
Explaining BDI Agent Behaviour Through Dialogue
Louise A. Dennis

Department of Computer Science

University of Manchester

louise.dennis@manchester.ac.uk

Nir Oren

Department of Computing Science

University of Aberdeen

n.oren@abdn.ac.uk

ABSTRACT
BDI agents act in response to external inputs and their internal

plan library. Understanding the root cause of BDI agent action is

often difficult, and in this paper we present a dialogue based ap-

proach for explaining the behaviour of a BDI agent. We consider

two dialogue participants who may have different views regarding

the beliefs, plans and external events which drove agent action

(encoded via traces). These participants make utterances which

incrementally reveal their traces to each other, allowing them to

identify divergences in the traces, or to conclude that their traces

agree. In practice, we envision a human taking on the role of a

dialogue participant, with the BDI agent itself acting as the other

participant. The dialogue then facilitates explanation, understand-

ing and debugging of BDI agent behaviour. After presenting our

formalism and its properties, we describe our implementation of

the system and provide an example of its use in a simple scenario.

KEYWORDS
BDI; Dialogues; Explanation

ACM Reference Format:
Louise A. Dennis and Nir Oren. 2021. Explaining BDI Agent Behaviour

Through Dialogue. In Proc. of the 20th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2021), Online, May 3–7,
2021, IFAAMAS, 9 pages.

1 INTRODUCTION
Belief, Desire Intention (BDI) based approaches to agent reasoning

are very popular, with applications ranging from air traffic man-

agement [20], to e-Health [8]. The formal basis of BDI systems

facilitate formal validation and verification, and provide guarantees

as to their actions [7] and to the states the system will, or will not

reach. However, understanding why a BDI-based system acted as

it did is difficult, requiring working through plans and subplans

while tracking the system’s internal state.

Researchers have noted that dialogue is a potentially useful tool

to explain the behaviour of complex AI artefacts [4], and in this

paper we propose a dialogue based approach to reasoning about

BDI system behaviour. As our departure point, we consider the case

where two dialogue participants (which we may also refer to as

agents) hold — possibly different — views about the content of a BDI

program and the environment in which it executes. Our dialogue

is then designed to pinpoint where disagreement between dialogue

participants exists. Such disagreement could, for example, lie in

different views regarding what plans drive the BDI system; their

priorities; or differences in inputs or initial beliefs of the system. Our

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems

(www.ifaamas.org). All rights reserved.

dialogue then enables at least one dialogue participant to locate a

disagreement (if one exists); and alternatively allows it to determine

if no disagreement exists. We assume that in the case of multiple

disagreements the dialogue can take place multiple times, with

the dialogue participants’ beliefs updated between each dialogue

instance. Importantly, we do not consider how participants update

their beliefs during or following a dialogue, with such belief revision

lying outside the scope of the current work.

Our main contribution is the description and formalisation of

the explanatory dialogue, enabling the identification of, and expla-

nation for, the reasons why a BDI system behaved as it did. We

focus on this formal aspect here and emphasise that natural lan-

guage generation and utterance presentation from similar work

(e.g., [4, 13]) lies outside the scope of this paper. Unlike e.g., [4, 13]

we do not provide a formal argumentation-based underpinning to

our dialogue.

Section 2 introduces a simple BDI language and formalises our

environment. Section 3 introduces the dialogue. We examine the

properties of the dialogue in Section 4 and provide an illustrative

example in Section 5. Section 6 contains detailed discussion, in-

cluding a comparison with existing work. Section 7 concludes by

considering avenues for future research.

2 THE SIMPLEBDI LANGUAGE
We introduce a very simple BDI language, SimpleBDI, which wewill

use to illustrate our ideas. SimpleBDI is designed to be as simple as

possible, as its primary purpose is to demonstrate the feasibility of

our approach and enable its formalisation. SimpleBDI contains the

constructs which lie at the heart of more complex BDI languages,

and is therefore an appropriate underlying representation.

A SimpleBDI program consists of an ordered list of plans Π of

the form 𝜋𝑖𝑑 : 𝐵 → 𝐼 . 𝐵 (the plan’s guard) is a set of first order

ground predicates over some language L, and 𝐼 is a [𝑈 ,𝑑𝑜 (𝑎)] pair.
In turn, 𝑈 is a set of belief updates of the form +𝑏,−𝑏 where 𝑏 is

a ground first order predicate, and 𝑎 is an action, again denoted

using a ground first order predicate. Since some plans may only

update beliefs rather than execute an action, we introduce a special

symbol 𝑛𝑢𝑙𝑙 to denote the lack of action. In addition, we assume the

existence of an empty plan 𝜋𝑛𝑢𝑙𝑙 : [] → [[], 𝑑𝑜 (𝑛𝑢𝑙𝑙)]. Plans within
Π are assumed to be ordered by preference, and we write 𝜋 > 𝜋 ′

if 𝜋 is preferable to 𝜋 ′
(i.e., iff the index of 𝜋 is smaller than the

index of 𝜋 ′
in Π). Unlike most BDI languages, SimpleBDI does not

explicitly model goals. However, goals can be encoded through the

introduction of a predicate of the form 𝑔𝑜𝑎𝑙 (𝑔), which is added and

removed as a belief at appropriate times as part of plan execution.

SimpleBDI programs execute plans based on beliefs and changes

in the environment (percepts). The latter is captured by an input
trace 𝜏𝑒 of events external to the agent. Each event is a list of belief

updates, 𝑉 , of the form +𝑏 or −𝑏 containing a single ground first

Main Track AAMAS 2021, May 3-7, 2021, Online

429

AAMAS ’21, May 3–7, 2021, Online Louise A. Dennis and Nir Oren

order predicate. The list of belief updates for a single event cannot

contain contradictory belief updates, i.e., +𝑏,−𝑏 ∉ 𝑉 .

The executor
1
of a SimpleBDI program maintains a set of inter-

nal beliefs — denoted B — encoded as a set of ground first order

predicates, and is formally represented at a point in time as a tuple

𝐸 = ⟨B,Π, 𝜋, 𝜏𝑒 , 𝑎𝑒𝑥 , 𝑠𝑡𝑎𝑔𝑒⟩
Here, B is a set of the executor’s beliefs; Π is its plan library; 𝜋

the current plan selected for execution; 𝜏𝑒 is the input trace; and

𝑎𝑒𝑥 the (external) action executed by the executor agent at that

time. 𝑠𝑡𝑎𝑔𝑒 ∈ {s, p, e} captures the current state of the executor;
SimpleBDI programs run through repeated perception (p), plan
selection (s), and plan execution (e) stages. Given a set of plans Π
representing a SimpleBDI program and an input trace 𝜏𝑒 the initial

state of the executor is

𝐸 = ⟨[],Π, 𝑛𝑢𝑙𝑙, 𝜏𝑒 , 𝑛𝑢𝑙𝑙, p⟩
Figure 1 summarises the semantics of SimpleBDI describing how

the tuple representing the executor evolves as a transition system

(i.e., if 𝐸𝑖 → 𝐸𝑖+1 in Fig. 1 then 𝐸𝑖 becomes 𝐸𝑖+1 as the system

executes). A program execution trace is then the sequence of tuples

[𝐸1, . . . , 𝐸𝑛] where 𝐸𝑖+1 is obtained by executing a program over

the input trace found in 𝐸𝑖 until the input trace is empty; the ∅
symbol denotes the end of program execution.

In the perception phase (p), the top of the input trace (𝜏𝑒) is

consumed, updating the set of beliefs B. The update itself is done

through the 𝑢𝑝𝑑𝑎𝑡𝑒 function, which takes a set of belief updates

and a set of beliefs as input, and returns an updated set of beliefs.

Note that during the remaining phases, no beliefs are consumed; a

𝑛𝑢𝑙𝑙 perception is therefore consumed during these phases.

