝑗 ∈ {1, 2} satisfying (1) and (2)

𝐵′ ← 𝐵/2

Let Δ :=


25𝑑∗−11𝐵′

13
, if

11

25
𝐵′ < 𝑑∗ ≤ 8

17
𝐵′ and 𝐵′

3
< 𝑑∗

2

𝐵′ − 2𝑑∗, if
8

17
𝐵′ < 𝑑∗ < 𝐵′/2 and 𝐵′

3
< 𝑑∗

2

0, otherwise

𝐵𝐴1 ← 𝐵′ − Δ
Use Algorithm 4 to build 𝑆1 ⊆ 𝐷1

of value at least 𝛾1 (𝑑∗, 𝐵𝐴1)
such that 𝐸 (𝑑∗, 𝐵𝐴1) is saved
𝐵𝐴2 ← 𝐵′ + Δ + 𝐸 (𝑑∗, 𝐵𝐴1)
Use Algorithm 1 to build 𝑆2 ⊆ 𝐷2

of value at least 𝛾1 (𝑑∗
2
, 𝐵𝐴2)

return (𝑆1, 𝑆2)

In the sequel, we use the following result multiple times where

𝑡𝐵,𝑘 := lim

𝑥→𝐵/(𝑘+1)+
𝛾1 (𝑥, 𝐵) for any 𝑘 ≥ 2.

Lemma 11. For any 𝑘 ≥ 2 we have that:

inf

𝑥≤ 𝐵
𝑘

𝛾1 (𝑥, 𝐵) = 𝑡𝐵,𝑘 =
𝑘

𝑘 + 1𝐵 (9)

4.2.1 When 𝑑∗ ∈]0, 𝐵/6]. In this section we suppose that 𝑑∗ ∈
I1
𝑘
(𝐵′) = I2

𝑘
(𝐵) with 𝑘 > 2, which corresponds to 𝑑∗ ∈]0, 𝐵/6].

Based on the lower bound on 𝐸 (𝑑∗, 𝐵) given in Corollary 2, we will

distinguish two cases:
𝐵′

𝑘+1 < 𝑑∗ ≤ 𝑘+1
𝑘2+𝑘+1𝐵

′
and

𝑘+1
𝑘2+𝑘+1𝐵

′ < 𝑑∗ ≤
𝐵′

𝑘
.

Lemma 12. It holds that 𝛾2 (𝑑∗, 𝐵) ≥ 𝛾1 (𝑑∗, 𝐵′) when 𝐵′

𝑘+1 < 𝑑∗ ≤
𝑘+1

𝑘2+𝑘+1𝐵
′.

Proof. Suppose that we assign half of the budget to 𝐴1, as in-

dicated in Algorithm 6. Then, there exists a solution guarantee-

ing 𝛾1 (𝑑∗, 𝐵′) to her, and 𝐸 (𝑑∗, 𝐵′) can be saved from the bud-

get of 𝐴1 (use Algorithm 4). Thus, we can assign a budget of

𝐵𝐴2 = 𝐵′ + 𝐸 (𝑑∗, 𝐵′) to the second agent. Corollary 2 gives that:

𝐵𝐴2 = 𝐵 − 𝑘 + 1
𝑘
(𝐵′ − 𝑑∗) (10)

Then, we can guarantee 𝛾1 (𝑑∗
2
, 𝐵𝐴2) to the second agent (use Al-

gorithm 1). Because 𝑑∗
2
≤ 𝐵′

𝑘
≤ 𝐵𝐴2

𝑘
, we get 𝛾1 (𝑑∗

2
, 𝐵𝐴2) ≥ 𝑘

𝑘+1𝐵
𝐴2

by Lemma 11. Furthermore, by using (10) and (6), we can verify

that
𝑘

𝑘+1𝐵
𝐴2 ≥ 𝛾1 (𝑑∗, 𝐵′). This inequality ensures that we can guar-

antee at least 𝛾1 (𝑑∗, 𝐵′) to both agents, i.e. 𝛾2 (𝑑∗, 𝐵) ≥ 𝛾1 (𝑑∗, 𝐵′),
when

𝐵′

𝑘+1 < 𝑑∗ ≤ 𝑘+1
𝑘2+𝑘+1𝐵

′
. □

Lemma 13. We have the following bound for 𝑘+1
𝑘2+𝑘+1𝐵

′ < 𝑑∗ ≤ 𝐵′

𝑘
:

𝛾2 (𝑑∗, 𝐵) ≥
{

𝛾1 (𝑑∗, 𝐵′), if (𝑘+1)𝐵
′

𝑘2+𝑘+1 < 𝑑∗ ≤ (𝑘
2+1)𝐵′

𝑘3+𝑘+1
𝑘

𝑘+1 (𝐵 − 𝑘𝑑
∗), if (𝑘

2+1)𝐵′
𝑘3+𝑘+1 < 𝑑∗ ≤ 𝐵′

𝑘

Proof. Let 𝐵𝐴1 = 𝐵′, as indicated in Algorithm 6. Use Algorithm

4 to select a subset 𝑆1 of agent 1’s demands so that

𝑣 (𝑆1) ≥ 𝛾1 (𝑑∗, 𝐵′) (11)

At least 𝐸 (𝑑∗, 𝐵′) = 𝐵′−𝑘𝑑∗ is saved according to Corollary 2. This
quantity is added to the budget of agent 2:

𝐵𝐴2 = 𝐵′ + 𝐸 (𝑑∗, 𝐵′) = 𝐵 − 𝑘𝑑∗ (12)

Knowing this, we can select with Algorithm 1 a subset of her de-

mands 𝑆2 such that 𝑣 (𝑆2) ≥ 𝛾1 (𝑑∗
2
, 𝐵𝐴2). Here again, since𝐵′ ≤ 𝐵𝐴2

and𝑑∗
2
≤ 𝑑∗ ≤ 𝐵′

𝑘
we get that𝑑∗

2
≤ 𝐵𝐴2

𝑘
. Thus, we can apply Lemma

11 and get that 𝑣 (𝑆2) ≥ 𝑘
𝑘+1𝐵

𝐴2
. It follows from (12) that:

𝑣 (𝑆2) ≥ 𝑘

𝑘 + 1 (𝐵 − 𝑘𝑑
∗) (13)

In addition, we obtain from (6) that:

𝑘

𝑘 + 1 (𝐵 − 𝑘𝑑
∗) < 𝛾1 (𝑑∗, 𝐵′) ⇐⇒ 𝑑∗ >

𝑘2 + 1
𝑘3 + 𝑘 + 1

𝐵′ (14)

Thus, the expected result follows from (11), (13) and (14). □

Lemmas 12 and 13 provide the following lower bounds on the

quantity𝛾2 (𝑑∗, 𝐵) when𝑑∗ ∈ I2𝑘 (𝐵) and 𝑘 > 2. These lower bounds

are obtained with the solution returned by Algorithm 6.

𝛾2 (𝑑∗, 𝐵) ≥
{

𝛾1 (𝑑∗, 𝐵′), for
1

𝑘+1𝐵
′ < 𝑑∗ ≤ 𝑘2+1

𝑘3+𝑘+1𝐵
′

𝑘
𝑘+1 (𝐵 − 𝑘𝑑

∗), for
𝑘2+1

𝑘3+𝑘+1𝐵
′ < 𝑑∗ ≤ 1

𝑘
𝐵′

(15)

Corollary 4. For 𝑘 > 2 and 1

2(𝑘+1) < 𝛼 ≤ 1

2𝑘
it holds that

𝜌2 (𝛼) =
{

𝑘−1+2𝛼
2𝑘

, if 1

2(𝑘+1) < 𝛼 ≤ 𝑘2+1
2(𝑘3+𝑘+1)

𝑘 (1−𝑘𝛼)
𝑘+1 , if 𝑘2+1

2(𝑘3+𝑘+1) < 𝛼 ≤ 1

2𝑘

.