The plan selection phase (s) proceeds by selecting an applicable
plan using the 𝑠𝑒𝑙𝑒𝑐𝑡 and 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 functions respectively. The

former iterates through the plan library in order of preference,

while the latter deems a plan applicable by checking whether the

plan’s beliefs do, or do not, appear in the belief base. If no applicable

plan is found, then the empty plan 𝜋𝑛𝑢𝑙𝑙 is returned. The selected

plan is recorded, to be used in the next phase.

Finally, the plan execution phase (e) takes the selected plan and

updates the belief base according to the plan’s effects. In addition,

any action 𝑎 executed due to the plan is recorded.

Example 1. Listing 1 shows a simple program in SimpleBDI (i.e.,
the plans, Π, used by the program executor). In this program a robotic
system (for instance a Mars Rover), must move from its starting posi-
tion to a waypoint and then on to a final location to take a sample. It
does this if it believes it has received a message take_sample_message.
It then uses move1 to move from the starting point to the waypoint (if
it believes the terrain is safe) and then uses move2 to move from the
waypoint to the location where it should take the sample by drilling
(again if it believes the terrain is safe). We omit "do(null)" for plans
with no associated actions.

Code Listing 1

1t a k e_ s amp l e_me s s a g e −>
2− t a k e_ samp l e_mes sage , + g o a l _ a t _ l o c a t i o n
3

1
We use the term "executor" rather than agent to differentiate this entity from the

agents undertaking dialogue about the execution of the SimpleBDI program.

4s a f e _ t e r r a i n , a t _ s t a r t , g o a l _ a t _ l o c a t i o n −>
5+ a t_waypo in t , − a t _ s t a r t ,
6do (move1)
7

8s a f e _ t e r r a i n , a t _waypo in t , g o a l _ a t _ l o c a t i o n −>
9+ a t _ l o c a t i o n , −a t_waypo in t ,
10− g o a l _ a t _ l o c a t i o n , + goa l _ t a k e _ s amp l e ,
11do (move2)
12

13a t _ l o c a t i o n , g o a l _ t a k e _ s amp l e −>
14−goa l _ t a k e _ s amp l e ,
15do (d r i l l)

So for instance, the second plan (lines 5-8) states that if the agent
perceives that it is at the start, and the terrain is safe and it has
received a message telling it to take a sample then it will move to
the waypoint (via the external action move1). At this point, if it no
longer perceives the terrain is safe it will not move further. However
if it continues to believe the terrain is safe it will move to the final
location (using the plan in lines 10-15) and which in turn triggers the
remaining plan in the program: to drill for a sample (lines 17-19).

Given a program and an initial state — which includes an input

trace — the state of the executor at each step of the program execu-

tion trace describes the internal state of the executor and its effects

(actions) on the environment.

3 DIALOGUES
The semantics of SimpleBDI allow us to determine how a program

will execute (for a given initial state). However, systems executing

such programs are often opaque. The aim of this paper is to help

facilitate an understanding of program behaviour.

To this end we consider a dialogue between two participants

who may have partial access to the program execution trace, and

have their own model of the executor. Our dialogue seeks to iden-

tify differences between the participants’ models so as to identify

disagreements. Such differences could arise due to differences in

the plans the dialogue participants believe the executor has; a diver-

gence with regards to the beliefs they believe the executor holds;

or different beliefs they have with regards to the various traces.

If one of the participants is the program executor (whose trace is

correct), and another is a human or system trying to understand the

executor’s behaviour, then identifying a disagreement means that

an error in the latter’s assumptions or reasoning has been identi-

fied, and doing so serves as a form of explanation of the executor’s

behaviour.

We begin by providing the intuition behind our dialogue, after

which we describe a model of the dialogue participants. Finally, we

formalise the dialogue by describing the utterances participants

may make in the dialogue (c.f., dialogue games [19]).

3.1 Dialogue — Intuitions
When applying the semantics correctly, differences between exe-

cution traces for dialogue participants arise due to differing plans

within agent plan libraries or plan precedence, or due to differ-

ent perceptions from the environment.The only externally visible

effects of a running system are the actions it executes, and our dia-

logue therefore begins by having one participant asking the other

why, or why not, an action was performed at some time.

Main Track AAMAS 2021, May 3-7, 2021, Online

430

Explaing BDI Agent Behaviour AAMAS ’21, May 3–7, 2021, Online

⟨B,Π, 𝜋, [], 𝑎𝑒𝑥 , p⟩ → ∅
⟨B,Π, 𝜋, [𝑉 |𝜏𝑒], 𝑎𝑒𝑥 , p⟩ → ⟨𝑢𝑝𝑑𝑎𝑡𝑒 (𝑉 , B),Π, 𝜋, 𝜏𝑒 , 𝑛𝑢𝑙𝑙, s⟩

⟨B,Π, 𝜋, [𝑛𝑢𝑙𝑙 |𝜏𝑒], 𝑎𝑒𝑥 , s⟩ → ⟨B,Π, 𝑠𝑒𝑙𝑒𝑐𝑡 (B,Π), 𝜏𝑒 , 𝑛𝑢𝑙𝑙, e⟩
⟨B,Π, 𝜋𝑖𝑑 : 𝐵 → [𝑈 ,𝑑𝑜 (𝑎)], [𝑛𝑢𝑙𝑙 |𝜏𝑒], 𝑎𝑒𝑥 , e⟩ → ⟨𝑢𝑝𝑑𝑎𝑡𝑒 (𝑈 , B),Π, 𝜋𝑖𝑑 : 𝐵 → [𝑈 ,𝑑𝑜 (𝑎)], 𝜏𝑒 , 𝑎, p⟩

𝑢𝑝𝑑𝑎𝑡𝑒 ([], B) = B
𝑢𝑝𝑑𝑎𝑡𝑒 ([+𝑏 |𝐵], B) = B ∪ {𝑏 }
𝑢𝑝𝑑𝑎𝑡𝑒 ([−𝑏 |𝐵], B) = B\{𝑏 }

𝑠𝑒𝑙𝑒𝑐𝑡 (B, []) = 𝜋𝑛𝑢𝑙𝑙

𝑠𝑒𝑙𝑒𝑐𝑡 (B, [𝜋𝑖𝑑 : 𝐵 → 𝐼 |Π]) =

{
𝜋𝑖𝑑 if 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (B, 𝐵)
𝑠𝑒𝑙𝑒𝑐𝑡 (B,Π) otherwise

𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (B, []) = ⊤

𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (B, 𝑏 : 𝐵) =

{
𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (B, 𝐵) if 𝑏 ∈ B
⊥ otherwise

𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (B,¬𝑏 : 𝐵) =

{
𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒 (B, 𝐵) if 𝑏 ∉ B
⊥ otherwise

Figure 1: SimpleBDI semantics. ∅ denotes termination of execution.

Let us consider the evolution of a possible explanatory dialogue.

If a dialogue participant asks another why an action did not take

place, the latter can respond by asking the former why they believe

an action did take place. If on the other hand, a participant asks why

an action did take place, the explanation (i.e., response) involves

identifying the (executed) plan which triggered the action. When

asked why a plan was executed, the response involves demonstrat-

ing that the set of beliefs which triggered the plan held. When

asked why some belief held, a response involves either presenting

the percept which caused the belief, or the plan which led to the

belief being adopted. In the latter case, the dialogue can continue

by providing an explanation for the plan.

When an assertion regarding a belief is presented it is also possi-

ble for a disagreement to occur, with the other dialogue participant

asserting that the belief does not hold at the relevant point in time.

In such a situation, the dialogue can continue with the presentation

of a plan or percept which removes the belief. In the former case,

the dialogue can continue by providing an explanation for the plan.

In the latter case, the presentation of the percept should identify a

disagreement between the dialogue participants.

The above paths through the dialogue help us identify natural

points of dialogue termination. When a percept justifying a belief

is presented, no further explanation is possible, as such a percept

originates from outside the BDI system. When stating that a plan

was executed, if the other dialogue participant is not aware of the

plan (i.e., the plan is not present in their plan library), or if they

believe that a higher precedence plan exists, then a disagreement

has been identified which cannot be resolved by further discussion

regarding system execution. Finally, If one dialogue participant

asks another why an action took place (or didn’t take place), and

the latter believes that the action didn’t take place (did take place),

then no further discussion is possible.