Main Track AAMAS 2021, May 3-7, 2021, Online

294

Proof. We obtain 𝜌2 (𝛼) ≥ 𝑘−1+2𝛼
2𝑘

if
1

2(𝑘+1) < 𝛼 ≤ 𝑘2+1
2(𝑘3+𝑘+1) ,

and 𝜌2 (𝛼) ≥ 𝑘 (1−𝑘𝛼)
𝑘+1 if

𝑘2+1
2(𝑘3+𝑘+1) < 𝛼 ≤ 1

2𝑘
from (15) with the

help of 𝜌2 (𝛼)𝐵 = 𝛾2 (𝑑∗, 𝐵), 𝐵′ = 𝐵/2, 𝑑∗ = 𝛼𝐵, and the definition

of 𝛾1 given in (6). Conversely, we know that 𝜌2 (𝛼) ≤ 𝑘−1+2𝛼
2𝑘

if

1

2(𝑘+1) < 𝛼 ≤ 𝑘2+1
2(𝑘3+𝑘+1) , and 𝜌2 (𝛼) ≤ 𝑘 (1−𝑘𝛼)

𝑘+1 if
𝑘2+1

2(𝑘3+𝑘+1) < 𝛼 ≤
1

2𝑘
from Proposition 1 where 𝑛 = 2. □

Thus, Corollary 4 gives a characterization of 𝜌2 (𝛼) when 𝛼 ∈
]0, 𝐵/6] as claimed in (4), and Algorithm 6 produces a solution

where the utility of the worst-off agent is 𝜌2 (𝛼)𝐵 when 𝛼 ∈]0, 𝐵/6].

4.2.2 When 𝑑∗ ∈]𝐵/6, 𝐵/4]. Now we consider the case where 𝑘 =

2 , 𝑑∗ ∈ I1
2
(𝐵′), which corresponds to 𝑑∗ ∈]𝐵/6, 𝐵/4]. The bounds

are obtained with the solution built by Algorithm 6.

Lemma 14. For 𝑑∗ ∈ I1
2
(𝐵′), it holds that:

𝛾2 (𝑑∗, 𝐵) ≥


𝛾1 (𝑑∗, 𝐵′), for 𝑑∗ ≤ 11

25
𝐵′

𝛾1 (𝑑∗, 𝐵′ − Δ), for 11

25
𝐵′ < 𝑑∗ ≤ 8

17
𝐵′

4

3
(𝐵′ − 𝑑∗), for 8

17
𝐵′ < 𝑑∗

and

Δ :=


0, for 1

3
𝐵′ < 𝑑∗ ≤ 11

25
𝐵′

25𝑑∗−11𝐵′
13

, for 11

25
𝐵′ < 𝑑∗ ≤ 8

17
𝐵′

𝐵′ − 2𝑑∗, for 8

17
𝐵′ < 𝑑∗

Corollary 5. It holds that:

𝜌2 (𝛼) =


1/4 + 𝛼/2, if 1/6 < 𝛼 ≤ 11/50
6

13
(1 − 𝛼), if 11/50 < 𝛼 ≤ 4/17

2/3 − 4𝛼/3, if 4/17 < 𝛼 ≤ 1/4

Proof. The lower bounds on 𝜌2 (𝛼) are immediate from Lemma

14 where 𝐵′ = 𝐵/2, 𝑑∗ = 𝛼𝐵, 𝛾2 (𝑑∗, 𝐵) = 𝜌2 (𝛼)𝐵, and the definition
of 𝛾1.