3.2 Dialogue Participant Model
A dialogue participant is a tuple ⟨M,O,O⟩ where M,O and 𝑂 are

program execution traces of a BDI program, and |M| = |O| = |O|.
Informally M represents the participants model of what should

have happened – i.e., the program execution trace they believe to

be correct, O represents their (partial) understanding of what the

other participant’s trace looks like. O then captures commitments

or constraints that emerge on the other participant due to their

utterances – specifically plans the other participant has explicitly

committed to not having been selected; beliefs explicitly commit-

ted to not having been perceived on the input trace; and actions

explicitly committed to not having been performed
2
.

We index a specific time point within the execution trace using

array notation (e.g., M[5]). Where the context is clear, we index

individual portions of a BDI executor’s state at a specific time in

the same manner, identifying the program with a superscript. For

example, 𝑎𝑀𝑒𝑥 [5] refers to 𝑎𝑒𝑥 of BDI program execution trace𝑀 at

time 5. Equivalently, if — for example — some 𝑥 ∈ 𝜏𝑀𝑒 [5], we may

say that 𝑥 holds in 𝜏𝑀𝑒 at time 5. We refer to elements within 𝑂 as

B, 𝜋 etc, indexing individual entries by time. We note that — in the

present system — the plan library Π does not change, and therefore

abuse notation by referring to it without identifying a specific time

point; we assume that any operations onΠM ,ΠO
andΠ apply to all

time indices. Finally, we also assume that 𝑠𝑡𝑎𝑔𝑒M [𝑇] = 𝑠𝑡𝑎𝑔𝑒O [𝑇]
for all 0 ≤ 𝑇 < |M|.

Utterances made by one dialogue participant can affect the other

participant’s view of the utterer. Therefore, given one dialogue

participant ⟨M,O,O⟩, we refer to the other dialogue participant

as ⟨M ′,O′,O′⟩. We can, for example, index the other dialogue

participant’s view of its own input trace at time 𝑇 as 𝜏 ′𝑒
M [𝑇].

The purpose of our dialogue is to allow a participant to iden-

tify disagreements or inconsistencies between itself and the other

participant. Such disagreements can be recognised as occurring

between the M and O traces, or between the M and O traces.

• For an index𝑇 , ifBO [𝑇] ⊈ BM [𝑇], or ifB[𝑇]∩B𝑀 [𝑇] ≠ ∅
then a disagreement in belief has been identified. More specif-

ically, the disagreement rests on beliefs (BO [𝑇]\BM [𝑇])
∪(B[𝑇] ∩ B𝑀 [𝑇]).

• If ΠO ⊈ ΠM
, or if 𝜋 > 𝜋 ′

according to ΠM
, and 𝜋 ≯ 𝜋 ′

according to ΠO
, or if there is some 𝜋 ∈ Π,ΠM

then a

2
We observe that some elements of the tuples stored within𝑂 are therefore not used

within our system.

Main Track AAMAS 2021, May 3-7, 2021, Online

431

AAMAS ’21, May 3–7, 2021, Online Louise A. Dennis and Nir Oren

disagreement w.r.t. the plan library has been identified. Such

a dispute revolves around plans 𝜋, 𝜋 ′
or 𝜋 respectively.

• For an index𝑇 , if 𝜋O [𝑇], 𝜋 [𝑇] ≠ 𝑛𝑢𝑙𝑙 and 𝜋M [𝑇] ≠ 𝜋O [𝑇]
or 𝜋 = 𝜋 [𝑇] then a disagreement in the executing plan has

been identified. This dispute centers on plan 𝜋 .

• If at any time 𝑇 the head of 𝜏M𝑒 differs from the head of 𝜏O𝑒
and 𝜏O𝑒 ≠ 𝑛𝑢𝑙𝑙 , then a disagreement in perception (w.r.t. the

respective heads of the lists) has been identified.

• Finally, if at any time𝑇 ,𝑎M𝑒𝑥 [𝑇] ≠ 𝑎O𝑒𝑥 [𝑇] ≠ 𝑛𝑢𝑙𝑙 or𝑎M𝑒𝑥 [𝑇] =
𝑎𝑒𝑥 [𝑇], then a disagreement in action has been identified,

based on the actions identified.

Note that in the above, for a disagreement to occur, the relevant

element of O and O must not be ∅. This reflects the fact that as the
dialogue progresses, O and O are updated and a disagreement only

occurs when an explicit difference is found.

3.3 Dialogue Initiation and Termination
At the start of a dialogue all elements of O and O at all times are set

to 𝑛𝑢𝑙𝑙 (or ∅ for beliefs), reflecting a lack of knowledge a dialogue

participant has about the other participant.

The dialogue begins when one dialogue participant makes a

𝑤ℎ𝑦 (𝐴,𝑇) or 𝑤ℎ𝑦 (¬𝐴,𝑇) move, asking why an action, 𝐴 was, or

was not performed at time 𝑇 .

The dialogue continues as additional utterances are made by the

participants in response to previous utterances. Utterances are open
until their closure condition occurs in the dialogue, at which point

they are closed. The dialogue terminates when no open utterances

exist, i.e., when there is no legal move that any dialogue participant

can make. Once the dialogue terminates, disagreement(s) can be

identified using the procedure described in the previous section.

3.4 Utterances
During a dialogue, participants make different utterances (a.k.a.

moves). Table 1 describes these, when they can be made, and their

intuitive meaning, aligning with the high level dialogue description

provided in Section 3.1. Note that𝑤ℎ𝑦 (𝐴,𝑇) can be used to initiate

the dialogue, or made in response to a𝑤ℎ𝑦 (¬𝐴,𝑇) move. In other

words, if a participant asks "Why did action 𝐴 not occur?", asking

"Why do you think action 𝐴 should have occurred?" is a valid

response, as it will allow for a disagreement in views to be detected.

Also note that the assertion of a plan (𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋,𝑇)) can be made

in response to asking why an action took place, why a belief was

instantiated, or in response to the claim that some other plan should

have been executed. The intuition behind the latter is that a dialogue

participant suggests that another plan should have been executed.

The dialogue can then continue to investigate why this is the case.

While Table 1 specifies what utterance can be made in response

to a move, the contents of a legal utterance are further constrained.

Table 2 provides a semi-formal description of each utterance, stating

when a move can be made (the move condition), the move’s closure

condition, and move’s effect on dialogue participants. Within the

table, _ is used, as in Prolog, to indicate that any instantiation of

the relevant value may exist.

We assume that the same move cannot be repeated. A dialogue

𝐷 is then a sequence of moves [𝐷1, . . . , 𝐷𝑛] obeying all dialogue

constraints (i.e., "Follows" requirements of Table 1, and "Move" and

"Closure" conditions of Table 2). Note that we do not specify an

explicit turn taking mechanism. Rather, dialogue participants make

utterances in response to an open move subject to the move condi-

tions. Different instantiations of the dialogue are therefore possible

whereby, for example, an agent can respond to a question about

why a plan holds by responding with a single belief assertion at

a time, or by asserting all elements of the plan’s guard simultane-

ously. While this may have an impact on dialogue understanding

and dialogue length (which we will categorise as part of future

work), the entire dialogue family will yield equivalent results in

terms of the dialogue’s goals (i.e., in identifying disagreements).

Moves such as𝑎𝑐𝑐𝑒𝑝𝑡 (𝜋,𝑇)which always close a dialogue branch
either explicitly indicate agreement or disagreement with an utter-

ance previously made by the other dialogue participant. In the latter

case, they typically end the dialogue. Other moves are closed when

the appropriate closure move exists. This closure move either iden-

tifies the disagreement, or refines where scope for disagreement

exists. For example, when one participant asserts a plan was exe-

cuted, and the other responds by asserting that some other plan was

executed, participants no longer needs to discuss the former plan to

identify disagreement. Instead, identifying why the latter plan was

(believed to be) executed is enough to identify the disagreement.

The 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒 utterance sets a constraint between 𝜋 and 𝜋 ′
.

We assume in addition that the effect maintains a total ordering

over plans in Π. We omit the requirement that 𝜋 ′ > 𝜋 appear in Π′

as the utterance’s effect is sufficient to detect disagreement.

Note that there is an asymmetry with regards to closure con-

ditions between 𝑎𝑠𝑠𝑒𝑟𝑡 (𝐵,𝑇 ,𝑇 ′) and 𝑎𝑠𝑠𝑒𝑟𝑡 (¬𝐵,𝑇 ,𝑇 ′). The former

can be closed by the latter, but not the other way around. The in-

tuition behind this is that the assertion of a belief must identify

the maximal interval during which the belief held. Providing an

overlapping interval where it does not hold counters the assertion,

but the new assertion must be explained (via a𝑤ℎ𝑦 (¬𝐵,𝑇) move)

rather than requiring another assertion for the belief holding.

Finally, note that𝑤ℎ𝑦 moves have no effect on the dialogue par-

ticipants, as such moves simply request more information without

committing the utterer to any specific stance. However, the condi-

tion for uttering such a why move requires that the utterer have

appropriate beliefs (e.g., for 𝑤ℎ𝑦 (𝐵,𝑇), the utterer has to believe

that belief 𝐵 held at time 𝑇 . We do not impose a similar constraint

when asking why an action did/didn’t take place. Such utterances

initiate the dialogue and requires a participant to believe that the

other believes the action did/didn’t take place but places no re-

quirements on the utterer (i.e., constraints on M), and without a

response, does not constrain the other (i.e., does not constrain O).

4 DIALOGUE PROPERTIES
Having described the utterances dialogue participants can make, as

well as how a dialogue is initiated and terminates, we now turn our

attention to the properties of the dialogue. Due to space limitations,

we provide proof sketches for these properties.

The first property we consider reflects the fact that the model

held by one dialogue participant of the other always reflects the

latter’s true internal state if it did so previously.

Proposition 1. If, before move 𝐷𝑖 , for all indexes 𝑇 , B′O [𝑇] ⊆
BM [𝑇], Π′O ⊆ ΠM , 𝜋 ′O [𝑇] ∈ {∅} ∪ {𝜋M [𝑇]}, 𝜏 ′𝑒 O [𝑇] ∈ {∅} ∪

Main Track AAMAS 2021, May 3-7, 2021, Online

432

Explaing BDI Agent Behaviour AAMAS ’21, May 3–7, 2021, Online

Utterance Follows Intuition

𝑤ℎ𝑦 (¬𝐴,𝑇) None Asks why action 𝐴 did not take place at time𝑇 .

𝑤ℎ𝑦 (𝐴,𝑇) None

𝑤ℎ𝑦 (¬𝐴,𝑇) Asks why action 𝐴 took place at time𝑇 .

𝑑𝑖𝑑 (𝐴,𝑇) 𝑤ℎ𝑦 (¬𝐴,𝑇) Asserts that action 𝐴 took place at𝑇 . Ends the dialogue.

𝑑𝑖𝑑𝑛𝑡 (𝐴,𝑇) 𝑤ℎ𝑦 (𝐴,𝑇) Asserts that action 𝐴 did not occur at time𝑇 . Ends the dialogue.

𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋,𝑇)

𝑤ℎ𝑦 (𝐴,𝑇 + 1)
𝑤ℎ𝑦 (𝐵,𝑇 + 1)
𝑤ℎ𝑦 (¬𝐵,𝑇 + 1)
𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋 ′,𝑇)

Asserts that plan 𝜋 was selected for execution at time𝑇 in response to a question regarding why an action

or belief held, or to counter a claim that another plan was executed at time𝑇 .

𝑛𝑜𝑡_𝑖𝑛_𝑙𝑖𝑏𝑟𝑎𝑟𝑦 (𝜋) 𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋,𝑇) States that the dialogue participant is not aware of plan 𝜋 . Ends the dialogue.

𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒 (𝜋, 𝜋 ′) 𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋,𝑇) Follows a second 𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋 ′,𝑇) move. States that plan 𝜋 takes precedence over 𝜋 ′
. Ends the dialogue.

𝑎𝑐𝑐𝑒𝑝𝑡 (𝜋,𝑇) 𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋,𝑇) Accepts that plan 𝜋 was selected for execution at time𝑇 .

𝑤ℎ𝑦 (𝜋,𝑇) 𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋,𝑇) Asks why plan 𝜋 was selected for execution at time𝑇 .

𝑎𝑠𝑠𝑒𝑟𝑡 (𝐵,𝑇 ,𝑇 ′) 𝑤ℎ𝑦 (𝜋,𝑇 ′ + 1) Asserts that belief 𝐵 exists at all times between𝑇 and𝑇 ′
(inclusive).

𝑎𝑠𝑠𝑒𝑟𝑡 (¬𝐵,𝑇 ,𝑇 ′) 𝑎𝑠𝑠𝑒𝑟𝑡 (𝐵,𝑇 ′′,𝑇 ′) Asserts that 𝐵 did not exist at all times between𝑇 and𝑇 ′
.

𝑎𝑐𝑐𝑒𝑝𝑡 (𝐵,𝑇 ,𝑇 ′) 𝑎𝑠𝑠𝑒𝑟𝑡 (𝐵,𝑇 ,𝑇 ′) Accepts that 𝐵 holds between𝑇 and𝑇 ′
.

𝑎𝑐𝑐𝑒𝑝𝑡 (¬𝐵,𝑇 ,𝑇 ′) 𝑎𝑠𝑠𝑒𝑟𝑡 (¬𝐵,𝑇 ,𝑇 ′) Accepts that 𝐵 does not hold between𝑇 and𝑇 ′
.

𝑤ℎ𝑦 (𝐵,𝑇) assert(𝐵,𝑇 ,𝑇 ′) Asks why belief 𝐵 exists at time𝑇 .

𝑤ℎ𝑦 (¬𝐵,𝑇) assert(¬𝐵,𝑇 ,𝑇 ′) Asks why belief 𝐵 does not exist at time𝑇 .

𝑝𝑒𝑟𝑐𝑒𝑝𝑡 (+𝐵,𝑇) 𝑤ℎ𝑦 (𝐵,𝑇 + 1) Explains that 𝐵 was perceived at time𝑇 in response to asking why it held at the next time point.

𝑝𝑒𝑟𝑐𝑒𝑝𝑡 (−𝐵,𝑇) 𝑤ℎ𝑦 (¬𝐵,𝑇 + 1) Explains that 𝐵 was perceived being removed at time𝑇 .

Table 1: Legal dialogue utterances and what moves they follow, as well as their intuitive meaning.

{𝜏M𝑒 [𝑇]}, and 𝑎′𝑒𝑥 O [𝑇] ∈ {∅} ∪ {𝑎M𝑒𝑥 [𝑇]}, then this will also be the
case following the move.

Proof. We note that 𝑤ℎ𝑦 moves do not affect the traces, and

therefore only consider the remaining move types.

Those moves which update an element of O′
do so in a way

consistent with M, giving us the desired result. □

Note that the update procedure described above also updates

the constraints in O′
in a manner consistent with M. Therefore,

O′,O′
are consistent with the program execution trace M.

Corollary 1. Given two dialogue participants ⟨M,O,O⟩, ⟨M ′,O′,O′⟩,
if M and O′ contain no contradictions prior to move 𝐷𝑖 , then they
will contain no contradictions following it.

Next, we demonstrate that our dialogues always terminate.

Theorem 4.1. Given a finite set of plans Π with a finite set of
propositions in their guards,𝐺 , then any dialogue starting with a why
question on an action will terminate.

Proof. We show that any move at time 𝑇 either immediately

closes the dialogue, or is closed when move referring to a time

𝑇 ′ < 𝑇 is made, closing it. Since the lowest possible time is 0 and

no moves may refer to time intervals below this, any dialogue must

terminate. We consider each possible move individually.