These lower bounds can be paired with matching upper bounds

as follows. Use Proposition 1 with 𝑛 = 𝑘 = 2 to get that 𝜌2 (𝛼) ≤
1/4+𝛼/2 if 1/6 < 𝛼 ≤ 5/22, and 𝜌2 (𝛼) ≤ 2/3− 4𝛼/3 if 5/22 < 𝛼 ≤
1/4. Since 11/50 < 5/22 < 4/17, it follows that

𝜌2 (𝛼) ≤
{

1/4 + 𝛼/2, if 1/6 < 𝛼 ≤ 11/50
2/3 − 4𝛼/3, if 4/17 < 𝛼 ≤ 1/4

The remaining part is obtained with the following instance.

Instance 2. Suppose 𝐵 = 17 − 𝛿 with 𝛿 ∈ [0, 1/3]. Agent 1 has 4
demands of values 4−𝛿 , 2+𝜖 , 2+𝜖 , and 2, where 1 ≫ 𝜖 > 0. Agent 2 has
3 demands, each of value 3. Thus, 𝛼 = 4−𝛿

17−𝛿 and 𝛼 ∈ [11/50, 4/17].
If we accept 1, 2 or 3 demands of agent 2 then she gets 3, 6, or

9, respectively. An exhaustive search of all the possible subsets of

demands for agent 1 provides the following positive amounts: 2,

2 + 𝜖 , 4 − 𝛿 , 4 + 𝜖 , 4 + 2𝜖 , 6 − 𝛿 , 6 − 𝛿 + 𝜖 , 6 + 2𝜖 , 8 − 𝛿 + 𝜖 , 8 − 𝛿 + 2𝜖 ,
and 10 − 𝛿 + 2𝜖 . If we accept the 3 demands of agent 2, then the

remaining budget is 8 − 𝛿 . In that case we can give at most 6 + 2𝜖
to agent 1. If we accept two demands of agent 2 then she gets 6.

The best guarantee for this instance when 𝜖 → 0 is
6

17−𝛿 . Since
6

17−𝛿 = 6

13
(1 − 𝛼) when 𝛼 = 4−𝛿

17−𝛿 , the best guarantee for this

instance is
6

13
(1 − 𝛼) when 𝛼 ∈ [11

50
, 4

17
]. Thus, we can conclude

that 𝜌2 (𝛼) ≤ 6

13
(1 − 𝛼) if 11

50
< 𝛼 ≤ 4

17
. □

Therefore, Corollary 5 gives the characterization of 𝜌2 (𝛼) when
𝛼 ∈]1/6, 1/4] as claimed in (4), and Algorithm 6 produces a so-

lution where the utility of the worst-off agent is 𝜌2 (𝛼)𝐵 when

𝛼 ∈]𝐵/6, 𝐵/4].

5 ACCURACY
For 𝑛 agents, let Acc(𝑛) be the accuracy of our bounds on 𝜌𝑛 . It is

defined as the largest ratio between the lower and the upper bound.

Acc(𝑛) = sup

𝛼 ∈]0,1/𝑛]

best known lower bound on 𝜌𝑛 (𝛼)
best known upper bound on 𝜌𝑛 (𝛼)

.

We exclude 𝛼 ∈] 1𝑛 , 1] = I
𝑛
0

in the definition of Acc(𝑛) because
𝜌𝑛 (𝛼) = 0 on I𝑛

0
(see Observation 1). The accuracy is between 0

and 1. The closer to 1 the better the accuracy. Having Acc(𝑛) = 1

would mean that we have a characterization of 𝜌𝑛 .

Proposition 2. Acc(𝑛) restricted to I𝑛
𝑘

is (𝑛−1) (𝑘+1)+𝑘3

(𝑛−1) (𝑘+1)+𝑘3+1 .

Since a characterization of 𝜌𝑛 is known for 𝑛 = 1, 2, the worst

accuracy is for 𝑛 > 2. According to Proposition 2, the worst case

occurs when 𝑘 = 2 and 𝑛 = 3, namely Acc(𝑛) ≥ 14/15.