• 𝑤ℎ𝑦 (¬𝐴,𝑇): There are two possible responses: 𝑑𝑖𝑑 (𝐴,𝑇),
which closes the dialogue, or𝑤ℎ𝑦 (𝐴,𝑇).

• 𝑤ℎ𝑦 (𝐴,𝑇): Possible responses are 𝑑𝑖𝑑𝑛𝑡 (𝐴,𝑇), which closes

the dialogue, or 𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋,𝑇 − 1).
• 𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋,𝑇): is closed immediately in case of 𝑎𝑐𝑐𝑒𝑝𝑡 ,

𝑛𝑜𝑡_𝑖𝑛_𝑙𝑖𝑏𝑟𝑎𝑟𝑦 and 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒 moves, and we need only

consider𝑤ℎ𝑦 (𝜋,𝑇) and 𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋 ′,𝑇). Given the move’s con-

ditions, a third 𝑎𝑠𝑠𝑒𝑟𝑡 of a plan cannot occur, meaning either

that 𝑤ℎ𝑦 (𝜋 ′,𝑇) will be asked, or one of the closure moves

mentioned previously must be played. Therefore, we must

show that𝑤ℎ𝑦 (𝜋,𝑇) will be closed.
• 𝑤ℎ𝑦 (𝜋,𝑇): The only response is a set of 𝑎𝑠𝑠𝑒𝑟𝑡 (𝐵,𝑇 ′,𝑇 − 1)
where 𝑇 ′ ≤ 𝑇 − 1. Each of these considers a time before 𝑇 .

• 𝑎𝑠𝑠𝑒𝑟𝑡 (𝐵,𝑇 ′,𝑇): An 𝑎𝑐𝑐𝑒𝑝𝑡 (𝐵,𝑇 ′,𝑇) closes the move, and

we must therefore consider 𝑎𝑠𝑠𝑒𝑟𝑡 (¬𝐵,𝑇 ′′,𝑇) and𝑤ℎ𝑦 (𝐵,𝑇)
moves, which as shown below, consider a time less than 𝑇 .

• 𝑎𝑠𝑠𝑒𝑟𝑡 (¬𝐵,𝑇 ′,𝑇): An 𝑎𝑐𝑐𝑒𝑝𝑡 (¬𝐵,𝑇 ′,𝑇) closes the move. We

must therefore show𝑤ℎ𝑦 (¬𝐵,𝑇) for a time before 𝑇 .

• 𝑤ℎ𝑦 (𝐵,𝑇)/𝑤ℎ𝑦 (¬𝐵,𝑇): This move is closed by a

𝑝𝑒𝑟𝑐𝑒𝑝𝑡 (+𝐵,𝑇 −1)/𝑝𝑒𝑟𝑐𝑒𝑝𝑡 (−𝐵,𝑇 −1) move. The only other

response is 𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋,𝑇 − 1), which considers a time 𝑇 − 1.

It is also clear, given the requirement that 𝑠𝑡𝑎𝑔𝑒 [0] = p, that no
dialogue will refer to a time 𝑇 < 0. □

Turning to the question of dialogue complexity, we demonstrate

that the worst case length of a dialogue depends on the number of

plans in the plan library and the size of plan guards for each plan.

Corollary 2. The complexity of creating a dialogue is polynomial
in the size of the plan library and plan’s guard.

Proof. Let 𝑘 be the total number of plans in the plan library.

Since moves cannot be repeated the maximum number of asserts

which can take place in any branch of the tree is 𝑘 . Furthermore, the

dialogue can branch whenever a𝑤ℎ𝑦 (𝜋,𝑇) is asked, with a factor

equal to the number of beliefs in the guard of the plan (call these 𝑔).

Finally, from the previous theorem, we know that a dialogue can

take place for at most𝑇 time points, meaning that the upper bound

for the number of moves is 𝑂 (𝑔𝑇𝑘). □

The following proposition states that if a disagreement within

the dialogue participant’s views (𝑀) exists, its root cause — the

Main Track AAMAS 2021, May 3-7, 2021, Online

433

AAMAS ’21, May 3–7, 2021, Online Louise A. Dennis and Nir Oren

Utterance Move Condition Closure Condition Effect

𝑤ℎ𝑦 (¬𝐴,𝑇) 𝑠𝑡𝑎𝑔𝑒M [𝑇] = e 𝑑𝑖𝑑 (𝐴,𝑇) or 𝑤ℎ𝑦 (𝐴,𝑇) in the dialogue None

𝑤ℎ𝑦 (𝐴,𝑇) 𝑠𝑡𝑎𝑔𝑒M [𝑇] = e 𝑑𝑖𝑑𝑛𝑡 (𝐴,𝑇) or 𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋,𝑇 − 1) s.t. 𝜋 =

_ → [_, 𝑑𝑜 (𝐴)] in the dialogue.

None

𝑤ℎ𝑦 (𝜋,𝑇) 𝜋 = 𝜋O [𝑇] If 𝜋 is of the form [𝑏1, . . . , 𝑏𝑛] → [𝑈 , _]
then there is a move 𝑎𝑠𝑠𝑒𝑟𝑡 (𝑏𝑖 , _,𝑇 − 1)
for all 𝑖 = 1, . . . , 𝑛.

None

𝑤ℎ𝑦 (𝐵,𝑇) 𝐵 ∈ B𝑂 [𝑇] When there is a move 𝑝𝑒𝑟𝑐𝑒𝑝𝑡 (+𝐵,𝑇 −1)
or a move 𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋,𝑇 − 1) such that 𝜋 is

of the form _ → [𝑈 , _] and +𝐵 ∈ 𝑈 .

None

𝑤ℎ𝑦 (¬𝐵,𝑇) 𝐵 ∉ BO [𝑇] When there is a move 𝑝𝑒𝑟𝑐𝑒𝑝𝑡 (−𝐵,𝑇 −1)
or a move 𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋,𝑇 − 1) such that 𝜋 is

of the form _ → [𝑈 , _] and −𝐵 ∈ 𝑈 .

None

𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋,𝑇) 𝑠𝑡𝑎𝑔𝑒M [𝑇] = s and 𝜋 = 𝜋M [𝑇]. If
following 𝑤ℎ𝑦 (𝐴,𝑇 + 1) (equivalently

𝑤ℎ𝑦 (𝐵,𝑇 + 1) or 𝑤ℎ𝑦 (¬𝐵,𝑇 + 1)) then
𝜋 is of the form _ → [_, 𝑑𝑜 (𝐴)] (equiv-
alently _ → [[. . . , +𝐵, . . .], _] or _ →
[[. . . ,−𝐵, . . .], _]).

Dialogue contains one of the following:

𝑤ℎ𝑦 (𝜋,𝑇)
𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋 ′,𝑇)
𝑎𝑐𝑐𝑒𝑝𝑡 (𝜋,𝑇)
𝑛𝑜𝑡_𝑖𝑛_𝑙𝑖𝑏𝑟𝑎𝑟𝑦 (𝜋)
𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒 (𝜋, 𝜋 ′)

𝜋 ′O [𝑇] = 𝜋 . If following an

𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋 ′,𝑇) then 𝜋 is added to

𝜋 ′ [𝑇].

𝑎𝑠𝑠𝑒𝑟𝑡 (𝐵,𝑇 ,𝑇 ′) 𝐵 ∈ BM [𝑖] such that𝑇 ≤ 𝑖 ≤ 𝑇 ′
Dialogue contains 𝑤ℎ𝑦 (𝐵,𝑇 ′) or

𝑎𝑐𝑐𝑒𝑝𝑡 (𝐵,𝑇 ,𝑇 ′) or 𝑎𝑠𝑠𝑒𝑟𝑡 (¬𝐵,𝑇 ′′,𝑇 ′)
(where𝑇 ′′ ≤ 𝑇 ′

).

𝐵 is added to all B′O [𝑖] for all𝑇 ≤ 𝑖 ≤ 𝑇 ′

𝑎𝑠𝑠𝑒𝑟𝑡 (¬𝐵,𝑇 ,𝑇 ′) 𝐵 ∉ BM [𝑖] such that𝑇 ≤ 𝑖 ≤ 𝑇 ′
Dialogue contains 𝑤ℎ𝑦 (¬𝐵,𝑇 ′) or

𝑎𝑐𝑐𝑒𝑝𝑡 (¬𝐵,𝑇 ,𝑇 ′)
𝐵 is added to B′ [𝑖] for all𝑇 ≤ 𝑖 ≤ 𝑇 ′

𝑑𝑖𝑑 (𝐴,𝑇) 𝐴 = 𝑎M𝑒𝑥 [𝑇] Always closed 𝑎′O𝑒𝑥 [𝑇] = 𝐴

𝑑𝑖𝑑𝑛𝑡 (𝐴,𝑇) 𝐴 ≠ 𝑎M𝑒𝑥 [𝑇] Always closed 𝑎′𝑒𝑥 [𝑇] = 𝐴

𝑛𝑜𝑡_𝑖𝑛_𝑙𝑖𝑏𝑟𝑎𝑟𝑦 (𝜋) 𝜋 ∉ ΠM
Always closed 𝜋 is added to Π′

𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒 (𝜋, 𝜋 ′) The moves 𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋,𝑇) , 𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋 ′,𝑇)
are in the dialogue. 𝜋, 𝜋 ′ ∈ ΠM

and

𝜋 > 𝜋 ′
there.

Always closed 𝜋 > 𝜋 ′ ∈ Π′O

𝑎𝑐𝑐𝑒𝑝𝑡 (𝜋,𝑇) 𝜋 = 𝜋M [𝑇] Always closed 𝜋 ′O [𝑇] = 𝜋

𝑎𝑐𝑐𝑒𝑝𝑡 (𝐵,𝑇 ,𝑇 ′) 𝐵 ∈ BM [𝑖] for all𝑇 ≤ 𝑖 ≤ 𝑇 ′
Always closed 𝐵 is added to B′O [𝑖] for all𝑇 ≤ 𝑖 ≤ 𝑇 ′

𝑎𝑐𝑐𝑒𝑝𝑡 (¬𝐵,𝑇 ,𝑇 ′) 𝐵 ∉ BM [𝑖] for all𝑇 ≤ 𝑖 ≤ 𝑇 ′
Always closed 𝐵 is added to B′ [𝑖] for all𝑇 ≤ 𝑖 ≤ 𝑇 ′

𝑝𝑒𝑟𝑐𝑒𝑝𝑡 (+𝐵,𝑇) 𝑠𝑡𝑎𝑔𝑒M [𝑇] = p and +𝐵 is contained

within the set at the head of 𝜏M𝑒 [𝑇]
Always closed 𝐵 is added to B′O [𝑇 + 1]

𝑝𝑒𝑟𝑐𝑒𝑝𝑡 (−𝐵,𝑇) 𝑠𝑡𝑎𝑔𝑒M [𝑇] = p and −𝐵 is contained

within the set at the head of 𝜏M𝑒 [𝑇]
Always closed 𝐵 is added to B′ [𝑇 + 1]

Table 2: Preconditions for an utterance; requirements to label the move closed; and utterance effects on dialogue participants.

difference in plans, perceptions or beliefs which led to it — can

be detected by the dialogue, assuming that some aspect of the

disagreement was already known to the dialogue participants (e.g.,

a difference in perceived action).

Proposition 2. Given two agents for which M ≠ M ′ and for
which 𝑎𝑀𝑒𝑥 [𝑇] ≠ 𝑎𝑀

′
𝑒𝑥 [𝑇], there is a dialogue which terminates with a

𝑛𝑜𝑡_𝑖𝑛_𝑙𝑖𝑏𝑟𝑎𝑟𝑦, 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒 or 𝑝𝑒𝑟𝑐𝑒𝑝𝑡 move.

Proof. We know from Theorem 4.1 that all dialogues terminate.

We show that there is at least one belief or plan that is not 𝑎𝑐𝑐𝑒𝑝𝑡ed.

Note that since there is a disagreement in actions, the dialogue

can initiate by asking why the disagreed upon action was executed,

meaning that we can ignore 𝑑𝑖𝑑/𝑑𝑖𝑑𝑛𝑡 moves.

Assume the proposition is false. This would mean that there is

agreement on which plan was executed. But there is a disagreement

in actions, which means that M believes a plan with head 𝑎M𝑒𝑥 [𝑇]

was executed, whileM ′
believes a plan with head 𝑎M𝑒𝑥 [𝑇]. There-

fore this is a contradiction. The only way to close the dialogue is

either with a 𝑛𝑜𝑡_𝑖𝑛_𝑙𝑖𝑏𝑟𝑎𝑟𝑦, or 𝑝𝑟𝑒𝑐𝑒𝑑𝑒𝑛𝑐𝑒 move, asking𝑤ℎ𝑦 the

plan was selected, or for another plan to be asserted leading to the

same arguments as above. Therefore only the question regarding

𝑤ℎ𝑦 a plan was chosen does not (eventually) close the move. In

turn, this leads to a disagreement about beliefs, which can only be

resolved via a 𝑝𝑒𝑟𝑐𝑒𝑝𝑡 disagreement, or by asking about further

plans. over which there must (as above) be a disagreement. □

It follows trivially that at least one dialogue participant will be

able to identify the disagreement by examining their M and O.

The results above suggests a simple strategy for identifying

the root cause of a disagreement, namely to never 𝑎𝑐𝑐𝑒𝑝𝑡 when a

disagreement exists, and always ask𝑤ℎ𝑦 about such disagreements.

Such disagreement dialogues can be contrasted from confirmatory
dialogues, where one participant may wish to confirm that the

Main Track AAMAS 2021, May 3-7, 2021, Online

434

Explaing BDI Agent Behaviour AAMAS ’21, May 3–7, 2021, Online

other’s internal trace matches their own. A simple strategy for such

confirmatory dialogues involves always asking𝑤ℎ𝑦 where possible,

𝑎𝑐𝑐𝑒𝑝𝑡𝑖𝑛𝑔 only when no other move exists.

Finally it can be easily shown that if bothM andM ′
are identical,

all dialogues will terminate with 𝑑𝑖𝑑/𝑑𝑖𝑑𝑛𝑡 moves (if the initial𝑤ℎ𝑦

asks about a move that did/didn’t occur, or 𝑎𝑐𝑐𝑒𝑝𝑡 moves. In other

words, no disagreement will be identified.

5 IMPLEMENTATION
We have implemented SimpleBDI and our dialogue explanation

system in Python
3
. In our system two agents execute the program.

Perceptions are supplied to each agent individually at certain time

steps – allowing for differences in execution to occur because of

differing perceptions. Once execution is completed, a trace of the

actions performed by the two agents is used to detect points where

their behaviour diverged and these points can be used to start a

dialogue. For convenience the first agent in the dialogue is referred

to as the human, though it should be noted that our dialogues are

in fact generated by two software agents conversing.

Figure 2 shows a sample dialogue generated by our system for

Example 1. In this example when the robot reached the waypoint it

perceived that the terrain was no longer safe and so did not move to

the final location. The human asks why it did not make this move.

The robot and human agree that it was at the waypoint, and that

it had a goal to move to the final location, but they realise they

diagree that the terrain was safe and the robot explains that it no

longer believed the terrain to be safe from time point 15.

Figure 3 shows a dialogue for a different example. In this example

the robot is charged with performing routine remote inspections of

some site (e.g., a nuclear waste storage facility). When it performs

its daily inspection it should inspect the walls of the facility (if they

are scheduled for inspection) and the stored barrels (if they are

stored for inspection). In the situation where both inspections are

scheduled then inspecting the barrels takes precedence (indicated

implicitly by the ordering of the plans in the robot’s plan library).

This simple program is shown in Listing 2.

Code Listing 2

1d a i l y _ i n s p e c t i o n , b a r r e l s _ s c h e du l e d −>
2do (i n s p e c t _ b a r r e l s)
3d a i l y _ i n s p e c t i o n , wa l l _ s chedu l ed −>
4do (i n s p e c t _wa l l)

Figure 3 shows a dialogue generated for an instance where the

human believes that the wall inspection should have priority over

barrel inspection. The human asks why the robot did not inspect

the wall, the robot counters by asking why the human thought it

should inspect the wall. They both explain the plan they thought

applicable at that point and the human asserts that they thought

the wall inspection plan had priority.