6 FUTUREWORK
An immediate future work would be to characterize 𝜌𝑛 for any

number of agents, or to provide an approximation with a ratio

better than 14/15. The present work proposed a common worst-

case bound and it depends on 𝛼 defined as the largest demand (over

all agents) divided by 𝐵. However, as done by Markakis and Psomas

[14], each agent 𝑗 may have her own worst-case guarantee as a

function of 𝛼 𝑗 where 𝛼 𝑗 is agent 𝑗 ’s largest demand divided by 𝐵.

The common budget problem is cast as a multi-agent subset

sum problem. The utility for a demand corresponds to its value.

However, studying a multi-agent knapsack problem where the

utility for an object is not necessarily aligned with its size would

be interesting [2]. In that case, one needs significant parameters

(analogous to 𝛼) before determining worst-case bounds on the value

of an agent. In the same vein, one can think of a bi-dimensional

version of the problem studied in this article. Suppose there is a

common piece of land where multiple agents want to locate private

facilities (see for example [19] for a recent work on the fair division

of land). The problem can be to place some geometric shapes (the

facilities) on a given area (the piece of land) in such a way that the

shapes fit in the area and do not overlap. Then, which surface an

agent is guaranteed to cover?

Finally, the strategic aspect of the common budget problem de-

serves attention. If the agents submit their demands to a central

authority, then the selection of accepted demands should incen-

tivize the agents to report the true values of their demands. At first

glance, the fact that we accept all the demands of an agent if their

sum is at most 𝐵/𝑛, does not promote truthfulness. Indeed, every

agent is tempted to submit her largest subset of demands which is

below 𝐵/𝑛. However, the agents are not necessarily aware of 𝐵 and

𝑛 when they communicate their demands.

Main Track AAMAS 2021, May 3-7, 2021, Online

295

REFERENCES
[1] Nikhil Bansal and Maxim Sviridenko. 2006. The Santa Claus problem. In Proceed-

ings of the 38th Annual ACM Symposium on Theory of Computing, May 21-23, 2006.
Association for Computing Machinery, New York, NY, United States, Seattle, WA,

USA, 31–40.

[2] Nawal Benabbou and Patrice Perny. 2016. Solving Multi-Agent Knapsack Prob-

lems Using Incremental Approval Voting. In ECAI 2016 - 22nd European Conference
on Artificial Intelligence, 29 August-2 September 2016. IOS Press, The Hague, The
Netherlands, 1318–1326.

[3] Ivona Bezáková and Varsha Dani. 2005. Allocating indivisible goods. SIGecom
Exchanges 5, 3 (2005), 11–18.

[4] Sylvain Bouveret, Yann Chevaleyre, Nicolas Maudet, and Hervé Moulin. 2016.

Fair Allocation of Indivisible Goods. Cambridge University Press, Cambridge, UK,

284–310.

[5] Sylvain Bouveret, Michel Lemaître, Hélène Fargier, and Jérôme Lang. 2005. Allo-

cation of Indivisible Goods: A General Model and Some Complexity Results. In

Proceedings of the Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems. Association for Computing Machinery, New York, NY,

United States, 1309–1310.

[6] Steven J. Brams and Alan D. Taylor. 1996. Fair Division: From Cake-Cutting to
Dispute Resolution. Cambridge University Press, Cambridge, UK.

[7] Eric Budish. 2011. The combinatorial assignment problem: Approximate compet-

itive equilibrium from equal incomes. Journal of Political Economy 119, 6 (2011),

1061–1103.

[8] Yves Cabannes. 2004. Participatory budgeting: a significant contri- bution to

participatory democracy. Environment and Urbanization 16, 1 (2004), 27–46.

[9] Stephen Demko and Theodore P. Hill. 1988. Equitable distribution of indivisible

objects. Mathematical Social Sciences 16, 2 (1988), 145–158.
[10] Eric J. Friedman, Vasilis Gkatzelis, Christos-Alexandros Psomas, and Scott

Shenker. 2019. Fair and Efficient Memory Sharing: Confronting Free Riders.

In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, Hon-
olulu, Hawaii, USA, January 27 - February 1, 2019. The AAAI Press, Palo Alto,

California USA, Palo Alto, California, USA, 1965–1972.

[11] Laurent Gourvès, Jérôme Monnot, and Lydia Tlilane. 2015. Worst case com-

promises in matroids with applications to the allocation of indivisible goods.

Theoretical Computer Science 589 (2015), 121 – 140.

[12] Ewa Kiryluk-Dryjska. 2014. Fair Division Approach for the European Union’s

Structural Policy Budget Allocation: An Application Study. Group Decision and
Negotiation 23 (2014), 597–615.

[13] Richard J. Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. 2004.

On approximately fair allocations of indivisible goods. In Proceedings 5th ACM
Conference on Electronic Commerce (EC-2004), May 17-20, 2004. Association for

Computing Machinery, New York, NY, United States, New York, NY, USA, 125–

131.

[14] Evangelos Markakis and Christos-Alexandros Psomas. 2011. On Worst-Case

Allocations in the Presence of Indivisible Goods. In Internet and Network Econom-
ics - 7th International Workshop, WINE 2011, December 11-14, 2011. Proceedings.
Springer, 2011e édition, Singapore, 278–289.

[15] Silvano Martello and Paolo Toth. 1990. Knapsack Problems: Algorithms and
Computer Implementations. John Wiley & Sons, Inc., USA.

[16] Marcin Michorzewski, Dominik Peters, and Piotr Skowron. 2020. Price of Fairness

in Budget Division and Probabilistic Social Choice. In The Thirty-Fourth AAAI
Conference on Artificial Intelligence, AAAI 2020, New York, NY, USA, February 7-12,
2020. The AAAI Press, Palo Alto, California USA, Palo Alto, California, USA,

2184–2191.

[17] HervéMoulin. 2019. Fair Division in the Internet Age. Annual Review of Economics
11, 1 (2019), 407–441.

[18] Ariel D. Procaccia and Hervé Moulin. 2016. Cake Cutting Algorithms. Cambridge

University Press, Cambridge, UK, 311–330.

[19] Erel Segal-Halevi, Shmuel Nitzan, Avinatan Hassidim, and Yonatan Aumann.

2020. Envy-Free Division of Land. Math. Oper. Res. 45, 3 (2020), 896–922. https:

//doi.org/10.1287/moor.2019.1016

[20] William Thomson. 2011. Chapter Twenty-One - Fair Allocation Rules. In Hand-
book of Social Choice and Welfare, Kenneth J. Arrow, Amartya Sen, and Kotaro

Suzumura (Eds.). Handbook of Social Choice and Welfare, Vol. 2. Elsevier, Ams-

terdam, The Netherlands, 393 – 506.

Main Track AAMAS 2021, May 3-7, 2021, Online

296

https://doi.org/10.1287/moor.2019.1016
https://doi.org/10.1287/moor.2019.1016

	Abstract
	1 Introduction
	1.1 Related work
	1.2 The Model
	1.3 Results and Organization

	2 The Single Agent Case
	3 Dealing with two agents or more
	3.1 An Optimal non-increasing Bound
	3.2 Upper Bounds for the Multi-agent Case
	3.3 A Characterization of when

	4 A characterization for 2 agents
	4.1 Bounding the Budget Saving for a Single Agent
	4.1.1 Budget saving when for any
	4.1.2 Budget saving when
	4.1.3 Budget saving when
	4.1.4 Proof of Theorem 2

	4.2 Characterization for Two Agents
	4.2.1 When
	4.2.2 When

	5 Accuracy
	6 Future work
	References