6 DISCUSSION AND FUTUREWORK
A dialogue participant can make multiple utterances in some stages

of the dialogue. For example, a possible response to a 𝑤ℎ𝑦 (𝜋,𝑇)
move, which could be a single 𝑎𝑠𝑠𝑒𝑟𝑡 (𝑏1, _,𝑇 − 1) move followed

by a sub-dialogue to close this assertion, after which a second

3
Source code can be found at https://github.com/jhudsy/BDIexplanation.git.

𝑎𝑠𝑠𝑒𝑟𝑡 (𝑏2, _,𝑇 − 2) move can be made followed by another sub-

dialogue. Alternatively, a response consisting of multiple moves of

the form 𝑎𝑠𝑠𝑒𝑟𝑡 (𝑏1, _,𝑇 − 1), . . . , 𝑎𝑠𝑠𝑒𝑟𝑡 (𝑏𝑛, _,𝑇 − 1) could be made,

closing the original𝑤ℎ𝑦 move, but leaving all the assertions open

until dealt with. Rules covering turn taking (for example) would

then instantiate specific dialogues, but this would not affect the

dialogue properties described previously.

Our work makes an important assumption, namely that both

dialogue participants apply the SimpleBDI semantics correctly to

their internal version of the BDI program. In other words, the dis-

agreements we identify come about from omissions or differences

in the plan library, in the initial set of beliefs held by the dialogue

participants, or differences in beliefs regarding the input trace 𝜏𝑒 .

Extending the dialogue to deal with fallible participants who may

simply forget a belief or to apply a rule is an important strand of

future work, as doing so will provide for a dialogue more suited to

humans acting as dialogue participants.

At worst, our dialogue identifies only a single disagreement

between participants.We assume that between dialogues, partici-

pants update their beliefs about the program execution trace and

therefore, on rerunning the dialogue would identify different dis-

agreements. Determining how such belief updates should take place

is outside the scope of the paper, but serves as another important

avenue of future work. Related to this, allowing the participants to

update their M models during the trace (with concomitant effects

on O′
and O′

) would enable more disagreements to be discovered

during single instance of the dialogue. Such work would require, at

the very least, the addition of moves to retract beliefs [19].

Explanation has become an important area of AI research. Much

of the work in the domain focuses on the explainability of machine

learning systems [1], but several recent papers consider explanation

of BDI and planning systems. For example, Caminada et al. intro-
duced a dialogue game to explain the behaviour of an automated

planner [4, 13], building on ideas taken from proof dialogues [3].

We note that such work considers how to translate formal utter-

ances (as per our dialogue) into natural language, and believe that

this will be an interesting avenue of future work.

Several other argumentation based approaches to explanation

have been proposed in the literature (e.g., [5, 16]). While these ap-

proaches could be adapted to explain the behaviour of BDI systems,

we are unaware of such adaptations, which would — at least —

require instantiating BDI specific concepts related to time, beliefs,

goals etc as rules, which could then be combined into arguments,

and over which explanation dialogues could then operate. In con-

trast, our current work does not utilise an argumentation-theoretic

semantics to underpin it. Instead, it could be viewed as a dialogue

game built using argument schemes and critical questions [19] cre-

ated for the BDI domain, in the tradition of work in informal logic

[18] and practical reasoning [2].

Winikoff [21] and Hindriks [10] both consider providing expla-

nations for BDI languages in the context of debugging. Hindriks’

work was later expanded by Koeman et al. [11]. These systems

all generate explanations using a formal semantics over a trace of

program execution. Harbers [9] generates explanations for BDI sys-

tems using goal hierarchy paired with a behaviour log. Winikoff et
al. [22] uses a concept of preferences to help produce explanations

Main Track AAMAS 2021, May 3-7, 2021, Online

435

https://github.com/jhudsy/BDIexplanation.git

AAMAS ’21, May 3–7, 2021, Online Louise A. Dennis and Nir Oren

human: Why Not move2 at 17
robot: Why move2 at 17
human: Selected at_waypoint,goal_move_to_location,safe_terrain, ->

do(move2),-goal_move_to_location,-at_waypoint,+at_location,+goal_take_sample, at 16
robot: Why select at_waypoint,goal_move_to_location,safe_terrain, ->

do(move2),-goal_move_to_location,-at_waypoint,+at_location,+goal_take_sample, at 16
human: +at_waypoint at time 14 and it remained so until at least 16
robot: I agree +at_waypoint between 14 and 16
human: +goal_move_to_location at time 11 and it remained so until at least 16
robot: I agree +goal_move_to_location between 11 and 16
human: +safe_terrain at time 6 and it remained so until at least 16
robot: -safe_terrain at time 15 and it remained so until at least 16
human: Why -safe_terrain at 15
robot: I perceived -safe_terrain at 15

Figure 2: Sample Dialogue for Example 1

human: Why Not inspect_wall at 14
robot: Why inspect_wall at 14
human: Selected wall_scheduled,daily_inspection, -> do(inspect_wall), at 13
robot: Selected barrels_scheduled,daily_inspection, -> do(inspect_barrels), at 13
human: wall_scheduled,daily_inspection, -> do(inspect_wall), has precedence in my plan library

Figure 3: Sample Dialogue for Plan Priority Example

from BDI program execution traces. While all of these systems —

like us — use execution traces to provide explanations for BDI pro-

gram, none compare conflicting traces through dialogue to guide

the generation of the explanation towards the concerns of the user.

Sreedharan et al. [17] consider the question of explanations in

the context of AI Planning and, like us, explicitly identify the need

to reconcile the human mental model with execution to generate

an explanation. They pre-generate a set of explanations that are

intended to reveal specific aspects of the Planning system’s model

(for instance that a particular location must be visited in partic-

ular circumstances) and then use machine learning to determine

which explanations are most likely to explain which observable

transitions in the system behaviour. These are then presented to

users when they label some particular transition as inexplicable.

[12] describes how hypothetical plans can be generated which can

be compared to the original plan, serving a similar function to our

two dialogue participants. However, these approaches ignore the

dialogical aspects of our solution and are grounded in planning,

reducing the importance of concepts such as percepts.

Apart from the research mentioned above, there are several ad-

ditional strands of future work we intend to explore. First, as noted

by Caminada et al. and others, there are strong links between di-

alogues and formal argumentation theory. Move sequences such

as 𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋,𝑇), 𝑎𝑠𝑠𝑒𝑟𝑡 (𝜋 ′,𝑇) imply a contradiction in the dialogue

participant’s views which — through the dialogue — are instanti-

ated into attacking arguments. We therefore intend to investigate

an argument-theoretic semantics for the dialogue presented in this

paper, potentially allowing for stronger links with other explainable

AI approaches underpinned by argumentation [3, 6, 13], potentially

allowing for more efficient dialogues through the introduction of

concepts such as burden of proof [14]. We also intend to inves-

tigate the effects of strategy on dialogue properties more deeply.

While our results provide worst-case upper bounds for dialogue

length, strategies regarding what utterance to make, built on what

the dialogue participant wishes to achieve and what they know

about the other participant [15] may — at least in the average case

— significantly reduce the number of moves that need to be made.

Finally, extending SimpleBDI may result in more complex dialogues.

Allowing, for example, a non-strict ordering over plans could allow

participants to argue about the unobserved effects of plans, requir-

ing looking forwards as backwards over time, and such enrichment

could be a fruitful direction of future work.

7 CONCLUSIONS
We presented a family of dialogues allowing two dialogue partici-

pants to identify if, and where, a divergence of views exists between

them with regards to a BDI agent’s operation. Our dialogue aims

to be general enough to capture two external observers discussing

the behaviour of a (third) BDI agent, but we believe that in practice,

one of the dialogue participants will be the BDI agent, seeking to

explain its actions to the second participant, typically a human.

Such explanations then focus on divergences in the views of the

participants with regards to the perceptions, plans and underlying

beliefs of the BDI system, and we show that when a divergence

exists with regards to what action should have taken place, the

dialogue enables the root cause of the divergence to be detected.

ACKNOWLEDGMENTS
This work arose out of conversations at a Lorentz Workshop on the

Dynamics of Multi-Agent Systems (2018). Thanks are due Koen Hin-

driks and Vincent Koeman for their input. The work was supported

by the UKRI/EPSRC RAIN [EP/R026084], SSPEDI [EP/P011829/1]

and FAIR-SPACE [EP/R026092] Robotics and AI Hubs.

Main Track AAMAS 2021, May 3-7, 2021, Online

436

Explaing BDI Agent Behaviour AAMAS ’21, May 3–7, 2021, Online

REFERENCES
[1] Amina Adadi and Mohammed Berrada. 2018. Peeking inside the black-box: A

survey on Explainable Artificial Intelligence (XAI). IEEE Access 6 (2018), 52138–
52160.

[2] Katie Atkinson and Trevor Bench-Capon. 2007. Practical reasoning as presump-

tive argumentation using action based alternating transition systems. Artificial
Intelligence 171, 10 (2007), 855 – 874. https://doi.org/10.1016/j.artint.2007.04.009

Argumentation in Artificial Intelligence.

[3] P. Baroni, D. Gabbay, M. Giacomin, and L. van der Torre. 2018. Handbook of
Formal Argumentation. College Publications.

[4] Martin W Caminada, Roman Kutlak, Nir Oren, and Wamberto Weber Vascon-

celos. 2014. Scrutable plan enactment via argumentation and natural language

generation. In Proceedings of the 2014 international conference on Autonomous
agents and multi-agent systems. International Foundation for Autonomous Agents

and Multiagent Systems, 1625–1626.

[5] Kristijonas Cyras, Xiuyi Fan, Claudia Schulz, and Francesca Toni. 2017.

Assumption-based Argumentation: Disputes, Explanations, Preferences. FLAP 4,

8 (2017). http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf

[6] Kristijonas Čyras, Dimitrios Letsios, Ruth Misener, and Francesca Toni. 2019.

Argumentation for explainable scheduling. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 33. 2752–2759.

[7] L. Dennis, M. Fisher, M. Webster, and R. Bordini. 2012. Model Checking Agent

Programming Languages. Automated Software Engineering 19, 1 (2012), 5–63.

[8] Emilia Garcia, Gareth Tyson, Simon Miles, Michael Luck, Adel Taweel, Tjeerd

Van Staa, and Brendan Delaney. 2013. Analysing the Suitability of Multiagent

Methodologies for e-Health Systems. In Agent-Oriented Software Engineering XIII,
Jörg P. Müller and Massimo Cossentino (Eds.). Springer Berlin Heidelberg, Berlin,

Heidelberg, 134–150.

[9] Maaike Harbers. 2011. Explaining Agent Behaviour in Virtual Training. Ph.D.
Dissertation. SIKS Dissertation Series. No. 2011-35.

[10] Koen V. Hindriks. 2012. Debugging Is Explaining. In PRIMA 2012: Principles
and Practice of Multi-Agent Systems, Iyad Rahwan, Wayne Wobcke, Sandip Sen,

and Toshiharu Sugawara (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

31–45.

[11] Vincent Koeman, Louise A. Dennis, Matt Webster, Michael Fisher, and Koen

Hindriks. 2019. The "Why did you do that?" Button: Answering Why-questions

for end users of Robotic Systems. In Proceedings of the 7th International Workshop
in Engineering Multi-Agent Systems. Montreal, Canada. http://cgi.csc.liv.ac.uk/

~lad/emas2019/accepted/EMAS2019_paper_27.pdf

[12] Benjamin Krarup, Michael Cashmore, Daniele Magazzeni, and Tim Miller. 2019.

Model-based contrastive explanations for explainable planning. In ICAPS 2019
Workshop on Explainable AI Planning (XAIP).

[13] Nir Oren, Kees van Deemter, and Wamberto W. Vasconcelos. 2020. Argument-
Based Plan Explanation. Springer International Publishing, Cham, 173–188. https:

//doi.org/10.1007/978-3-030-38561-3_9

[14] Henry Prakken, Chris Reed, and Douglas Walton. 2005. Dialogues About the

Burden of Proof. In Proceedings of the 10th International Conference on Artificial
Intelligence and Law (Bologna, Italy) (ICAIL ’05). ACM, New York, NY, USA,

115–124. https://doi.org/10.1145/1165485.1165503

[15] Tjitze Rienstra, Matthias Thimm, and Nir Oren. 2013. Opponent models with

uncertainty for strategic argumentation. In Twenty-Third International Joint Con-
ference on Artificial Intelligence.

[16] Elizabeth I. Sklar and Mohammad Q. Azhar. 2018. Explanation through Argumen-

tation. In Proceedings of the 6th International Conference on Human-Agent Interac-
tion (Southampton, United Kingdom) (HAI ’18). Association for Computing Ma-

chinery, New York, NY, USA, 277–285. https://doi.org/10.1145/3284432.3284470

[17] Sarath Sreedharan, Alberto Olmo, Aditya Prasad Mishra, and Subbarao Kamb-

hampati. 2019. Model-free Model Reconciliation. In IJCAI.
[18] Douglas Walton. 2008. Informal Logic: A Pragmatic Approach (2 ed.). Cambridge

University Press. https://doi.org/10.1017/CBO9780511808630

[19] Douglas Walton and Erik CW Krabbe. 1995. Commitment in dialogue: Basic
concepts of interpersonal reasoning. SUNY press.

[20] Li Weigang, Bueno Borges de Souza, Antonio Marcio Ferreira Crespo, and

Daniela Pereira Alves. 2008. Decision support system in tactical air traffic flow

management for air traffic flow controllers. Journal of Air Transport Management
14, 6 (2008), 329–336.

[21] Michael Winikoff. 2017. Debugging Agent Programs with Why? Questions. In

Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems
(São Paulo, Brazil) (AAMAS ’17). International Foundation for Autonomous

Agents and Multiagent Systems, Richland, SC, 251–259.

[22] Michael Winikoff, Virginia Dignum, and Frank Dignum. 2016. Why Bad Cof-

fee? Explaining Agent Plans with Valuings. In SAFECOMP (LNCS, Vol. 9923),
A. Skavhaug, J. Guiochet, E. Schoitsch, and F. Bitsch (Eds.). Spinger, 521–534.

Main Track AAMAS 2021, May 3-7, 2021, Online

437

https://doi.org/10.1016/j.artint.2007.04.009
http://www.collegepublications.co.uk/downloads/ifcolog00017.pdf
http://cgi.csc.liv.ac.uk/~lad/emas2019/accepted/EMAS2019_paper_27.pdf
http://cgi.csc.liv.ac.uk/~lad/emas2019/accepted/EMAS2019_paper_27.pdf
https://doi.org/10.1007/978-3-030-38561-3_9
https://doi.org/10.1007/978-3-030-38561-3_9
https://doi.org/10.1145/1165485.1165503
https://doi.org/10.1145/3284432.3284470
https://doi.org/10.1017/CBO9780511808630

	Abstract
	1 Introduction
	2 The SimpleBDI Language
	3 Dialogues
	3.1 Dialogue — Intuitions
	3.2 Dialogue Participant Model
	3.3 Dialogue Initiation and Termination
	3.4 Utterances

	4 Dialogue Properties
	5 Implementation
	6 Discussion and Future Work
	7 Conclusions
	Acknowledgments
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 9
 Mask co-ordinates: Horizontal, vertical offset 46.78, 719.44 Width 520.35 Height 14.32 points
 Origin: bottom left

 1
 0
 BL

 2
 SubDoc
 9

 CurrentAVDoc

 46.7841 719.4368 520.3543 14.3217

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 8
 9
 8
 8

 1

 HistoryList_V1
 qi2base

